Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (397,330)

Search Parameters:
Keywords = improvability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2011 KiB  
Article
Circulating of In Situ Recovered Stream from Fermentation Broth as the Liquor for Lignocellulosic Biobutanol Production
by Changsheng Su, Yunxing Gao, Gege Zhang, Xinyue Zhang, Yating Li, Hongjia Zhang, Hao Wen, Wenqiang Ren, Changwei Zhang and Di Cai
Fermentation 2025, 11(8), 453; https://doi.org/10.3390/fermentation11080453 (registering DOI) - 3 Aug 2025
Abstract
Developing a more efficient, cleaner, and energy-saving pretreatment process is the primary goal for lignocellulosic biofuels production. This study demonstrated the feasibility of circulating high-concentration acetone–butanol–ethanol (ABE) obtained via in situ product recovery (ISPR) as a pretreatment liquor. Taking ABE solvent separated from [...] Read more.
Developing a more efficient, cleaner, and energy-saving pretreatment process is the primary goal for lignocellulosic biofuels production. This study demonstrated the feasibility of circulating high-concentration acetone–butanol–ethanol (ABE) obtained via in situ product recovery (ISPR) as a pretreatment liquor. Taking ABE solvent separated from pervaporation (PV) and gas stripping (GS) as examples, results indicated that under dilute alkaline (1% NaOH) catalysis, the highly recalcitrant lignocellulosic matrices can be efficiently depolymerized, thereby improving fermentable sugars recovery in saccharification stage and ABE yield in subsequent fermentation stage. Results also revealed delignification of 91.5% (stream from PV) and 94.3% (stream from GS), with total monosaccharides recovery rates of 56.5% and 57.1%, respectively, can be realized when using corn stover as feedstock. Coupled with ABE fermentation, mass balance indicated a maximal 106.6 g of ABE (65.8 g butanol) can be produced from 1 kg of dry corn stover by circulating the GS condensate in pretreatment (the optimized pretreatment conditions were 1% w/v alkali and 160 °C for 1 h). Additionally, technical lignin with low molecular weight and narrow distribution was isolated, which enabled further side-stream valorisation. Therefore, integrating ISPR product circulation with lignocellulosic biobutanol shows strong potential for application under the concept of biorefinery. Full article
Show Figures

Figure 1

25 pages, 6507 KiB  
Article
Sustainable Urban Heat Island Mitigation Through Machine Learning: Integrating Physical and Social Determinants for Evidence-Based Urban Policy
by Amatul Quadeer Syeda, Krystel K. Castillo-Villar and Adel Alaeddini
Sustainability 2025, 17(15), 7040; https://doi.org/10.3390/su17157040 (registering DOI) - 3 Aug 2025
Abstract
Urban heat islands (UHIs) are a growing sustainability challenge impacting public health, energy use, and climate resilience, especially in hot, arid cities like San Antonio, Texas, where land surface temperatures reach up to 47.63 °C. This study advances a data-driven, interdisciplinary approach to [...] Read more.
Urban heat islands (UHIs) are a growing sustainability challenge impacting public health, energy use, and climate resilience, especially in hot, arid cities like San Antonio, Texas, where land surface temperatures reach up to 47.63 °C. This study advances a data-driven, interdisciplinary approach to UHI mitigation by integrating Machine Learning (ML) with physical and socio-demographic data for sustainable urban planning. Using high-resolution spatial data across five functional zones (residential, commercial, industrial, official, and downtown), we apply three ML models, Random Forest (RF), Support Vector Machine (SVM), and Gradient Boosting Machine (GBM), to predict land surface temperature (LST). The models incorporate both environmental variables, such as imperviousness, Normalized Difference Vegetation Index (NDVI), building area, and solar influx, and social determinants, such as population density, income, education, and age distribution. SVM achieved the highest R2 (0.870), while RF yielded the lowest RMSE (0.488 °C), confirming robust predictive performance. Key predictors of elevated LST included imperviousness, building area, solar influx, and NDVI. Our results underscore the need for zone-specific strategies like more greenery, less impervious cover, and improved building design. These findings offer actionable insights for urban planners and policymakers seeking to develop equitable and sustainable UHI mitigation strategies aligned with climate adaptation and environmental justice goals. Full article
Show Figures

Figure 1

30 pages, 1819 KiB  
Review
Environmental and Health Impacts of Pesticides and Nanotechnology as an Alternative in Agriculture
by Jesús Martín Muñoz-Bautista, Ariadna Thalía Bernal-Mercado, Oliviert Martínez-Cruz, Armando Burgos-Hernández, Alonso Alexis López-Zavala, Saul Ruiz-Cruz, José de Jesús Ornelas-Paz, Jesús Borboa-Flores, José Rogelio Ramos-Enríquez and Carmen Lizette Del-Toro-Sánchez
Agronomy 2025, 15(8), 1878; https://doi.org/10.3390/agronomy15081878 (registering DOI) - 3 Aug 2025
Abstract
The extensive use of conventional pesticides has been a fundamental strategy in modern agriculture for controlling pests and increasing crop productivity; however, their improper application poses significant risks to human health and environmental sustainability. This review compiles scientific evidence linking pesticide exposure to [...] Read more.
The extensive use of conventional pesticides has been a fundamental strategy in modern agriculture for controlling pests and increasing crop productivity; however, their improper application poses significant risks to human health and environmental sustainability. This review compiles scientific evidence linking pesticide exposure to oxidative stress and genotoxic damage, particularly affecting rural populations and commonly consumed foods, even at levels exceeding the maximum permissible limits in fruits, vegetables, and animal products. Additionally, excessive pesticide use has been shown to alter soil microbiota, negatively compromising long-term agricultural fertility. In response to these challenges, recent advances in nanotechnology offer promising alternatives. This review highlights the development of nanopesticides designed for controlled release, improved stability, and targeted delivery of active ingredients, thereby reducing environmental contamination and increasing efficacy. Moreover, emerging nanobiosensor technologies, such as e-nose and e-tongue systems, have shown potential for real-time monitoring of pesticide residues and soil health. Although pesticides are still necessary, it is crucial to implement stricter laws and promote sustainable solutions that ensure safe and responsible agricultural practices. The need for evidence-based public policy is emphasized to regulate pesticide use and protect both human health and agricultural resources. Full article
18 pages, 2038 KiB  
Article
Effects of 12-Week Infant Shantala Massage Program on Maternal Emotional Well-Being Following First-Time Birth
by Anna Gogola and Rafał Gnat
Healthcare 2025, 13(15), 1895; https://doi.org/10.3390/healthcare13151895 (registering DOI) - 3 Aug 2025
Abstract
Background/Objectives: This study aimed to determine whether postpartum mothers exhibit a uniform trajectory of postpartum emotional status (PES) changes or if distinct subgroups with differing trajectories of PES exist. Additionally, it investigated whether intensified tactile stimulation of the infant through Shantala massage influences [...] Read more.
Background/Objectives: This study aimed to determine whether postpartum mothers exhibit a uniform trajectory of postpartum emotional status (PES) changes or if distinct subgroups with differing trajectories of PES exist. Additionally, it investigated whether intensified tactile stimulation of the infant through Shantala massage influences maternal PES. Method: A quasi-experimental design with a matched control group was employed. Eighty women following their first physiological delivery volunteered to participate. The intervention involved applying intensified tactile stimulation to the infant via Shantala massage over a 12-week postpartum period. Maternal PES, divided into negative and positive emotional domains, was assessed using four standardized questionnaires. Results: Two opposing trajectories of PES change were identified: adverse and favorable. Intensified tactile stimulation was associated with improvement in maternal emotional status along both trajectories. Conclusions: PES changes do not follow a uniform course across all women; notably, those with a favorable trajectory often begin with more severe symptoms. Overlooking this distinction in diagnosis, prevention, and treatment may result in suboptimal care. The factors influencing PES trajectories remain unidentified but may affect clinical intervention outcomes. The Shantala massage intervention appears to slow the progression of emotional disorders in women with adverse PES changes and accelerate recovery in those with favorable changes. Implementation of this approach in clinical settings is recommended. Full article
Show Figures

Figure 1

17 pages, 1105 KiB  
Article
The Effects of Group Fitness Programs Zumba and MoFit on Body Composition Parameters in Women
by Armin Zećirović, Dejan Ćeremidžić, Aleksandar Joksimović, Tatjana Ćeremidžić, Dina Joksimović, Nikola Aksović, Lazar Toskić, Cristian-Corneliu Dragoi, Vasile Cătălin Ciocan, Anghel Mihaela, Tatiana Dobrescu and Daniel-Lucian Dobreci
Life 2025, 15(8), 1225; https://doi.org/10.3390/life15081225 (registering DOI) - 3 Aug 2025
Abstract
(1) Background: Physical inactivity is a major public health concern in modern society. Group fitness programs are widely used to promote physical activity, combining choreographed movements with various dance steps and music. This study aimed to examine the effects of Zumba and MoFit [...] Read more.
(1) Background: Physical inactivity is a major public health concern in modern society. Group fitness programs are widely used to promote physical activity, combining choreographed movements with various dance steps and music. This study aimed to examine the effects of Zumba and MoFit group fitness programs on body composition parameters in women. (2) Methods: The study included 98 female participants (Mean age = 27.8 ± 2.9 years), divided into three groups: E1 (n = 33), which followed the experimental Zumba program; E2 (n = 31), which followed the experimental MoFit program; and a control group (n = 34), which continued with their usual daily activities for 10 weeks. Body composition was assessed using 14 variables measured with the InBody 270 analyser. Statistical analyses included paired t-tests, MANCOVA, and ANCOVA. (3) Results: The findings confirmed the positive effects of both group fitness programs on most body composition parameters in women (p < 0.001). However, Bonferroni post hoc test results indicated that the Zumba program led to significantly greater improvements in most body composition variables compared to the MoFit program. (4) Conclusions: Both Zumba and MoFit programs were effective in reducing body fat, increasing muscle mass, total body water, and mineral content, whereas the control group did not achieve positive changes. Full article
(This article belongs to the Section Physiology and Pathology)
22 pages, 317 KiB  
Review
Contract Mechanisms for Value-Based Technology Adoption in Healthcare Systems
by Aydin Teymourifar
Systems 2025, 13(8), 655; https://doi.org/10.3390/systems13080655 (registering DOI) - 3 Aug 2025
Abstract
Although technological innovations are often intended to improve quality and efficiency, they can exacerbate systemic challenges when not aligned with the principles of value-based care. As a result, healthcare systems in many countries face persistent inefficiencies stemming from the overuse, underuse, misuse, and [...] Read more.
Although technological innovations are often intended to improve quality and efficiency, they can exacerbate systemic challenges when not aligned with the principles of value-based care. As a result, healthcare systems in many countries face persistent inefficiencies stemming from the overuse, underuse, misuse, and waste associated with the adoption of health technology. This narrative review examines the dual impact of healthcare technology and evaluates how contract mechanisms can serve as strategic tools for promoting cost-effective, outcome-oriented integration. Drawing from healthcare management, and supply chain literature, this paper analyzes various payment and contract models, including performance-based, bundled, cost-sharing, and revenue-sharing agreements, through the lens of stakeholder alignment. It explores how these mechanisms influence provider behavior, patient access, and system sustainability. The study contends that well-designed contract mechanisms can align stakeholder incentives, reduce inefficiencies, and support the delivery of high-value care across diverse healthcare settings. We provide concrete examples to illustrate how various contract mechanisms impact the integration of health technologies in practice. Full article
(This article belongs to the Special Issue Operations Management in Healthcare Systems)
16 pages, 3158 KiB  
Article
Comparative Metabolomics Analysis of Four Pineapple (Ananas comosus L. Merr) Varieties with Different Fruit Quality
by Ping Zheng, Jiahao Wu, Denglin Li, Shiyu Xie, Xinkai Cai, Qiang Xiao, Jing Wang, Qinglong Yao, Shengzhen Chen, Ruoyu Liu, Yuqin Liang, Yangmei Zhang, Biao Deng, Yuan Qin and Xiaomei Wang
Plants 2025, 14(15), 2400; https://doi.org/10.3390/plants14152400 (registering DOI) - 3 Aug 2025
Abstract
Understanding the metabolic characteristics of pineapple varieties is crucial for market expansion and diversity. This study performed comparative metabolomic analysis on the “Comte de Paris” (BL) and three Taiwan-introduced varieties: “Tainong No. 11” (XS), “Tainong No. 23” (MG), and “Tainong No. 13” (DM). [...] Read more.
Understanding the metabolic characteristics of pineapple varieties is crucial for market expansion and diversity. This study performed comparative metabolomic analysis on the “Comte de Paris” (BL) and three Taiwan-introduced varieties: “Tainong No. 11” (XS), “Tainong No. 23” (MG), and “Tainong No. 13” (DM). A total of 551 metabolites were identified across the four varieties, with 231 metabolites exhibiting no significant differences between all varieties. This included major sugars such as sucrose, glucose, and fructose, as well as key acids like citric, malic, and quinic acids, indicating that the in-season maturing fruits of different pineapple varieties can all achieve good sugar–acid accumulation under suitable conditions. The differentially accumulated metabolites (DAMs) that were identified among the four varieties all primarily belonged to several major subclasses, including phenolic acids, flavonoids, amino acids and derivatives, and alkaloids, but the preferentially accumulated metabolites in each variety varied greatly. Specifically, branched-chain amino acids (L-leucine, L-isoleucine, and L-valine) and many DAMs in the flavonoid, phenolic acid, lignan, and coumarin categories were most abundant in MG, which might contribute to its distinct and enriched flavor and nutritional value. XS, meanwhile, exhibited a notable accumulation of aromatic amino acids (L-phenylalanine, L-tryptophan), various phenolic acids, and many lignans and coumarins, which may be related to its unique flavor profile. In DM, the dominant accumulation of jasmonic acid might contribute to its greater adaptability to low temperatures during autumn and winter, allowing off-season fruits to maintain good quality. The main cultivar BL exhibited the highest accumulation of L-ascorbic acid and many relatively abundant flavonoids, making it a good choice for antioxidant benefits. These findings offer valuable insights for promoting different varieties and advancing metabolome-based pineapple improvement programs. Full article
Show Figures

Figure 1

22 pages, 3473 KiB  
Article
A Few-Shot SE-Relation Net-Based Electronic Nose for Discriminating COPD
by Zhuoheng Xie, Yao Tian and Pengfei Jia
Sensors 2025, 25(15), 4780; https://doi.org/10.3390/s25154780 (registering DOI) - 3 Aug 2025
Abstract
We propose an advanced electronic nose based on SE-RelationNet for COPD diagnosis with limited breath samples. The model integrates residual blocks, BiGRU layers, and squeeze–excitation attention mechanisms to enhance feature-extraction efficiency. Experimental results demonstrate exceptional performance with minimal samples: in 4-way 1-shot tasks, [...] Read more.
We propose an advanced electronic nose based on SE-RelationNet for COPD diagnosis with limited breath samples. The model integrates residual blocks, BiGRU layers, and squeeze–excitation attention mechanisms to enhance feature-extraction efficiency. Experimental results demonstrate exceptional performance with minimal samples: in 4-way 1-shot tasks, the model achieves 85.8% mean accuracy (F1-score = 0.852), scaling to 93.3% accuracy (F1-score = 0.931) with four samples per class. Ablation studies confirm that the 5-layer residual structure and single-hidden-layer BiGRU optimize stability (h_F1-score ≤ 0.011). Compared to SiameseNet and ProtoNet, SE-RelationNet shows superior accuracy (>15% improvement in 1-shot tasks). This technology enables COPD detection with as few as one breath sample, facilitating early intervention to mitigate lung cancer risks in COPD patients. Full article
(This article belongs to the Special Issue Nature Inspired Engineering: Biomimetic Sensors (2nd Edition))
19 pages, 4765 KiB  
Article
Dehydration-Driven Changes in Solid Polymer Electrolytes: Implications for Titanium Anodizing Efficiency
by Andrea Valencia-Cadena, Maria Belén García-Blanco, Pablo Santamaría and Joan Josep Roa
Materials 2025, 18(15), 3645; https://doi.org/10.3390/ma18153645 (registering DOI) - 3 Aug 2025
Abstract
This study investigates the thermal stability and microstructural evolution of the solid electrolyte medium used in DLyte® dry electropolishing and dry anodizing processes. Samples were thermally aged between 30 °C and 45 °C to simulate Joule heating during industrial operation. Visual and [...] Read more.
This study investigates the thermal stability and microstructural evolution of the solid electrolyte medium used in DLyte® dry electropolishing and dry anodizing processes. Samples were thermally aged between 30 °C and 45 °C to simulate Joule heating during industrial operation. Visual and SEM analyses revealed shape deformation and microcrack formation at temperatures above 40 °C, potentially reducing particle packing efficiency and electrolyte performance. Particle size distribution shifted from bimodal to trimodal upon aging, with an overall size reduction of up to 39.5% due to dehydration effects, impacting ionic transport properties. Weight-loss measurements indicated a diffusion-limited dehydration mechanism, stabilizing at 15–16% mass loss. Fourier transform infrared analysis confirmed water removal while maintaining the essential sulfonic acid groups responsible for ionic conductivity. In dry anodizing tests on titanium, aged electrolytes enhanced process efficiency, producing TiO2 films with improved optical properties—color and brightness—while preserving thickness and uniformity (~70 nm). The results highlight the need to carefully control thermal exposure to maintain electrolyte integrity and ensure consistent process performance. Full article
(This article belongs to the Special Issue Novel Materials and Techniques for Dental Implants)
Show Figures

Figure 1

23 pages, 2059 KiB  
Systematic Review
Comparative Effectiveness of Nutritional Supplements in the Treatment of Knee Osteoarthritis: A Network Meta-Analysis
by Yuntong Zhang, Yunfei Gui, Roger Adams, Joshua Farragher, Catherine Itsiopoulos, Keegan Bow, Ming Cai and Jia Han
Nutrients 2025, 17(15), 2547; https://doi.org/10.3390/nu17152547 (registering DOI) - 3 Aug 2025
Abstract
Background: Knee osteoarthritis (KOA) is a prevalent degenerative joint disease that can greatly affect quality of life in middle-aged and elderly individuals. Nutritional supplements are increasingly used for KOA due to their low risk, but direct comparative evidence on their efficacy and [...] Read more.
Background: Knee osteoarthritis (KOA) is a prevalent degenerative joint disease that can greatly affect quality of life in middle-aged and elderly individuals. Nutritional supplements are increasingly used for KOA due to their low risk, but direct comparative evidence on their efficacy and safety remains scarce. This study aimed to systematically compare the effectiveness and safety of seven common nutritional supplements for KOA. Methods: A systematic review and network meta-analysis were conducted following PRISMA guidelines. Embase, PubMed, and the Cochrane Library were searched through December 2024 for randomized controlled trials (RCTs) evaluating use of eggshell membrane, vitamin D, Boswellia, curcumin, ginger, krill oil, or collagen, versus placebo, in adults with KOA. Primary outcomes included changes in scores for WOMAC pain, stiffness and function, and pain visual analog scale (VAS). Adverse events were also assessed. Bayesian network meta-analyses estimated ranking probabilities for each intervention. Results: In total, 39 RCTs (42 studies; 4599 patients) were included. Compared with placebo, Boswellia showed significant improvements in WOMAC pain (mean difference [MD] = 10.58, 95% CI: 6.45 to 14.78, p < 0.05), stiffness (MD = 9.47, 95% CI: 6.39 254 to 12.74, p < 0.05), function (MD = 14.00, 95% CI: 7.74 to 20.21, p < 0.05), and VAS pain (MD = 17.26, 95% CI: 8.06 to 26.52, p < 0.05). Curcumin, collagen, ginger, and krill oil also demonstrated benefits in some outcomes. No supplement was associated with increased adverse events compared to placebo. Bayesian rankings indicated Boswellia had the highest probability of being most effective for pain and stiffness, with krill oil and curcumin showing potential for function improvement. Conclusions: Nutritional supplements, particularly Boswellia, appear to be effective and well-tolerated for improving KOA symptoms and function. These results suggest that certain supplements may be useful as part of non-pharmacological KOA management. However, further large-scale, well-designed randomized controlled trials (RCTs) are needed to confirm these findings, particularly those that include more standardized dosages and formulations, as well as to evaluate their long-term efficacy. Full article
(This article belongs to the Section Nutrition Methodology & Assessment)
Show Figures

Figure 1

15 pages, 997 KiB  
Article
Reactive Power Optimization Control Method for Distribution Network with Hydropower Based on Improved Discrete Particle Swarm Optimization Algorithm
by Tao Liu, Bin Jia, Shuangxiang Luo, Xiangcong Kong, Yong Zhou and Hongbo Zou
Processes 2025, 13(8), 2455; https://doi.org/10.3390/pr13082455 (registering DOI) - 3 Aug 2025
Abstract
With the rapid development of renewable energy, the proportion of small hydropower as a clean energy in the distribution network (DN) is increasing. However, the randomness and intermittence of small hydropower has brought new challenges to the operation of DN; especially, the problems [...] Read more.
With the rapid development of renewable energy, the proportion of small hydropower as a clean energy in the distribution network (DN) is increasing. However, the randomness and intermittence of small hydropower has brought new challenges to the operation of DN; especially, the problems of increasing network loss and reactive voltage exceeding the limit have become increasingly prominent. Aiming at the above problems, this paper proposes a reactive power optimization control method for DN with hydropower based on an improved discrete particle swarm optimization (PSO) algorithm. Firstly, this paper analyzes the specific characteristics of small hydropower and establishes its mathematical model. Secondly, considering the constraints of bus voltage and generator RP output, an extended minimum objective function for system power loss is established, with bus voltage violation serving as the penalty function. Then, in order to solve the following problems: that the traditional discrete PSO algorithm is easy to fall into local optimization and slow convergence, this paper proposes an improved discrete PSO algorithm, which improves the global search ability and convergence speed by introducing adaptive inertia weight. Finally, based on the IEEE-33 buses distribution system as an example, the simulation analysis shows that compared with GA optimization, the line loss can be reduced by 3.4% in the wet season and 13.6% in the dry season. Therefore, the proposed method can effectively reduce the network loss and improve the voltage quality, which verifies the effectiveness and superiority of the proposed method. Full article
Show Figures

Figure 1

17 pages, 1756 KiB  
Article
Target-Guided Droplet Routing on MEDA Biochips Considering Shape-Dependent Velocity Models and Droplet Splitting
by Yuta Hamachiyo, Chiharu Shiro, Hiroki Nishikawa, Hiroyuki Tomiyama and Shigeru Yamashita
Biosensors 2025, 15(8), 500; https://doi.org/10.3390/bios15080500 (registering DOI) - 3 Aug 2025
Abstract
In recent years, digital microfluidic biochips (DMFBs), based on microfluidic technology, have attracted attention as compact and flexible experimental devices. DMFBs are widely applied in biochemistry and medical fields, including point-of-care clinical diagnostics and PCR testing. Among them, micro electrode dot array (MEDA) [...] Read more.
In recent years, digital microfluidic biochips (DMFBs), based on microfluidic technology, have attracted attention as compact and flexible experimental devices. DMFBs are widely applied in biochemistry and medical fields, including point-of-care clinical diagnostics and PCR testing. Among them, micro electrode dot array (MEDA) biochips, composed of numerous microelectrodes, have overcome the limitations of conventional chips by enabling finer droplet manipulation and real-time sensing, thus significantly improving experimental efficiency. While various studies have been conducted to enhance the utilization of MEDA biochips, few have considered the shape-dependent velocity characteristics of droplets in routing. Moreover, methods that do take such characteristics into account often face significant challenges in solving time. This study proposes a fast droplet routing method for MEDA biochips that incorporates shape-dependent velocity characteristics by utilizing the distance information to the target cell. The experimental results demonstrate that the proposed method achieves approximately a 67.5% reduction in solving time compared to existing methods, without compromising solution quality. Full article
(This article belongs to the Special Issue Feature Papers of Biosensors)
15 pages, 412 KiB  
Article
Analysis of Risk Factors in the Renovation of Old Underground Commercial Spaces in Resource-Exhausted Cities: A Case Study of Fushun City
by Kang Wang, Meixuan Li and Sihui Dong
Sustainability 2025, 17(15), 7041; https://doi.org/10.3390/su17157041 (registering DOI) - 3 Aug 2025
Abstract
Resource-exhausted cities have long played a key role in national energy development. Urban renewal projects, such as the renovation of old underground commercial spaces, can improve urban vitality and promote sustainable development. However, in resource-based cities, traditional industries dominate, while new industries such [...] Read more.
Resource-exhausted cities have long played a key role in national energy development. Urban renewal projects, such as the renovation of old underground commercial spaces, can improve urban vitality and promote sustainable development. However, in resource-based cities, traditional industries dominate, while new industries such as modern commerce develop slowly. This results in low economic dynamism and weak motivation for urban development. To address this issue, we propose a systematic method for analyzing construction risks during the decision-making stage of renovation projects. The method includes three steps: risk value assessment, risk factor identification, and risk weight calculation. First, unlike previous studies that only used SWOT for risk factor analysis, we also applied it for project value assessment. Then, using the Work Breakdown Structure–Risk Breakdown Structure framework method (WBS-RBS), we identified specific risk sources by analyzing key construction technologies throughout the entire lifecycle of the renovation project. Finally, to enhance expert consensus, we proposed an improved Delphi–Analytic Hierarchy Process method (Delphi–AHP) to calculate risk indicator weights for different construction phases. The risk analysis covered all lifecycle stages of the renovation and upgrading project. The results show that in the Fushun city renovation case study, the established framework—consisting of five first-level indicators and twenty s-level indicators—enables analysis of renovation projects. Among these, management factors and human factors were identified as the most critical, with weights of 0.3608 and 0.2017, respectively. The proposed method provides a structured approach to evaluating renovation risks, taking into account the specific characteristics of construction work. This can serve as a useful reference for ensuring safe and efficient implementation of underground commercial space renovation projects in resource-exhausted cities. Full article
Show Figures

Figure 1

23 pages, 1894 KiB  
Article
Study on Flow and Heat Transfer Characteristics of Reheating Furnaces Under Oxygen-Enriched Conditions
by Maolong Zhao, Xuanxuan Li and Xianzhong Hu
Processes 2025, 13(8), 2454; https://doi.org/10.3390/pr13082454 (registering DOI) - 3 Aug 2025
Abstract
A computational fluid dynamics (CFD) numerical simulation methodology was implemented to model transient heating processes in steel industry reheating furnaces, targeting combustion efficiency optimization and carbon emission reduction. The effects of oxygen concentration (O2%) and different fuel types on the flow [...] Read more.
A computational fluid dynamics (CFD) numerical simulation methodology was implemented to model transient heating processes in steel industry reheating furnaces, targeting combustion efficiency optimization and carbon emission reduction. The effects of oxygen concentration (O2%) and different fuel types on the flow and heat transfer characteristics were investigated under both oxygen-enriched combustion and MILD oxy-fuel combustion. The results indicate that MILD oxy-fuel combustion promotes flue gas entrainment via high-velocity oxygen jets, leading to a substantial improvement in the uniformity of the furnace temperature field. The effect is most obvious at O2% = 31%. MILD oxy-fuel combustion significantly reduces NOx emissions, achieving levels that are one to two orders of magnitude lower than those under oxygen-enriched combustion. Under MILD conditions, the oxygen mass fraction in flue gas remains below 0.001 when O2% ≤ 81%, indicating effective dilution. In contrast, oxygen-enriched combustion leads to a sharp rise in flame temperature with an increasing oxygen concentration, resulting in a significant increase in NOx emissions. Elevating the oxygen concentration enhances both thermal efficiency and the energy-saving rate for both combustion modes; however, the rate of improvement diminishes when O2% exceeds 51%. Based on these findings, MILD oxy-fuel combustion using mixed gas or natural gas is recommended for reheating furnaces operating at O2% = 51–71%, while coke oven gas is not. Full article
24 pages, 4701 KiB  
Article
Evidence of Graft Incompatibility and Rootstock Scion Interactions in Cacao
by Ashley E. DuVal, Alexandra Tempeleu, Jennifer E. Schmidt, Alina Puig, Benjamin J. Knollenberg, José X. Chaparro, Micah E. Stevens and Juan Carlos Motamayor
Horticulturae 2025, 11(8), 899; https://doi.org/10.3390/horticulturae11080899 (registering DOI) - 3 Aug 2025
Abstract
This study sought to quantify and characterize diverse rootstock scion interactions in cacao around graft compatibility, disease resistance, nutrient use efficiency, vigor traits, and translocation of nonstructural carbohydrates. In total, 106 grafts were performed with three scion cultivars (Matina 1/6, Criollo 22, Pound [...] Read more.
This study sought to quantify and characterize diverse rootstock scion interactions in cacao around graft compatibility, disease resistance, nutrient use efficiency, vigor traits, and translocation of nonstructural carbohydrates. In total, 106 grafts were performed with three scion cultivars (Matina 1/6, Criollo 22, Pound 7) and nine diverse open-pollinated seedling populations (BYNC, EQX 3348, GNV 360, IMC 14, PA 107, SCA 6, T 294, T 384, T 484). We found evidence for both local and translocated graft incompatibility. Cross sections and Micro-XCT imaging revealed anatomical anomalies, including necrosis and cavitation at the junction and accumulation of starch in the rootstock directly below the graft junction. Scion genetics were a significant factor in explaining differences in graft take, and graft take varied from 47% (Criollo 22) to 72% (Pound 7). Rootstock and scion identity both accounted for differences in survival over the course of the 30-month greenhouse study, with a low of 28.5% survival of Criollo 22 scions and a high of 72% for Pound 7 scions. Survival by rootstocks varied from 14.3% on GNV 360 to 100% survival on T 294 rootstock. A positive correlation of 0.34 (p = 0.098) was found between the graft success of different rootstock–scion combinations and their kinship coefficient, suggesting that relatedness of stock and scion could be a driver of incompatibility. Significant rootstock–scion effects were also observed for nutrient use efficiency, plant vigor, and resistance to Phytophthora palmivora. These findings, while preliminary in nature, highlight the potential of rootstock breeding to improve plant nutrition, resilience, and disease resistance in cacao. Full article
(This article belongs to the Special Issue Advances in Tree Crop Cultivation and Fruit Quality Assessment)
Show Figures

Figure 1

Back to TopTop