Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,682)

Search Parameters:
Keywords = impregnation method

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3612 KB  
Article
An Ultrasensitive Ethanolamine Sensor Based on MoO3/BiOI Heterostructure at Room Temperature
by Xiaomeng Zheng, Qi Liu, Qingjiang Pan and Guo Zhang
Chemosensors 2026, 14(1), 28; https://doi.org/10.3390/chemosensors14010028 - 18 Jan 2026
Viewed by 38
Abstract
Ethanolamine (EA) is a widely used yet toxic volatile organic compound (VOC). However, existing gas sensors for EA detection face persistent challenges in achieving exceptional sensitivity and low detection limits at room temperature (RT). In this study, a novel and high-performance EA sensor [...] Read more.
Ethanolamine (EA) is a widely used yet toxic volatile organic compound (VOC). However, existing gas sensors for EA detection face persistent challenges in achieving exceptional sensitivity and low detection limits at room temperature (RT). In this study, a novel and high-performance EA sensor based on the MoO3/BiOI composite was prefabricated using hydrothermal and cyclic impregnation methods. The response value toward 100 ppm EA reached 861.3, which was 3.5-times higher compared to that of pure MoO3. In addition, the MoO3/BiOI composite exhibited a low detection limit (0.13 ppm), excellent selectivity, short response/recovery times, exceptional repeatability and long-term stability. The outstanding gas sensing performance of the MoO3/BiOI is attributed to the formation of a p-n heterojunction, synergistic effects between the two materials, abundant adsorbed oxygen species and superior charge transfer efficiency. The sensor developed in this work effectively addresses the long-standing challenges, demonstrating unprecedented practical application potential for EA gas detection. Simultaneously, this study provides a novel strategy, a new approach and a promising material for the subsequent development of advanced amine sensors. Full article
(This article belongs to the Special Issue Novel Materials for Gas Sensing)
Show Figures

Figure 1

18 pages, 1480 KB  
Article
Water-Soluble Epoxy Resins as an Innovative Method of Protecting Concrete Against Sulfate Corrosion
by Wojciech Kostrzewski, Ireneusz Laks and Marta Sybis
Materials 2026, 19(2), 364; https://doi.org/10.3390/ma19020364 - 16 Jan 2026
Viewed by 170
Abstract
Sulfate corrosion is a significant durability issue for concrete used in sewage and hydraulic infrastructure. In sulfate-rich environments, the formation of expansive products (e.g., ettringite and thaumasite) leads to a progressive loss of performance. Unlike conventional protection methods, which rely on surface-applied coatings [...] Read more.
Sulfate corrosion is a significant durability issue for concrete used in sewage and hydraulic infrastructure. In sulfate-rich environments, the formation of expansive products (e.g., ettringite and thaumasite) leads to a progressive loss of performance. Unlike conventional protection methods, which rely on surface-applied coatings or impregnation, this study examines the use of water-dilutable epoxy resins as an internal, volume-wide admixture dispersed throughout the concrete matrix to provide whole-body protection. The experimental program evaluated the mechanical performance, microstructure, and sulfate ion ingress/penetration dynamics of resin-modified concretes. The results suggest that using the appropriate amount of resin can limit the penetration of aggressive ions and slow the harmful changes associated with sulfate attack while maintaining the material’s overall performance. Overall, these findings suggest that water-based epoxy admixtures are a promising strategy for improving the durability of concrete in sulfate-exposed environments. They also provide guidance for designing more resistant cementitious materials for modern infrastructure applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 4346 KB  
Article
Catalytic CO2 Utilization for Ethanol Reforming over Yttrium-Promoted Ni-Co/MCM-41 Catalyst: Optimizing Hydrogen Production Using Box–Behnken Experimental Design and Response Surface Methodology
by Bamidele Victor Ayodele, SK Safdar Hossain, Nur Diyan Mohd Ridzuan and Hayat Khan
Catalysts 2026, 16(1), 90; https://doi.org/10.3390/catal16010090 - 13 Jan 2026
Viewed by 194
Abstract
Catalytic dry reforming of ethanol offers a sustainable pathway for syngas and hydrogen production through CO2 utilization, though its efficiency depends heavily on the strategic synthesis of catalysts and the optimization of reaction parameters. This study employs Box–Behnken Design (BBD) and Response [...] Read more.
Catalytic dry reforming of ethanol offers a sustainable pathway for syngas and hydrogen production through CO2 utilization, though its efficiency depends heavily on the strategic synthesis of catalysts and the optimization of reaction parameters. This study employs Box–Behnken Design (BBD) and Response Surface Methodology (RSM) to optimize hydrogen yield from CO2 reforming of ethanol over a Yttrium-promoted Ni-Co/MCM-41 catalyst. The catalyst was synthesized using sequential wet impregnation method and characterized for its physicochemical properties. The catalyst was tested in fixed-bed reactor using experimental data obtained from BBD considering the effects of temperature (550–700 °C), ethanol flowrate (0.5–1 mL/min) and CO2 flowrate (15–30 mL/min) on the hydrogen yield. The experimental conditions were optimized using RSM quadratic model. The characterization revealed that the ordered mesoporous nature of the MCM-41 is maintained providing a high surface area of 597.75 m2/g for the catalyst. The addition of Yttrium as a promoter facilitates the formation of well crystallized nanoparticles. Maximum hydrogen yield of 85.09% was obtained at 700 °C, 20.393 mL/min and 0.877 mL/min for temperature, CO2 and ethanol flowrate, respectively. The predicted hydrogen yield obtained is strongly correlated with the actual values as indicated by R2 of 0.9570. Full article
Show Figures

Graphical abstract

33 pages, 12059 KB  
Article
Determination of Mechanical Properties of Single and Double-Layer Intraply Hybrid Composites Manufactured by Hand Lay-Up Method
by Mohsen Shams and Ferit Cakir
Polymers 2026, 18(2), 188; https://doi.org/10.3390/polym18020188 - 9 Jan 2026
Viewed by 232
Abstract
This study experimentally evaluates the mechanical and microstructural performance of single- and double-layer intraply hybrid composite (IRC) laminates produced using the hand lay-up method, focusing on Glass–Aramid (GA), Aramid–Carbon (AC), and Carbon–Glass (CG) configurations. Tensile, flexural, compressive, and density tests were conducted in [...] Read more.
This study experimentally evaluates the mechanical and microstructural performance of single- and double-layer intraply hybrid composite (IRC) laminates produced using the hand lay-up method, focusing on Glass–Aramid (GA), Aramid–Carbon (AC), and Carbon–Glass (CG) configurations. Tensile, flexural, compressive, and density tests were conducted in accordance with relevant ASTM standards to assess the influence of hybrid type and layer number under field-representative manufacturing conditions. Microstructural investigations were performed using optical microscopy and scanning electron microscopy (SEM) to identify fabrication-induced imperfections and their relationship to mechanical behavior. The results demonstrate that increasing the laminate configuration from single to double layer significantly enhances mechanical performance across all hybrid types. Double-layer AC laminates exhibited the highest tensile strength (330.4 MPa) and Young’s modulus (11.93 GPa), corresponding to improvements of approximately 85% and 59%, respectively, compared to single-layer counterparts. In flexural loading, the highest strength was observed in double-layer CG laminates (97.14 MPa), while compressive strength was maximized in double-layer AC laminates (34.01 MPa), indicating improved stability and resistance to compression-driven failure. Statistical analysis confirmed that layer number is the dominant parameter governing mechanical response, exceeding the influence of hybrid configuration alone. Microstructural observations revealed fiber misorientation, incomplete resin impregnation, and localized voids inherent to manual fabrication. However, these imperfections were consistently distributed across all specimens and did not obscure comparative mechanical trends. Coefficients of variation generally remained below 10%, indicating acceptable repeatability despite non-ideal manufacturing conditions. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
Show Figures

Graphical abstract

14 pages, 1524 KB  
Article
One-Step Encapsulation of Sulfonated Palladium Phthalocyanine in ZIF-8 for Photocatalytic Degradation of Organic Pollutants
by Rong Xing, Xinyu Zhang, Zhiqian Li, Yingna Chang, Rongguan Lv, Yuzhen Sun, Zhiyuan Zhao, Kefan Song, Jindi Wang, Huayu Wu, Fangfang Ren, Yu Liu, Jing Tang and Peng Wu
Catalysts 2026, 16(1), 80; https://doi.org/10.3390/catal16010080 - 9 Jan 2026
Viewed by 289
Abstract
Photocatalysis driven by the visible light of solar energy has received considerable attention in the field of environmental remediation and clean energy production. In this work, monomeric sulfonated palladium phthalocyanine (PdPcS) was encapsulated in zeolitic imidazolate frameworks-8 (ZIF-8) crystals (denoted PdPcS@ZIF-8) through electrostatic [...] Read more.
Photocatalysis driven by the visible light of solar energy has received considerable attention in the field of environmental remediation and clean energy production. In this work, monomeric sulfonated palladium phthalocyanine (PdPcS) was encapsulated in zeolitic imidazolate frameworks-8 (ZIF-8) crystals (denoted PdPcS@ZIF-8) through electrostatic interaction in the ammonia system, while their photocatalytic activity was well-maintained together with the structural regularity of ZIF-8 crystals. For comparison, a PdPcS/ZIF-8 sample was obtained from the traditional impregnation method. The 13C NMR and UV-DRS spectra confirmed the difference between PdPcS@ZIF-8 and PdPcS/ZIF-8 in terms of the chemical environment effect for PdPcS. Under visible light, the optimal PdPcS@ZIF-8 catalyst achieved complete degradation of 0.1 mM bisphenol A in 120 min. It also exhibited excellent stability, retaining 81.5% activity after four cycles, far outperforming the impregnated sample (32.5%) due to effective encapsulation preventing PdPcS leaching. This versatile one-step synthetic strategy is expected to be useful for designing novel macromolecules@MOF composite materials. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Figure 1

12 pages, 4677 KB  
Article
Preparation of Robust Superhydrophobic Surfaces Based on the Screen Printing Method
by Yinyu Sun, Qing Ding, Qiaoqiao Zhang, Yuting Xie, Zien Zhang, Yudie Pang, Zhongcheng Ke and Changjiang Li
Nanomaterials 2026, 16(2), 86; https://doi.org/10.3390/nano16020086 - 8 Jan 2026
Viewed by 306
Abstract
The bioinspired superhydrophobic surfaces have demonstrated many fascinating performances in fields such as self-cleaning, anti-corrosion, anti-icing, energy-harvesting devices, and antibacterial coatings. However, developing a low-cost, feasible, and scalable production approach to fabricate robust superhydrophobic surfaces has remained one of the main challenges in [...] Read more.
The bioinspired superhydrophobic surfaces have demonstrated many fascinating performances in fields such as self-cleaning, anti-corrosion, anti-icing, energy-harvesting devices, and antibacterial coatings. However, developing a low-cost, feasible, and scalable production approach to fabricate robust superhydrophobic surfaces has remained one of the main challenges in the past decades. In this paper, we propose an uncommon method for the fabrication of a durable superhydrophobic coating on the surface of the glass slide (GS). By utilizing the screen printing method and high-temperature curing, the epoxy resin grid (ERG) coating was uniformly and densely loaded on the surface of GS (ERG@GS). Subsequently, the hydrophobic silica (H-SiO2) was deposited on the surface of ERG@GS by the impregnation method, thereby obtaining a superhydrophobic surface (H-SiO2@ERG@GS). It is demonstrated that the micro-grooves in ERG can provide a large specific surface area for the deposition of low surface energy materials, while the micro-columns can offer excellent protection for the superhydrophobic coating when it is subjected to mechanical wear. It is important to note that micro-columns, micro-grooves, and nano H-SiO2 jointly form the micro–nano structure, providing a uniform and robust rough structure for the superhydrophobic surface. Therefore, the combination of a micro–nano rough structure, low surface energy material, and air cushion effect endow the material with excellent durability and superhydrophobic property. The results show that H-SiO2@ERG@GS possesses excellent self-cleaning property, mechanical durability, and chemical stability, indicating that this preparation method of the robust superhydrophobic coating has significant practical application value. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

16 pages, 2937 KB  
Article
Sustainable Shear Wave Elastography Medical Phantoms: Waste-Based Fibrous Structures for Medical Applications
by Ana Z. Santos, Sofia Rocha, Nuno A. T. C. Fernandes, Diana I. Alves, Diana P. Ferreira, Sofia M. Costa, Jorge Padrão and Óscar Carvalho
Textiles 2026, 6(1), 6; https://doi.org/10.3390/textiles6010006 - 7 Jan 2026
Viewed by 184
Abstract
Tissue-mimicking phantoms that accurately replicate human tissue are crucial for validating and optimizing elastography systems and developing new treatment methods. The use of waste-based fibrous structures has the dual benefits of waste reduction and economic viability, mitigating the environmental consequences associated with the [...] Read more.
Tissue-mimicking phantoms that accurately replicate human tissue are crucial for validating and optimizing elastography systems and developing new treatment methods. The use of waste-based fibrous structures has the dual benefits of waste reduction and economic viability, mitigating the environmental consequences associated with the textile industry and, thus, posing a particularly interesting avenue of research in today’s ever-more environmentally conscious society. This work explores the development of elastography phantoms through the use of textile waste for sustainable valorization. Two cotton-short fiber-based and two polyester-nonwoven-based phantoms were produced by impregnating these textile structures with animal-origin gelatin. These materials were characterized by scanning electron microscopy (SEM), revealing that the diameter of the waste-based fibers (15.28 ± 6.18–22.40 ± 5.78 μm) falls within the typical size range of scatterers used in acoustic phantoms. It was observed that these fibers provided phantoms with intrinsic acoustic scattering properties, resulting in ultrasound images similar to those obtained in biological tissues. Shear wave elastography (SWE) was used to assess the stiffness of the phantoms, which produced realistic ultrasound images with shear wave speed (SWS) values ranging from 1.87 m s−1 to 8.39 m s−1, closely resembling those in different anatomical structures. This research presents an innovative methodology for producing low-cost and sustainable tissue-mimicking materials, underscoring the potential of textile industry waste for phantom production. Full article
Show Figures

Graphical abstract

18 pages, 4980 KB  
Article
Boosted NH3 Selective Catalytic Oxidation Activity over V-Pt-Ti Catalysts: Insight into Preparation Method Effects
by Yu Gao, Lipeng Wang, Kun Li and Yongbo Ji
Materials 2026, 19(1), 194; https://doi.org/10.3390/ma19010194 - 5 Jan 2026
Viewed by 254
Abstract
In this work, V-Pt-Ti catalysts were synthesized employing impregnation (IP), precipitation (PC), sol-gel (SG), thermal decomposition (TD), and hydrothermal (HD) methods. A systematic study has been carried out to investigate impacts of various preparation methods on the performance of NH3 selective catalytic [...] Read more.
In this work, V-Pt-Ti catalysts were synthesized employing impregnation (IP), precipitation (PC), sol-gel (SG), thermal decomposition (TD), and hydrothermal (HD) methods. A systematic study has been carried out to investigate impacts of various preparation methods on the performance of NH3 selective catalytic oxidation (SCO) at temperatures from 150 °C to 450 °C. N2 adsorption/desorption, XPS, XRD, H2-TPR, NH3-TPD, O2-TPD, SEM, TEM, and in situ DRIFTS were adopted to characterize the physico-chemical property of V-Pt-Ti catalysts. The results suggested that V-Pt-Ti catalysts synthesized by precipitation methods (denoted as VPT-PC) exhibited notably better SCO performance across the 150–450 °C temperature range compared with those produced by impregnation (IP), sol-gel (SG), thermal decomposition (TD), and hydrothermal (HD) methods. The outstanding performance of the VPT-PC catalyst could be ascribed to its larger surface area, higher relative contents of Pt0, V5+, and Oα, more abundant surface acid sites, and better redox property. In situ DRIFTS results suggested that NO2 species could participate in NH3 oxidation reaction on the surface of the VPT-PC catalyst, which was beneficial for improving the SCO activity. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

18 pages, 5185 KB  
Article
LDH-Derived Preparation of Ce-Modified MnCoAl Layered Double Oxides for NH3-SCR: Performance and Reaction Process Study
by Xin Liu, Jinshan Zhang, Tao Sun, Hisahiro Einaga, Hajime Hojo and Pengwei Huo
Catalysts 2026, 16(1), 55; https://doi.org/10.3390/catal16010055 - 3 Jan 2026
Viewed by 312
Abstract
A series of novel Ce-modified MnCoAl layered double oxides (Ce/MCA LDOs) were prepared using solvothermal and impregnation methods for NH3-SCR denitration. Various characterizations, such as X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and [...] Read more.
A series of novel Ce-modified MnCoAl layered double oxides (Ce/MCA LDOs) were prepared using solvothermal and impregnation methods for NH3-SCR denitration. Various characterizations, such as X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and H2 temperature-programmed reduction (H2-TPR) were used to investigate their structural properties and the mechanism of ammonia selective catalytic reduction (NH3-SCR). The incorporation of Ce was found to effectively integrate into the LDO framework and enhance the catalytic activity over a wide temperature window. Moreover, the thermal stability and resistance of H2O and SO2 were evaluated. In situ DRIFTS studies revealed that the reaction follows both the “Langmuir–Hinshelwood” (L–H) and “Eley–Rideal” (E–R) mechanisms. This work provides systematic insights into the design of LDO-based catalysts, demonstrating their potential for practical application in denitration. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

16 pages, 5774 KB  
Article
Construction of La/NiAl-LDO Catalyst for CO2 Methanation Performance and Reaction Kinetics
by Shenghua Zhu, Yanwei Cao, Fuchang Cheng, Bin Wang, Xiaoqian Ren, Weixing Li and Jinhua Liang
Catalysts 2026, 16(1), 28; https://doi.org/10.3390/catal16010028 - 31 Dec 2025
Viewed by 259
Abstract
CO2 methanation offers a promising technology to convert CO2 into methane, a valuable fuel that can be integrated into existing gas infrastructure. However, developing cost-effective, highly active, and stable catalysts remains a key challenge. In this paper, a series of La/NiAl-LDO [...] Read more.
CO2 methanation offers a promising technology to convert CO2 into methane, a valuable fuel that can be integrated into existing gas infrastructure. However, developing cost-effective, highly active, and stable catalysts remains a key challenge. In this paper, a series of La/NiAl-LDO catalysts were synthesized via a coprecipitation–impregnation method for catalytic CO2 hydrogenation. Among the prepared catalysts, 6La/NiAl-LDO exhibited the highest CO2 conversion (85.6%) with nearly 100% CH4 selectivity at 300 °C and 2 MPa. The catalyst also demonstrated excellent stability over a 100 h durability test. Moreover, the kinetics of CO2 hydrogenation over a 6La/NiAl-LDO catalyst were studied in a fixed-bed reactor at a catalyst particle size of 20–40 mesh, space velocity of 8000 mL/(g·h)), and temperatures ranging from 260 to 300 °C. The overall positive reaction followed approximately first-order kinetics, with an apparent activation energy of 89.4 kJ/mol. This work contributes to broader efforts in CO2 capture and conversion to synthetic natural gas. Full article
(This article belongs to the Special Issue CO2 Catalytic Valorization and Utilization)
Show Figures

Graphical abstract

17 pages, 2149 KB  
Article
Impact of an Insulating Barrier on Lightning Properties of a Point–Sphere Electrode System Using Different Dielectric Liquids
by Filip Stuchala and Pawel Rozga
Energies 2026, 19(1), 165; https://doi.org/10.3390/en19010165 - 27 Dec 2025
Viewed by 350
Abstract
An increasing number of different types of dielectric liquids are appearing on the market. This is undoubtedly related to sustainable development goals. This paper presents comparative studies of the lightning impulse breakdown voltage (LIBV) of six dielectric liquids with different chemical compositions: naphthenic [...] Read more.
An increasing number of different types of dielectric liquids are appearing on the market. This is undoubtedly related to sustainable development goals. This paper presents comparative studies of the lightning impulse breakdown voltage (LIBV) of six dielectric liquids with different chemical compositions: naphthenic uninhibited mineral oil (UMO), naphthenic inhibited mineral oil (IMO), natural ester (NE), synthetic ester (SE), bio-based hydrocarbon (BIO), and an inhibited liquid produced using gas-to-liquids technology (GTL). Tests were conducted in a point-to-sphere electrode configuration with a 5 mm thick pressboard barrier placed between them. This configuration was designed to more closely replicate the actual configuration found in transformers, where the oil channels are separated by pressboard barriers. Tests were performed for two inter-electrode gap distances of 25 mm and 40 mm, and for both lightning impulse voltage polarities. The pressboard barrier was placed so that the distance between point electrode and the barrier was always the same (10 mm). Measurements were performed using the step method. Before measurements began, the pressboard barrier was impregnated with the dielectric liquid being tested. The obtained measurement results were compared with previous studies conducted by the authors, which used a similar electrode system but without the pressboard barrier. The results confirmed that inserting the pressboard barrier between the electrodes effectively inhibits development of discharges and significantly increases the electrical strength of the entire insulation system. Full article
Show Figures

Figure 1

18 pages, 2226 KB  
Article
Low-Temperature Regenerable Water-Loaded Zeolite 13X for Ammonia Capture, Reusability, and Leak Detection in Confined Space
by Bora Kim and Jae Won Lee
Appl. Sci. 2026, 16(1), 53; https://doi.org/10.3390/app16010053 - 20 Dec 2025
Viewed by 281
Abstract
Ammonia is a carbon-free energy carrier and a natural refrigerant with a high energy density. However, its high toxicity raises significant safety concerns in confined environments. To address this issue, this study developed a hybrid ammonia capture material, water-loaded zeolite 13X (WLZ), which [...] Read more.
Ammonia is a carbon-free energy carrier and a natural refrigerant with a high energy density. However, its high toxicity raises significant safety concerns in confined environments. To address this issue, this study developed a hybrid ammonia capture material, water-loaded zeolite 13X (WLZ), which combines the structural stability of zeolites with a strong chemical affinity for water. WLZ was synthesized using an ethanol-water impregnation method. A series of experiments were conducted under simulated leak conditions in pure ammonia and air. WLZ-75, containing 75% water loading, demonstrated high ammonia capture efficiency (over 90% removal at 1000 ppm), stable low-temperature regeneration below 90 °C over repeated cycles, and more than 95% retention after 10 capture/regeneration cycles. Chamber-scale tests confirmed not only its high removal performance but also exothermic behavior, potentially enabling thermal-based leak detection. These results demonstrate that WLZ is a highly regenerable and thermally responsive material suitable for ammonia safety management in refrigeration, fuel systems, and sealed environments. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

16 pages, 2334 KB  
Article
La-Doped ZnO/SBA-15 for Rapid and Recyclable Photodegradation of Rhodamine B Under Visible Light
by Ziyang Zhou, Weiye Yang, Jiuming Zhong, Hongyan Peng and Shihua Zhao
Molecules 2025, 30(24), 4800; https://doi.org/10.3390/molecules30244800 - 16 Dec 2025
Viewed by 374
Abstract
La-doped ZnO nanoclusters confined within mesoporous SBA-15 were synthesized using an impregnation–calcination method and evaluated for their visible-light-driven photocatalytic degradation of Rhodamine B (RhB). Small-angle X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed the preservation of the 2D hexagonal mesostructure of SBA-15 [...] Read more.
La-doped ZnO nanoclusters confined within mesoporous SBA-15 were synthesized using an impregnation–calcination method and evaluated for their visible-light-driven photocatalytic degradation of Rhodamine B (RhB). Small-angle X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed the preservation of the 2D hexagonal mesostructure of SBA-15 post-loading. In contrast, wide-angle XRD and Fourier-transform infrared spectroscopy (FT-IR) analyses revealed that the incorporated ZnO existed predominantly as highly dispersed amorphous or ultrafine clusters within the mesopores. N2 adsorption–desorption measurements exhibited Type IV isotherms with H1 hysteresis loops. Compared to pristine SBA-15, the specific surface area and pore volume of the composites decreased from 729.35 m2 g−1 to 521.32 m2 g−1 and from 1.09 cm3 g−1 to 0.85 cm3 g−1, respectively, accompanied by an apparent increase in the average pore diameter from 5.99 nm to 6.55 nm, attributed to non-uniform pore occupation. Under visible-light irradiation, the photocatalytic performance was highly dependent on the La doping level. Notably, the 5% La-ZnO/SBA-15 sample exhibited superior activity, achieving over 99% RhB removal within 40 min and demonstrating the highest apparent rate constant (k = 0.1152 min−1), surpassing both undoped ZnO/SBA-15 (k = 0.0467 min−1) and other doping levels. Reusability tests over four consecutive cycles showed a consistent degradation efficiency exceeding 93%, with only a ~7 percentage-point decline, indicating excellent structural stability and recyclability. Radical scavenging experiments identified h+, ·OH, and ·O2 as the primary reactive species. Furthermore, photoluminescence (PL) quenching observed at the optimal 5% La doping level suggested suppressed radiative recombination and enhanced charge carrier separation. Collectively, these results underscore the synergistic effect of La doping and mesoporous confinement in achieving fast, efficient, and recyclable photocatalytic degradation of organic pollutants. Full article
Show Figures

Figure 1

20 pages, 6027 KB  
Article
Production and Characterization of Ti-6Al-4V Foams Produced by the Replica Impregnation Method
by Aynur İnan Üstün and Hasan Okuyucu
Metals 2025, 15(12), 1354; https://doi.org/10.3390/met15121354 - 9 Dec 2025
Viewed by 402
Abstract
Porous Ti-6Al-4V foams are excellent materials due to their low density, high specific strength, and excellent biocompatibility. This study investigates the fabrication of open-cell Ti-6Al-4V foams using the replica impregnation method with polyurethane templates of varying pore sizes (20, 25, and 30 ppi) [...] Read more.
Porous Ti-6Al-4V foams are excellent materials due to their low density, high specific strength, and excellent biocompatibility. This study investigates the fabrication of open-cell Ti-6Al-4V foams using the replica impregnation method with polyurethane templates of varying pore sizes (20, 25, and 30 ppi) and sintering temperatures (1170 °C, 1200 °C, 1250 °C, and 1280 °C). The effects of these parameters on microstructural evolution, phase composition, and mechanical properties were examined. Microstructural analysis showed that optimum densification occurred at 1250 °C. However, at 1280 °C, excessive grain growth and pore coarsening were observed. XRD, SEM, and EDS analyses confirmed that α-Ti was the matrix phase, while titanium carbide formed in situ as a result of the carbon residues released from the decomposed polyurethane template. With the development of the TiC phase and enhanced interparticle bonding due to sintering, the compressive strength progressively increased up to 1250 °C. At 1280 °C, strength decreased due to excessive TiC growth, causing brittleness and pore coarsening, reducing structural integrity. Maximum compressive strength of 40.2 MPa and elastic modulus of 858.9 MPa were achieved at 1250 °C with balanced TiC dispersion and pore structure. Max density of 1.234 g/cm3 was obtained at 1250 °C. Gibson-Ashby analysis and the fracture surfaces confirmed the brittle behavior of the foams, which is attributed to the presence of TiC particles and microcracks in the structure. The study concludes that 1250 °C provides an ideal balance between densification and structural integrity, offering valuable insights for biomedical and structural applications. Full article
Show Figures

Graphical abstract

14 pages, 2992 KB  
Article
Photocatalytic Degradation of Organic Compounds on TiO2-Photocatalyst-Coated Concrete Surfaces
by Katarzyna Bednarczyk and Artur Lewandowski
Molecules 2025, 30(24), 4698; https://doi.org/10.3390/molecules30244698 - 8 Dec 2025
Viewed by 469
Abstract
This study investigates the photocatalytic degradation of organic compounds on TiO2-coated concrete paving cubes, with a focus on their potential for environmental remediation in urban settings. The TiO2 P25 coating significantly enhanced the photocatalytic activity of the concrete surface, enabling [...] Read more.
This study investigates the photocatalytic degradation of organic compounds on TiO2-coated concrete paving cubes, with a focus on their potential for environmental remediation in urban settings. The TiO2 P25 coating significantly enhanced the photocatalytic activity of the concrete surface, enabling effective degradation of model pollutants such as methylene blue. Various application methods were evaluated, including surface coating with and without impregnation, and bulk incorporation of TiO2 into the concrete matrix. Surface properties were assessed using contact angle measurements and absorption tests. Among all tested variants, the surface-coated and impregnated sample (SURF-IMP) showed the highest photocatalytic efficiency, achieving over 67% pollutant degradation. This variant also demonstrated the lowest water absorption and the highest contact angle, confirming improved surface hydrophobicity. In contrast, the bulk-modified sample (MIX) exhibited weaker performance due to limited surface accessibility of TiO2 particles. These findings highlight the importance of the application method in optimizing the performance of TiO2-functionalized concrete. The developed system offers a practical approach to integrating photocatalytic properties into paving materials for applications such as air purification, surface decontamination, and sustainable urban infrastructure. Full article
(This article belongs to the Special Issue Nanomaterials in Photochemical Devices: Advances and Applications)
Show Figures

Figure 1

Back to TopTop