Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = implant-supported full-arch

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2302 KiB  
Article
Edentulous Mandibles Restored with Fiber-Reinforced Composite Prostheses Supported by 5.0 mm Ultra-Short Implants: Ten-Year Follow-Up
by Giulia Petroni, Fabrizio Zaccheo, Cosimo Rupe and Andrea Cicconetti
Prosthesis 2025, 7(4), 94; https://doi.org/10.3390/prosthesis7040094 - 1 Aug 2025
Viewed by 337
Abstract
Background/Objectives: This study aimed to assess the long-term clinical performance of full-arch fixed restorations made of fiber-reinforced composite (FRC) supported by four ultra-short implants (4.0 × 5.0 mm) in patients with edentulous, atrophic mandibles. Methods: Ten patients were treated at Sapienza University of [...] Read more.
Background/Objectives: This study aimed to assess the long-term clinical performance of full-arch fixed restorations made of fiber-reinforced composite (FRC) supported by four ultra-short implants (4.0 × 5.0 mm) in patients with edentulous, atrophic mandibles. Methods: Ten patients were treated at Sapienza University of Rome and monitored over a 10-year period. Each case involved the placement of four plateau-design implants with a pure conometric connection and a calcium phosphate-treated surface. The final prostheses were fabricated using CAD/CAM-milled Trinia® fiber-reinforced composite frameworks. Clinical parameters included implant and prosthesis survival, marginal bone level (MBL), peri-implant probing depth (PPD), and patient-reported outcome measures (PROMs). Results: Implant and prosthesis survival reached 100% over the 10-year follow-up. MBL data showed a minor bone gain of approximately 0.11 mm per 5 years (p < 0.0001). PPD remained stable under 3 mm, with a minimal increase of 0.16 mm over the same period (p < 0.0001). PROMs reflected sustained high patient satisfaction. No technical complications, such as chipping or framework fracture, were observed. Conclusions: Rehabilitation of the edentulous mandible with ultra-short implants and metal-free FRC prostheses proved to be a minimally invasive and long-lasting treatment option. The 10-year follow-up confirmed excellent implant and prosthetic outcomes, favorable peri-implant tissue health, and strong patient satisfaction. Nonetheless, further studies with larger sample sizes are needed to confirm these encouraging results and strengthen the clinical evidence. Full article
Show Figures

Figure 1

18 pages, 8141 KiB  
Review
AI-Driven Aesthetic Rehabilitation in Edentulous Arches: Advancing Symmetry and Smile Design Through Medit SmartX and Scan Ladder
by Adam Brian Nulty
J. Aesthetic Med. 2025, 1(1), 4; https://doi.org/10.3390/jaestheticmed1010004 - 1 Aug 2025
Viewed by 600
Abstract
The integration of artificial intelligence (AI) and advanced digital workflows is revolutionising full-arch implant dentistry, particularly for geriatric patients with edentulous and atrophic arches, for whom achieving both prosthetic passivity and optimal aesthetic outcomes is critical. This narrative review evaluates current challenges in [...] Read more.
The integration of artificial intelligence (AI) and advanced digital workflows is revolutionising full-arch implant dentistry, particularly for geriatric patients with edentulous and atrophic arches, for whom achieving both prosthetic passivity and optimal aesthetic outcomes is critical. This narrative review evaluates current challenges in intraoral scanning accuracy—such as scan distortion, angular deviation, and cross-arch misalignment—and presents how innovations like the Medit SmartX AI-guided workflow and the Scan Ladder system can significantly enhance precision in implant position registration. These technologies mitigate stitching errors by using real-time scan body recognition and auxiliary geometric references, yielding mean RMS trueness values as low as 11–13 µm, comparable to dedicated photogrammetry systems. AI-driven prosthetic design further aligns implant-supported restorations with facial symmetry and smile aesthetics, prioritising predictable midline and occlusal plane control. Early clinical data indicate that such tools can reduce prosthetic misfits to under 20 µm and lower complication rates related to passive fit, while shortening scan times by up to 30% compared to conventional workflows. This is especially valuable for elderly individuals who may not tolerate multiple lengthy adjustments. Additionally, emerging AI applications in design automation, scan validation, and patient-specific workflow adaptation continue to evolve, supporting more efficient and personalised digital prosthodontics. In summary, AI-enhanced scanning and prosthetic workflows do not merely meet functional demands but also elevate aesthetic standards in complex full-arch rehabilitations. The synergy of AI and digital dentistry presents a transformative opportunity to consistently deliver superior precision, passivity, and facial harmony for edentulous implant patients. Full article
Show Figures

Graphical abstract

15 pages, 1812 KiB  
Article
Influence of Digital Manufacturing and Abutment Design on Full-Arch Implant Prostheses—An In Vitro Study
by Shahad Altwaijri, Hanan Alotaibi, Talal M. Alnassar and Alhanoof Aldegheishem
Materials 2025, 18(15), 3543; https://doi.org/10.3390/ma18153543 - 29 Jul 2025
Viewed by 274
Abstract
Achieving accurate fit in implant-supported prostheses is critical for avoiding mechanical complications; however, the influence of digital manufacturing techniques and abutment designs on misfit and preload remains unclear. This study evaluated the impact of different manufacturing techniques (CAD-cast and 3D printing) and abutment [...] Read more.
Achieving accurate fit in implant-supported prostheses is critical for avoiding mechanical complications; however, the influence of digital manufacturing techniques and abutment designs on misfit and preload remains unclear. This study evaluated the impact of different manufacturing techniques (CAD-cast and 3D printing) and abutment connection types (engaging [E], non-engaging [NE]) on the misfit and preload of implant-supported cantilevered fixed dental prostheses (ICFDPs). Misfit was measured at six points using scanning electron microscopy, and preload was assessed via eight strain gauges placed buccally and lingually on four implants. Frameworks were torqued to 35 Ncm, retorqued after 10 min, and subjected to 200,000 cycles of loading. Mean preload values ranged from 173.4 ± 79.5 Ncm (PF) to 330 ± 253.2 Ncm (3DP). Preload trends varied depending on the abutment type and manufacturing technique, with the 3DP group showing higher preload in engaging (E) abutments, whereas the CAD-cast group showed the opposite pattern. Although preload values varied numerically, these differences were not statistically significant (p = 0.5). In terms of misfit, significant differences were observed between groups (p < 0.05), except between CAD-cast E (86.4 ± 17.8 μm) and 3DP E (84.1 ± 19.2 μm). Additionally, E and NE abutments showed significant differences in misfit within both CAD-cast and 3DP groups. Overall, 3DP frameworks showed superior fit over CAD-cast. These findings suggest that 3DP may offer improved clinical outcomes in terms of implant–abutment fit. Full article
Show Figures

Figure 1

15 pages, 2489 KiB  
Article
Trueness of Implant Positioning Using Intraoral Scanning and Dental Photogrammetry for Full-Arch Implant-Supported Rehabilitations: An In Vitro Study
by João Carlos Faria, Manuel António Sampaio-Fernandes, Susana João Oliveira, Rodrigo Malheiro, João Carlos Sampaio-Fernandes and Maria Helena Figueiral
Appl. Sci. 2025, 15(14), 8016; https://doi.org/10.3390/app15148016 - 18 Jul 2025
Viewed by 312
Abstract
This in vitro study aims to compare the trueness of digital impressions obtained using two intraoral scanners (IOS) and one photogrammetry device for full-arch implant-supported rehabilitations. According to the Caramês Classification I, three models were produced with Straumann implants arranged in different spatial [...] Read more.
This in vitro study aims to compare the trueness of digital impressions obtained using two intraoral scanners (IOS) and one photogrammetry device for full-arch implant-supported rehabilitations. According to the Caramês Classification I, three models were produced with Straumann implants arranged in different spatial distributions: Option A with six implants and Options B and C with four implants each. The three models were scanned using a 12-megapixel scanner to create digital master casts. For each reference model, 30 digital impressions were acquired: 10 with the 3Shape Trios 3 intraoral scanner, 10 with the Medit i500 intraoral scanner, and 10 with the PIC Dental photogrammetry device. Trueness was assessed through best-fit superimpositions between the digital master casts and the corresponding virtual models. The Shapiro–Wilk test was applied to assess the normality of the data distribution, and Levene’s test was used to evaluate the homogeneity of variances. The non-parametric Kruskal–Wallis test was employed to compare group differences, with post hoc adjustments made using the Bonferroni correction. A significance threshold of p = 0.05 was adopted for all statistical tests. Statistically significant differences were observed in the root mean square values among the three devices. The Medit i500 demonstrated the highest trueness, with a median (interquartile range) deviation of 24.45 (18.18) µm, whereas the PIC Dental exhibited the lowest trueness, with a median deviation of 49.45 (9.17) µm. Among the implant distribution, the Option C showed the best trueness, with a median deviation of 19.00 (27.83). Considering the results of this in vitro study, intraoral scanners demonstrated comparable trueness, whereas the photogrammetry-based system exhibited lower trueness values. Additionally, a smaller number of implants and reduced inter-implant distances were associated with improved trueness in digital impressions for full-arch implant rehabilitation. Full article
(This article belongs to the Special Issue Recent Advances in Digital Dentistry and Oral Implantology)
Show Figures

Figure 1

14 pages, 514 KiB  
Article
Mechanical and Biological Complications Two Years After Full-Arch Implant-Supported Prosthetic Rehabilitation: A Retrospective Clinical Study
by Denisa Tabita Sabău, Petra Saitos, Rahela Tabita Moca, Raluca Iulia Juncar and Mihai Juncar
Clin. Pract. 2025, 15(7), 134; https://doi.org/10.3390/clinpract15070134 - 18 Jul 2025
Viewed by 355
Abstract
Background/Objectives: Full-arch implant-supported prostheses have become a widely accepted solution for edentulous patients, yet long-term biological and mechanical complications remain a clinical concern. Methods: This retrospective study included 70 fully edentulous patients (362 implants) rehabilitated with either fixed or removable implant-supported prostheses. [...] Read more.
Background/Objectives: Full-arch implant-supported prostheses have become a widely accepted solution for edentulous patients, yet long-term biological and mechanical complications remain a clinical concern. Methods: This retrospective study included 70 fully edentulous patients (362 implants) rehabilitated with either fixed or removable implant-supported prostheses. Data were collected on demographics, medical status, type and location of prostheses, implant type, abutments, method of fixation, and complications. Statistical analysis included Fisher’s exact test, the Mann–Whitney U test, and chi-squared tests, with a significance level set at p < 0.05. Results: Mechanical complications occurred in 41.4% of patients (29 out of 70), with framework fractures reported in eight cases (27.6%), ceramic chipping in six cases (20.7%), and resin discoloration in four cases (13.8%). The prostheses were fabricated using monolithic zirconia, metal–ceramic crowns, zirconia on titanium bars, and hybrid resin/PMMA on cobalt–chromium frameworks. Gingival inflammation was also noted in 41.4% of cases (n = 29), predominantly in posterior implant regions. Younger patients and those without systemic diseases showed a significantly higher incidence of mechanical complications. Conclusions: Two years post-treatment, mechanical and biological complications appear to be independent phenomena, not significantly associated with most prosthetic variables. Patient-specific factors, particularly age and general health status, may have greater predictive value than prosthetic design. Limitations of the study include its retrospective design and the lack of radiographic data to assess peri-implant bone changes. Full article
Show Figures

Figure 1

16 pages, 6475 KiB  
Review
Fully Digital Workflow in Full-Arch Implant Rehabilitation: A Descriptive Methodological Review
by Chantal Auduc, Thomas Douillard, Emmanuel Nicolas and Nada El Osta
Prosthesis 2025, 7(4), 85; https://doi.org/10.3390/prosthesis7040085 - 16 Jul 2025
Viewed by 523
Abstract
Background. Digital dentistry continues to evolve, offering improved accuracy, efficiency, and patient experience across various prosthodontic procedures. Many previous reviews have focused on digital applications in prosthodontics. But the use of a fully digital workflow for full-arch implant-supported prostheses in edentulous patients remains [...] Read more.
Background. Digital dentistry continues to evolve, offering improved accuracy, efficiency, and patient experience across various prosthodontic procedures. Many previous reviews have focused on digital applications in prosthodontics. But the use of a fully digital workflow for full-arch implant-supported prostheses in edentulous patients remains an emerging and underexplored area in the literature. Objective. This article presents a comprehensive methodological review of the digital workflow in full-arch implant-supported rehabilitation. It follows a structured literature exploration and synthesizes relevant technological processes from patient assessment to prosthetic delivery. Methods. The relevant literature was retrieved from the PubMed database on 20 June 2024, to identify the most recent and relevant studies. A total of 22 articles met the eligibility criteria and were included in the review. The majority included case and technical reports. Results. The review illustrates the integration and application of digital tools in implant dentistry, including cone-beam computed tomography (CBCT) exposure, intraoral scanning, digital smile design, virtual patients, guided surgery, and digital scanning. The key findings demonstrate multiple advantages of a fully digital workflow, such as reduced treatment time and cost, increased patient satisfaction, and improved interdisciplinary communication. Conclusions. Despite these benefits, limitations persist due to the low level of evidence, technological challenges, and the lack of standardized protocols. Further randomized controlled trials and long-term clinical evaluations are essential to validate the effectiveness and feasibility of a fully digital workflow for full-arch implant-supported rehabilitation. Full article
Show Figures

Figure 1

14 pages, 1894 KiB  
Article
Peri-Implantitis Causal Therapy with and Without Doxycycline: Retrospective Cohort Clinical Study
by Bianca D’Orto and Elisabetta Polizzi
Appl. Sci. 2025, 15(11), 6367; https://doi.org/10.3390/app15116367 - 5 Jun 2025
Viewed by 587
Abstract
Background: Topical application within peri-implant pockets ensures high drug concentrations at the infection site while minimizing systemic exposure. However, the comparative effectiveness of non-surgical causal therapy alone versus its combination with doxycycline remains unclear. This retrospective observational clinical study aimed to evaluate the [...] Read more.
Background: Topical application within peri-implant pockets ensures high drug concentrations at the infection site while minimizing systemic exposure. However, the comparative effectiveness of non-surgical causal therapy alone versus its combination with doxycycline remains unclear. This retrospective observational clinical study aimed to evaluate the impact of adjunctive doxycycline on peri-implant parameters, considering smoking, systemic conditions, and implant–prosthetic rehabilitation (single implant, implant-supported bridge, or full-arch). Methods: Patients were retrospectively assigned to a control group (CG), receiving non-surgical causal therapy alone, or a test group (TG), which is also treated with topical doxycycline. Peri-implant parameters, including Peri-implant Probing Depht (PPD), Bleeding on Probing (BoP), Plaque Index (PI), and suppuration, were assessed at baseline (T0) and follow-up (T1). Multivariate logistic regression and stratified subgroup analyses were conducted to adjust for confounders such as smoking, systemic conditions, and implant–prosthetic rehabilitation types. Results: Two hundred nine patients were included in the study, of whom 97 were in the CG and 112 were in the TG. At T1, the TG exhibited a statistically significant reduction in PPD, BoP, PI, and suppuration compared to the CG (p < 0.05). Conclusions: The adjunctive use of topical doxycycline significantly enhances clinical outcomes in non-surgical peri-implantitis treatment. Further longitudinal studies are needed to confirm these findings and assess long-term stability. Full article
(This article belongs to the Special Issue Dental Implants: Latest Advances and Prospects)
Show Figures

Figure 1

14 pages, 883 KiB  
Systematic Review
Clinical Performance of Subperiosteal Implants in the Full-Arch Rehabilitation of Severely Resorbed Edentulous Jaws: A Systematic Review and Metanalysis
by Luis Sánchez-Labrador, Santiago Bazal-Bonelli, Fabián Pérez-González, Tomás Beca-Campoy, Carlos Manuel Cobo-Vázquez, Jorge Cortés-Bretón Brinkmann and José María Martínez-González
Dent. J. 2025, 13(6), 240; https://doi.org/10.3390/dj13060240 - 28 May 2025
Viewed by 527
Abstract
Background/Objectives: Subperiosteal implants (SPIs) were first used in the 1940s, but due to their complications and the rise of dental implants, they were discontinued. Thanks to new technologies and new materials, nowadays they are being used again and studied as a treatment [...] Read more.
Background/Objectives: Subperiosteal implants (SPIs) were first used in the 1940s, but due to their complications and the rise of dental implants, they were discontinued. Thanks to new technologies and new materials, nowadays they are being used again and studied as a treatment for severe bone defects. This review analyzes the clinical results—survival rates and complications—of SPIs used to support full arch rehabilitations of severely resorbed maxillae and mandibles, comparing the outcomes resulting from implant placement conducted in one or two surgical interventions. Methods: An automated search was conducted in four databases (Medline/Pubmed, Scopus, Web of Science, and Cochrane Library), as well as a manual search for relevant clinical articles published before 28 February 2025. The review included human studies with at least four patients, in which SPIs were placed to restore full-arch edentulous maxillae and mandibles. Quality of evidence was evaluated using the Newcastle–Ottawa Quality Assessment Scale and the Joanna Briggs Institute Critical Appraisal tool. Results: A total of 14 studies met the inclusion criteria and were included for analysis, including 958 patients and 973 SPIs. The survival rate was 100% when one surgical intervention was performed and 85% when two interventions were performed after 4–38 months and 3–22 years follow-up, respectively. Conclusions: SPIs would appear to offer a good alternative for patients with severe bone atrophies, especially SPIs fabricated using digital techniques in a single step, presenting promising survival rates and a low complication rate, although more randomized clinical trials with long-term follow-up are needed. Full article
(This article belongs to the Special Issue New Perspectives in Periodontology and Implant Dentistry)
Show Figures

Figure 1

16 pages, 1126 KiB  
Article
Psychosocial Impact of Maxilla-For-All® Treatment Using Standard and Long Implants (Pterygoid, Trans-Sinus and Zygomatic) on Patients with Severe Maxillary Atrophies: A 1-Year Prospective Study with PIDAQ-23 and OHIP-14
by Tommaso Grandi, Paolo Toti, Cesare Paoleschi, Matteo Giorgi, Ugo Covani and Giovanni Battista Menchini-Fabris
J. Clin. Med. 2025, 14(10), 3544; https://doi.org/10.3390/jcm14103544 - 19 May 2025
Viewed by 563
Abstract
Background/Objectives: The satisfaction of patients following maxillary full-arch rehabilitation is crucial in assessing treatment effectiveness. This one-year study evaluated patients’ satisfaction, quality of life, and aesthetic perception after receiving the Maxilla-for-All®/All-On-X treatments, which combine standard, pterygoid, trans-sinus, and zygomatic implants [...] Read more.
Background/Objectives: The satisfaction of patients following maxillary full-arch rehabilitation is crucial in assessing treatment effectiveness. This one-year study evaluated patients’ satisfaction, quality of life, and aesthetic perception after receiving the Maxilla-for-All®/All-On-X treatments, which combine standard, pterygoid, trans-sinus, and zygomatic implants to support a fixed prosthesis and offer a graftless solution that reduces morbidity and treatment time. Methods: A prospective cohort study using convenience sampling of subjects treated for severe maxillary atrophies was conducted on patients receiving immediate implant-supported full-arch fixed prostheses. The Oral Health Impact Profile (OHIP-14) and Psychosocial Impact of Dental Aesthetics Questionnaire (PIDAQ-23) were administered preoperatively and one year post-treatment. Patients were grouped based on the presence or absence of complications (surgical, technical, and mechanical) and Wilcoxon tests were used for comparison (significance level = 0.05). Results: A total of 56 patients (29 female, 27 male) participated, with no implant or prosthesis failures. Eleven patients reported unilateral sinus membrane perforation, and seven had technical or mechanical complications. Preoperatively, 69% of patients rated their oral condition as unfavorable according to the OHIP-14; this dropped significantly to 21.8% post-treatment (p-value < 0.0001). After one year, the average PIDAQ-23 score improved significantly from 44.7 ± 16.6 to 6.8 ± 5.3 (p-value < 0.0001). No significant differences were observed between patients with or without complications (p-values ranging from 0.5270 to 0.8920). Conclusions: Full-arch rehabilitation using Maxilla-for-All®/All-On-X treatments significantly improved both aesthetic perception and chewing function in patients with severe maxillary atrophies. They reported a substantial reduction in oral health-related discomfort, as shown by a significant decrease in OHIP-14 scores one year post-treatment. Clinical or technical complications did not significantly impact patients’ quality-of-life outcomes or satisfaction, supporting the reliability of this treatment protocol. Full article
(This article belongs to the Special Issue Current Trends in Implant Dentistry)
Show Figures

Figure 1

12 pages, 4767 KiB  
Article
Comparison of Surface Strains of Polymeric Frameworks for Fixed Implant-Supported Prostheses: A Digital Image Correlation Study
by Ana Messias, Maria Augusta Neto, Ana Paula Piedade, Ana Amaro, Jack T. Krauser and Fernando Guerra
Materials 2025, 18(8), 1700; https://doi.org/10.3390/ma18081700 - 9 Apr 2025
Viewed by 566
Abstract
The gold standard materials used for frameworks of full-arch implant-supported fixed prostheses (ISFPs) have traditionally been metal alloys, but recently, high-performance polymers such as polyetherketones and fibre-reinforced resins have been gaining popularity despite the lack of evidence of load-bearing capacity. The aim of [...] Read more.
The gold standard materials used for frameworks of full-arch implant-supported fixed prostheses (ISFPs) have traditionally been metal alloys, but recently, high-performance polymers such as polyetherketones and fibre-reinforced resins have been gaining popularity despite the lack of evidence of load-bearing capacity. The aim of the present study was to evaluate the displacements and strains of milled polymeric frameworks for full-arch ISFPs using 3D digital image correlation. Methods: Twelve frameworks were milled from four polymeric materials (three per group): polyetheretherketone (PEEK), polyetherketoneketone (PEKK), poly(methyl methacrylate) (PMMA) and fibre-reinforced composite (FRC). Each framework was fitted with titanium links and screwed to implant analogues embedded in resin and tested for static load-bearing capacity up to 200N. Displacements were captured with two high-speed photographic cameras and analysed with a video correlation system on three spatial axes, U, V, and W, along with principal tensile, compressive and von Mises strains. Results: PEEK exhibited the highest displacement, indicating greater flexibility, while FRC showed the lowest displacement, suggesting enhanced rigidity. Von Mises strain analysis revealed that PMMA and PEEK experienced higher strain, whereas PEKK and FRC demonstrated lower strain distribution. Bayesian ANOVA provided strong evidence for material differences. Conclusion: FRC exhibited superior load-bearing characteristics, reinforcing its potential as a viable clinical alternative to metal-based ISFPs. Full article
Show Figures

Figure 1

17 pages, 16835 KiB  
Article
Evaluation of Biomechanical Effects of Mandible Arch Types in All-on-4 and All-on-5 Dental Implant Design: A 3D Finite Element Analysis
by Sema Nur Sevinç Gül, Fahri Murat and Abdullah Tahir Şensoy
J. Funct. Biomater. 2025, 16(4), 134; https://doi.org/10.3390/jfb16040134 - 7 Apr 2025
Viewed by 1052
Abstract
This study evaluates the biomechanical effects of different implant configurations in various mandibular arch types using finite element analysis (FEA). Stress distribution and deformation patterns were analyzed under different loading conditions in square, U-shaped, and V-shaped arches. The results indicate that increasing the [...] Read more.
This study evaluates the biomechanical effects of different implant configurations in various mandibular arch types using finite element analysis (FEA). Stress distribution and deformation patterns were analyzed under different loading conditions in square, U-shaped, and V-shaped arches. The results indicate that increasing the number of implants generally reduces cortical bone stress, particularly in U and V arches, while implant-level stress tends to increase. Under molar loading, cortical bone stress in the square arch decreased by 16.9% (from 90.61 MPa to 75.27 MPa) with the All-on-5 system, while implant stress in the V arch dropped by 46.26% (from 142.35 MPa to 76.5 MPa). Additionally, the cantilever effect in All-on-4 configurations resulted in higher stress on the prosthesis and implants, particularly in V arches. While the All-on-5 system provided better load distribution, the study highlights the importance of optimizing implant positioning based on mandibular anatomy. Despite limitations such as the use of static forces and standardized arch types, these findings offer valuable insights into the biomechanical performance of full-arch implant rehabilitations, supporting future clinical applications and research. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

10 pages, 1343 KiB  
Article
Accuracy and Precision of Digital Impression with Reverse Scan Body Prototypes and All-on-4 Protocol: An In Vitro Research
by Marco Tallarico, Mohammad Qaddomi, Elena De Rosa, Carlotta Cacciò, Yeo Jin Jung, Silvio Mario Meloni, Francesco Mattia Ceruso, Aurea Immacolata Lumbau and Milena Pisano
Prosthesis 2025, 7(2), 36; https://doi.org/10.3390/prosthesis7020036 - 31 Mar 2025
Viewed by 1050
Abstract
Background/Objectives: Digital workflows for implant-supported full-arch restorations remain challenging. This study evaluated the accuracy and precision of digital impressions using reverse scan body (RSB) prototypes and intraoral scanners (IOSs) for rehabilitating fully edentulous patients following the All-on-4 protocol. Secondary objectives included comparing accuracy [...] Read more.
Background/Objectives: Digital workflows for implant-supported full-arch restorations remain challenging. This study evaluated the accuracy and precision of digital impressions using reverse scan body (RSB) prototypes and intraoral scanners (IOSs) for rehabilitating fully edentulous patients following the All-on-4 protocol. Secondary objectives included comparing accuracy between expert clinicians and beginners, as well as desktop scanners and various RSB designs. Methods: An in vitro study was conducted using a fully edentulous mandible model with four Osstem TSIII implants. A final-year dental student and an expert clinician captured digital impressions using IOSs and desktop scanners. Four groups were analyzed: (A) original scan bodies with the IOS, (B) short RSBs with the IOS, (C) RSBs with desktop scanners (short sandblasted, long sandblasted, long coated), and (D) a control group using original scan bodies with a desktop scanner. Root mean square (RMS) values measured dimensional differences, with statistical analysis performed using the Wilcoxon signed-rank test and one-way ANOVA (α = 0.05). Results: A total of 42 scans were analyzed. No significant difference was found between expert and student for original scan bodies using the IOS (p = 0.220), while RSB prototypes showed significant differences (p = 0.008). No significant accuracy differences were noted between original scan bodies and RSBs with the IOS, but IOSs outperformed desktop scanners. Among RSBs scanned with desktop scanners, no significant differences were observed between designs. Conclusions: RSB prototypes are a viable alternative to original scan bodies for fully digital workflows in All-on-4 rehabilitations, with IOSs offering superior accuracy. However, proper training is crucial for optimizing RSB accuracy. Variations in height and coating did not impact overall accuracy. Full article
Show Figures

Figure 1

14 pages, 4824 KiB  
Article
The Influence of Guiding Concept on the Accuracy of Static Computer-Assisted Implant Surgery in Partially Edentulous Cases: An In Vitro Study
by David Kasradze and Ričardas Kubilius
Medicina 2025, 61(4), 617; https://doi.org/10.3390/medicina61040617 - 28 Mar 2025
Cited by 1 | Viewed by 473
Abstract
Background and Objectives: Static Computer-Assisted Implant Surgery (sCAIS) can be performed with different drill guiding systems. This study aimed to compare the accuracy of two guiding concepts of sCAIS in partially edentulous cases. Materials and Methods: Forty polyamide models of partially [...] Read more.
Background and Objectives: Static Computer-Assisted Implant Surgery (sCAIS) can be performed with different drill guiding systems. This study aimed to compare the accuracy of two guiding concepts of sCAIS in partially edentulous cases. Materials and Methods: Forty polyamide models of partially edentulous maxillae with seven implantation sites were fabricated. In total, 140 replica implants were placed with keyless (KL) and drill-key (DK) guiding systems using static, full-arch, tooth-supported surgical guides. Three-dimensional crestal and apical, angular and vertical deviations from the planned implant positions were compared using Mann–Whitney U and Kruskal–Wallis H tests. Intergroup homogeneity of variance homogeneity was examined using Levene’s test to assess the precision. Results: Overall median 3D crestal and apical deviations of implants placed in the KL group were significantly higher compared to the DK group (0.86 mm [0.63–0.98] vs. 0.72 mm [0.52–0.89], p = 0.006 and 1.26 [0.98–1.52] vs. 1.13 [0.70–1.45], p = 0.012). In the subgroup analysis, implants placed with a KL system showed higher 3D crestal (p = 0.029), 3D apical (p < 0.001) and angular (p < 0.001) deviations in the extended anterior area, higher 3D crestal (p < 0.001) deviations in the proximal posterior single-tooth gap and higher vertical (p < 0.001) deviations in the distal site of free-end situation. Contrarily, the KL group showed lower 3D crestal (p = 0.007), 3D apical (p < 0.001), angular (p < 0.001) and vertical (p = 0.003) deviations in the distal posterior single-tooth gap, lower 3D apical (p = 0.007) and angular (p = 0.007) deviations in the distal site of free-end situation and lower vertical (p = 0.019) deviations in the proximal site of free-end situation. Conclusions: The deviations of both guiding concepts did not exceed the recommended safety margins. Statistically significant differences in deviations were found between two guiding concepts. Guiding concepts with superior accuracy varied across different sites of implantation. Full article
(This article belongs to the Section Dentistry and Oral Health)
Show Figures

Figure 1

20 pages, 12143 KiB  
Case Report
A Novel Intraoral Optical Scan-Transfer Device for Full-Arch Implant Reconstruction
by Cemal Ucer, Rabia Sannam Khan and Gwyn Jones
Dent. J. 2025, 13(3), 134; https://doi.org/10.3390/dj13030134 - 19 Mar 2025
Viewed by 1081
Abstract
Background: Dental implantology has undergone significant advancements with the integration of digital workflows, transforming the processes of planning, designing, surgical delivery, and prosthetic rehabilitation. Among these innovations, intraoral optical scanning (IOS) has emerged as a preferred method over traditional analogue impressions. This [...] Read more.
Background: Dental implantology has undergone significant advancements with the integration of digital workflows, transforming the processes of planning, designing, surgical delivery, and prosthetic rehabilitation. Among these innovations, intraoral optical scanning (IOS) has emerged as a preferred method over traditional analogue impressions. This preference is due to its cost-effectiveness, efficiency, and streamlined patient-friendly use while producing clinically acceptable results in terms of trueness and precision, particularly for short-span implant prostheses. Methods: However, the clinical utility of intraoral scanning is significantly affected by the lack of reference points and difficulties in moisture and bleeding control at the time of immediate implant placement surgery in the fully edentulous arch. Current evidence supports the general consensus that the traditional analog impression technique still provides superior trueness and precision compared to IOS, specifically in full-arch implant cases. Results: The continuous quest for precision in dental implantology has led to the introduction of photogrammetry, which is now considered the most accurate technique for the digital scanning of dental implants. Photogrammetry has demonstrated superior results compared to those obtained using the analog technique. Conclusions: The aim of this case report is to provide an overview of analog techniques, digital intraoral optical scanning, and photogrammetry, setting the stage for the introduction of a novel technique involving a dedicated optical scan-transfer device (IPD®) that can be scanned with ease using IOS, either intra- or extra-orally, due to its unique design features and digital properties. Full article
Show Figures

Figure 1

19 pages, 330 KiB  
Review
Occlusion and Biomechanical Risk Factors in Implant-Supported Full-Arch Fixed Dental Prostheses—Narrative Review
by Andrea Berzaghi, Tiziano Testori, Riccardo Scaini and Sergio Bortolini
J. Pers. Med. 2025, 15(2), 65; https://doi.org/10.3390/jpm15020065 - 7 Feb 2025
Cited by 2 | Viewed by 4079
Abstract
The biophysiological differences between teeth and dental implants and the issue of occlusal overload, although controversial, form the basis for the management of occlusion in implant-supported full-arch fixed dental prostheses (ISFAFDPs). Although there is currently a lack of scientific evidence on occlusal management, [...] Read more.
The biophysiological differences between teeth and dental implants and the issue of occlusal overload, although controversial, form the basis for the management of occlusion in implant-supported full-arch fixed dental prostheses (ISFAFDPs). Although there is currently a lack of scientific evidence on occlusal management, it is clear that the favorable prognosis of ISFAFDPs is linked to a correct understanding of the biomechanical principles involved. In the design of ISFAFDPs, the lack of proprioceptive feedback requires special attention to biomechanical factors: minimizing overloading complications and providing biomechanical stability are among the main goals of the occlusion. In ISFAFDPs, the occlusion must be decided on the basis of several factors that influence the loads on prosthesis and implants: each case must be evaluated individually and requires a personalized occlusion. The main aim of this narrative review is to provide an overview of the occlusal principles and materials that can be used in ISFAFDPs based on the data currently available in the literature. Practical clinical recommendations for the occlusion management of ISFAFDPs and a biomechanical risk score index to personalize implant-prosthetic treatment are proposed. Full article
(This article belongs to the Special Issue Personalized Medicine in Dental and Oral Health)
Back to TopTop