Comparison of Surface Strains of Polymeric Frameworks for Fixed Implant-Supported Prostheses: A Digital Image Correlation Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berniyanti, T.; Palupi, R.; Alkadasi, B.A.; Sari, K.P.; Putri, R.I.; Salma, N.; Prasita, S.; Regita, A.S. Oral Health-Related Quality of Life (OHRQoL) Analysis in Partially Edentulous Patients with and without Denture Therapy. Clin. Cosmet. Investig. Dent. 2023, 15, 89–98. [Google Scholar] [CrossRef] [PubMed]
- García-Minguillán, G.; Preciado, A.; Romeo, M.; Río, J.D.; Lynch, C.D.; Castillo-Oyagüe, R. Differences in self-perceived OHRQoL between fully dentate subjects and edentulous patients depending on their prosthesis type, socio-demographic profile, and clinical features. J. Dent. 2021, 114, 103756. [Google Scholar] [CrossRef] [PubMed]
- Garg, P.; Klineberg, I. Benefits of Contemporary Rehabilitation of Edentulism: A Statement. Int. J. Prosthodont. 2022, 35, 575–580. [Google Scholar] [CrossRef]
- Feng, Y.; Xiao, L.; Fu, L.L.; Gosau, M.; Vollkommer, T.; Speth, U.; Smeets, R.; Rutkowski, R.; Friedrich, R.E.; Yan, M. Global, Regional and National Burden of Edentulism and Periodontal Diseases from 1990 to 2021: Analysis of Risk Factors and Prediction of Trends in 2050. In Vivo 2025, 39, 1148–1161. [Google Scholar] [CrossRef]
- Sofi-Mahmudi, A.; Shamsoddin, E.; Khademioore, S.; Khazaei, Y.; Vahdati, A.; Tovani-Palone, M.R. Global, regional, and national survey on burden and Quality of Care Index (QCI) of orofacial clefts: Global burden of disease systematic analysis 1990–2019. PLoS ONE 2025, 20, e0317267. [Google Scholar] [CrossRef]
- Nilsson, S.; Stenport, V.F.; Nilsson, M.; Göthberg, C. A retrospective clinical study of fixed tooth- and implant-supported prostheses in titanium and cobalt-chromium-ceramic: 5-9-year follow-up. Clin. Oral Investig. 2022, 26, 6097–6103. [Google Scholar] [CrossRef] [PubMed]
- Teigen, K.; Jokstad, A. Dental implant suprastructures using cobalt-chromium alloy compared with gold alloy framework veneered with ceramic or acrylic resin: A retrospective cohort study up to 18 years. Clin. Oral Implants Res. 2012, 23, 853–860. [Google Scholar] [CrossRef] [PubMed]
- Vahnström, M.; Johansson, P.H.; Svanborg, P.; Stenport, V.F. Comparison of porcelain veneer fracture in implant-supported fixed full-arch prostheses with a framework of either titanium, cobalt-chromium, or zirconia: An in vitro study. Clin. Exp. Dent. Res. 2022, 8, 544–551. [Google Scholar] [CrossRef]
- Papaspyridakos, P.; Sinada, N.; Ntovas, P.; Barmak, A.B.; Chochlidakis, K. Zirconia full-arch implant prostheses: Survival, complications, and prosthetic space dimensions with 115 edentulous jaws. J. Prosthodont. 2025, 34, 271–280. [Google Scholar] [CrossRef]
- Grosgogeat, B.; Vaicelyte, A.; Gauthier, R.; Janssen, C.; Le Borgne, M. Toxicological Risks of the Cobalt-Chromium Alloys in Dentistry: A Systematic Review. Materials 2022, 15, 5801. [Google Scholar] [CrossRef]
- Vaicelyte, A.; Janssen, C.; Le Borgne, M.; Grosgogeat, B. Cobalt–Chromium Dental Alloys: Metal Exposures, Toxicological Risks, CMR Classification, and EURegulatory Framework. Crystals 2020, 10, 1151. [Google Scholar] [CrossRef]
- Alqurashi, H.; Khurshid, Z.; Syed, A.U.Y.; Rashid Habib, S.; Rokaya, D.; Zafar, M.S. Polyetherketoneketone (PEKK): An emerging biomaterial for oral implants and dental prostheses. J. Adv. Res. 2021, 28, 87–95. [Google Scholar] [CrossRef]
- Bemelmanns, P.; Pfeiffer, P. Shock absorption capacities of mouthguards in different types and thicknesses. Int. J. Sports Med. 2001, 22, 149–153. [Google Scholar] [CrossRef]
- Menini, M.; Delucchi, F.; Bagnasco, F.; Baldi, D.; Canullo, L.; Setti, P.; Migliorati, M.; Simetti, E.; Pesce, P. Shock Absorption Capacity of High-Performance Polymers for Dental Implant-Supported Restorations: In Vitro Study. Dent. J. 2024, 12, 111. [Google Scholar] [CrossRef] [PubMed]
- Villefort, R.F.; Diamantino, P.J.S.; Zeidler, S.L.V.V.; Borges, A.L.S.; Silva-Concílio, L.R.; Saavedra, G.D.F.A.; Tribst, J.P.M. Mechanical Response of PEKK and PEEK As Frameworks for Implant-Supported Full-Arch Fixed Dental Prosthesis: 3D Finite Element Analysis. Eur. J. Dent. 2022, 16, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Almjaddr, M.; Saker, J. Effect of Different Cantilever Lengths in Polyether Ether Ketone Prosthetic Framework in All-on-Four Technique on Stress Distribution: A Three-Dimensional (3D) Finite Element Analysis. Cureus 2024, 16, e74544. [Google Scholar] [CrossRef]
- Elsayed, S.; Ahmed, Y.; El-Anwar, M.I.; Elddamony, E.; Ashraf, R. Influence of different polymeric materials of implant and attachment on stress distribution in implant-supported overdentures: A three-dimensional finite element study. BMC Oral Health 2025, 25, 166. [Google Scholar] [CrossRef]
- Kilic, S.; Caglar, I. An Investigation of Stress Distribution Between Two Different Implant Concept in Implant-Supported Maxillary Prostheses with Different Framework Materials: A Finite Element Study. Int. J. Prosthodont. 2024, 1–22. [Google Scholar] [CrossRef]
- Ogawa, T.; Dhaliwal, S.; Naert, I.; Mine, A.; Kronstrom, M.; Sasaki, K.; Duyck, J. Impact of implant number, distribution and prosthesis material on loading on implants supporting fixed prostheses. J. Oral Rehabil. 2010, 37, 525–531. [Google Scholar] [CrossRef]
- Reddy, K.U.K.; Seth, A.; Vuppuluri, A.; Verma, P.C.; Narala, S.K.R.; Babu, P.J.; Saravanan, P. Exploring the bio-mechanical behavior of PEEK and CFR-PEEK materials for dental implant applications using finite element analysis. J. Prosthodont. Res. 2025, 69, 41–48. [Google Scholar] [CrossRef]
- Sahin Hazir, D.; Sozen Yanik, I.; Guncu, M.B.; Canay, R.S. Biomechanical behavior of titanium, cobalt-chromium, zirconia, and PEEK frameworks in implant-supported prostheses: A dynamic finite element analysis. BMC Oral Health 2025, 25, 97. [Google Scholar] [CrossRef] [PubMed]
- LLC, M.t. MatWeb: Online Materials Information Resource. Available online: http://www.matweb.com (accessed on 28 February 2025).
- Dinçtürk B, A.; Garoushi, S.; Alp C, K.; Pk, V.; Mb, Ü.; Lassila, L. Fracture resistance of endocrowns made from different CAD/CAM materials after prolonged fatigue aging. Clin. Oral Investig. 2025, 29, 149. [Google Scholar] [CrossRef]
- Breitman, L.S.; Alsahafi, T.; Kofford, B.; Felton, D.A.; Prasad, S. Flexural strength and mode of failure of interim implant-supported fixed dental prostheses following different conversion techniques and structural reinforcement. J. Prosthet. Dent. 2025, 133, 543.e1–543.e8. [Google Scholar] [CrossRef] [PubMed]
- Bijelic-Donova, J.; Bath, A.K.; Rocca, G.T.; Bella, E.D.; Saratti, C.M. Can Fiber-reinforced Composites Increase the Fracture Resistance of Direct Composite Restorations in Structurally Compromised Teeth? A Systematic Review and Meta-analysis of Laboratory Studies. Oper. Dent. 2025, 50, E1–E29. [Google Scholar] [CrossRef] [PubMed]
- Lahoud, L.; Boulos, P.; Kahale, D.; Gheno, E.; Benedicenti, S.; Calasans-Maia, M.D.; Bassano, M.B.; Signore, A.; Dawalibi, A.; Nasr, E. Fracture load comparison of a new Fiber-Reinforced Composite and Zirconia in All-on-Four Prosthesis: An In Vitro Study. Int. J. Prosthodont. 2024, 1–21. [Google Scholar] [CrossRef]
- Garoushi, S.; Barlas, D.; Vallittu, P.K.; Uctasli, M.B.; Lassila, L. Fracture behavior of short fiber-reinforced CAD/CAM inlay restorations after cyclic fatigue aging. Odontology 2024, 112, 138–147. [Google Scholar] [CrossRef]
- Corbani, K.; Hardan, L.; Eid, R.; Skienhe, H.; Alharbi, N.; Ozcan, M.; Salameh, Z. Fracture Resistance of Three-unit Fixed Dental Prostheses Fabricated with Milled and 3D Printed Composite-based Materials. J. Contemp. Dent. Pract. 2021, 22, 985–990. [Google Scholar] [PubMed]
- Cahyanto, A.; Martins, M.V.S.; Bianchi, O.; Sudhakaran, D.P.; Sililkas, N.; Echeverrigaray, S.G.; Rosa, V. Graphene oxide increases PMMA’s resistance to fatigue and strength degradation. Dent. Mater. 2023, 39, 763–769. [Google Scholar] [CrossRef]
- Facenda, J.C.; Borba, M.; Benetti, P.; Borges, A.L.S.; Dutra, M.D.Z.; Corazza, P.H. Fatigue resistance of polymeric restorative materials: Effect of supporting substrate. Gen. Dent. 2023, 71, 24–29. [Google Scholar]
- Magne, P.; Milani, T. Short-fiber Reinforced MOD Restorations of Molars with Severely Undermined Cusps. J. Adhes. Dent. 2023, 25, 99–106. [Google Scholar] [CrossRef]
- Alarcon, J.V.; Engelmeier, R.L.; Powers, J.M.; Triolo, P.T. Wear testing of composite, gold, porcelain, and enamel opposing a removable cobalt-chromium partial denture alloy. J. Prosthodont. 2009, 18, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Domagała, I.; Przystupa, K.; Firlej, M.; Pieniak, D.; Gil, L.; Borucka, A.; Naworol, I.; Biedziak, B.; Levkiv, M. Analysis of the Statistical Comparability of the Hardness and Wear of Polymeric Materials for Orthodontic Applications. Materials 2021, 14, 2925. [Google Scholar] [CrossRef]
- Harrison, A.; Huggett, R.; Handley, R.W. A correlation between abrasion resistance and other properties of some acrylic resins used in dentistry. J. Biomed. Mater. Res. 1979, 13, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Sayed, M.E.; Shetty, M.; Alqahtani, S.M.; Al Wadei, M.H.D.; Gupta, S.G.; Othman, A.A.A.; Alshehri, A.H.; Alqarni, H.; Mobarki, A.H.; et al. Physical and Mechanical Properties of 3D-Printed Provisional Crowns and Fixed Dental Prosthesis Resins Compared to CAD/CAM Milled and Conventional Provisional Resins: A Systematic Review and Meta-Analysis. Polymers 2022, 14, 2691. [Google Scholar] [CrossRef] [PubMed]
- Mackert, J.; El-Shewy, M.; Pannu, D.; Schoenbaum, T. Prosthetic complications and survival rates of metal-acrylic implant fixed complete dental prostheses: A retrospective study up to 10 years. J. Prosthet. Dent. 2024, 132, 766–771. [Google Scholar] [CrossRef]
- Palaniappan, S.; Celis, J.P.; Van Meerbeek, B.; Peumans, M.; Lambrechts, P. Correlating in vitro scratch test with in vivo contact free occlusal area wear of contemporary dental composites. Dent. Mater. 2013, 29, 259–268. [Google Scholar] [CrossRef]
- Almuhayya, S.; Alshahrani, R.; Alsania, R.; Albassam, A.; Alnemari, H.; Babaier, R. Biofilm Formation on Three High-Performance Polymeric CAD/CAM Composites: An In Vitro Study. Polymers 2025, 17, 676. [Google Scholar] [CrossRef]
- Khoury, P.; Kharouf, N.; Etienne, O.; Dillenseger, J.P.; Haikel, Y.; El-Damanhoury, H.M.; Irani, D.; Ozcan, M.; Salameh, Z. Physicochemical Properties and Bacterial Adhesion of Conventional and 3D Printed Complete Denture PMMA Materials: An. J. Contemp. Dent. Pract. 2024, 25, 1001–1008. [Google Scholar] [CrossRef]
- Shamieh, S.; Ribeiro, A.A.; Sulaiman, T.; Swift, E.J.; Vasconcellos, A.B. Biofilm attachment and mineralizing potential of contemporary restorative materials. Am. J. Dent. 2024, 37, 279–287. [Google Scholar]
- ISO 14801; Dentistry—Implants—Dynamic Loading Test for Endosseous Dental Implants. ISO: Geneva, Switzerland, 2016.
- Schimmel, M.; Araujo, M.; Abou-Ayash, S.; Buser, R.; Ebenezer, S.; Fonseca, M.; Heitz-Mayfield, L.J.; Holtzman, L.P.; Kamnoedboon, P.; Levine, R.; et al. Group 4 ITI Consensus Report: Patient benefits following implant treatment in partially and fully edentulous patients. Clin. Oral Implants Res. 2023, 34 (Suppl. S26), 257–265. [Google Scholar] [CrossRef]
- Srinivasan, M.; Kamnoedboon, P.; Angst, L.; Müller, F. Oral function in completely edentulous patients rehabilitated with implant-supported dental prostheses: A systematic review and meta-analysis. Clin. Oral Implants Res. 2023, 34 (Suppl. S26), 196–239. [Google Scholar] [CrossRef]
- Messias, A.; Karasan, D.; Nicolau, P.; Pjetursson, B.E.; Guerra, F. Rehabilitation of full-arch edentulism with fixed or removable dentures retained by root-form dental implants: A systematic review of outcomes and outcome measures used in clinical research in the last 10 years. J. Clin. Periodontol. 2023, 50, 38–54. [Google Scholar] [CrossRef] [PubMed]
- Schwitalla, A.D.; Spintig, T.; Kallage, I.; Müller, W.D. Flexural behavior of PEEK materials for dental application. Dent. Mater. 2015, 31, 1377–1384. [Google Scholar] [CrossRef]
- Yerliyurt, K.; Taşdelen, T.B.; Eğri, Ö.; Eğri, S. Flexural Properties of Heat-Polymerized PMMA Denture Base Resins Reinforced with Fibers with Different Characteristics. Polymers 2023, 15, 3211. [Google Scholar] [CrossRef]
- Bioloren. TRILOR®: The Solution for a Metal Free Dentistry. Available online: https://bioloren.com/english/trilor-fiber-disks-and-blocks (accessed on 28 February 2025).
- Tushar; Rani, P.; Ananya; Kumar, S.; Prakash, J.; Jayaprakash, M.B. Evaluation of Impact Strength and Flexural Strength of Polyether Ether Ketone vs. Computer-Aided Design/Computer-Aided Manufacturing Polymethyl Methacrylate Denture Base Materials: An In-Vitro Study. Cureus 2023, 15, e47929. [Google Scholar] [CrossRef] [PubMed]
- Valenti, C.; Federici, M.I.; Coniglio, M.; Betti, P.; Pancrazi, G.P.; Tulli, O.; Masciotti, F.; Nanussi, A.; Pagano, S. Mechanical and biological properties of polymer materials for oral appliances produced with additive 3D printing and subtractive CAD-CAM techniques compared to conventional methods: A systematic review and meta-analysis. Clin. Oral Investig. 2024, 28, 396. [Google Scholar] [CrossRef] [PubMed]
- Alghazzawi, T.F. Relation of Crown Failure Load to Flexural Strength for Three Contemporary Dental Polymers. Polymers 2023, 15, 4312. [Google Scholar] [CrossRef]
- Ruschel, G.H.; Gomes, É.; Silva-Sousa, Y.T.; Pinelli, R.G.P.; Sousa-Neto, M.D.; Pereira, G.K.R.; Spazzin, A.O. Mechanical properties and superficial characterization of a milled CAD-CAM glass fiber post. J. Mech. Behav. Biomed. Mater. 2018, 82, 187–192. [Google Scholar] [CrossRef]
- ISO 4049:2019; Dentistry—Polymer-Based Restorative Materials. ISO: Geneva, Switzerland, 2019.
- Muhsin, S.A.; Mohammed, E.K.; Bander, K. Finite Element Analysis: Connector Designs and Pontic Stress Distribution of Fixed Partial Denture Implant-Supported Metal Framework. J. Long Term Eff. Med. Implants 2024, 34, 33–47. [Google Scholar] [CrossRef]
- Huang, L.S.; Huang, Y.C.; Yuan, C.; Ding, S.J.; Yan, M. Biomechanical evaluation of bridge span with three implant abutment designs and two connectors for tooth-implant supported prosthesis: A finite element analysis. J. Dent. Sci. 2023, 18, 248–263. [Google Scholar] [CrossRef]
- Luft, R.L.; da Rosa, L.S.; Machado, P.S.; Valandro, L.F.; Sarkis-Onofre, R.; Pereira, G.K.R.; Bacchi, A. Influence of connector cross-sectional geometry on the load-bearing capacity under fatigue of implant-supported zirconia fixed partial prosthesis. J. Prosthet. Dent. 2022, 128, e1331–e1335. [Google Scholar] [CrossRef] [PubMed]
- Alshiddi, I.F.; Habib, S.R.; Zafar, M.S.; Bajunaid, S.; Labban, N.; Alsarhan, M. Fracture Load of CAD/CAM Fabricated Cantilever Implant-Supported Zirconia Framework: An In Vitro Study. Molecules 2021, 26, 2259. [Google Scholar] [CrossRef] [PubMed]
- Pjetursson, B.E.; Fehmer, V.; Sailer, I. EAO Position Paper: Material Selection for Implant-Supported Restorations. Int. J. Prosthodont. 2022, 35, 7–16. [Google Scholar] [CrossRef] [PubMed]
Group | Load (N) | Displacement Mean ± SD (µm) | Ɛ1 Mean ± SD (µƐ) | Ɛ2 Mean ± SD (µƐ) | ƐVM Mean ± SD (µƐ) |
---|---|---|---|---|---|
G1-PEEK | 50 | 96.36 ± 34.72 | 693.55 ± 134.34 | −610.07 ± 92.27 | 858.64 ± 53.47 |
100 | 152.21 ± 9.26 | 1032.95 ± 73.67 | −941.95 ± 107.08 | 1392.81 ± 85.82 | |
150 | 220.87 ± 3.01 | 1330.36 ± 25.43 | −1297.15 ± 71.11 | 1830.72 ± 76.09 | |
200 | 257.69 ± 11.12 | 1580.74 ± 110.04 | −1535.52 ± 174.12 | 2165.73 ± 105.60 | |
G2-PEKK | 50 | 72.92 ± 5.95 | 616.11 ± 75.85 | −675.71 ± 294.50 | 850.21 ± 190.72 |
100 | 92.95 ± 11.98 | 814.88 ± 25.03 | −799.74 ± 295.65 | 1074.91 ± 206.82 | |
150 | 114.11 ± 11.06 | 964.35 ± 100.38 | −987.93 ± 334.20 | 1309.28 ± 254.87 | |
200 | 134.66 ± 16.91 | 1088.21 ± 159.53 | −1075.86 ± 274.86 | 1483.69 ± 260.75 | |
G3-PMMA | 50 | 40.95 ± 2.77 | 890.15 ± 134.74 | −874.92 ± 131.57 | 1133.10 ± 62.69 |
100 | 59.35 ± 16.39 | 1342.96 ± 328.18 | −1181.44 ± 178.25 | 1622.01 ± 61.56 | |
150 | 67.00 ± 8.59 | 1580.66 ± 302.56 | −1524.64 ± 151.81 | 1985.14 ± 215.66 | |
200 | 84.77 ± 11.07 | 1873.95 ± 501.22 | −1710.32 ± 117.94 | 2285.96 ± 215.17 | |
G4-FRC | 50 | 34.22 ± 33.50 | 843.38 ± 191.48 | −545.71 ± 84.29 | 830.09 ± 156.02 |
100 | 35.36 ± 22.09 | 908.83 ± 48.88 | −667.63 ± 64.21 | 949.54 ± 52.15 | |
150 | 58.66 ± 50.43 | 1117.07 ± 67.94 | −775.20 ± 41.03 | 1156.69 ± 66.47 | |
200 | 74.50 ± 51.02 | 1205.39 ± 20.24 | −896.15 ± 104.68 | 1267.83 ± 47.38 |
Material | Flexural Strength (MPa) | Elastic Modulus (GPa) | Observed Mechanical Behaviour in ISFP Frameworks |
---|---|---|---|
PEEK | 165 | 3–4 | High flexibility, increased displacement under load. |
PEKK | 200 | 5.1 | Slightly stiffer than PEEK but still displays flexibility. |
PMMA | 50–100 | 2–3 | High strain values, concerns over long-term performance. |
FRC | 540 | 6–15 | Minimal displacement, rigidity and low strain values |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Messias, A.; Neto, M.A.; Piedade, A.P.; Amaro, A.; Krauser, J.T.; Guerra, F. Comparison of Surface Strains of Polymeric Frameworks for Fixed Implant-Supported Prostheses: A Digital Image Correlation Study. Materials 2025, 18, 1700. https://doi.org/10.3390/ma18081700
Messias A, Neto MA, Piedade AP, Amaro A, Krauser JT, Guerra F. Comparison of Surface Strains of Polymeric Frameworks for Fixed Implant-Supported Prostheses: A Digital Image Correlation Study. Materials. 2025; 18(8):1700. https://doi.org/10.3390/ma18081700
Chicago/Turabian StyleMessias, Ana, Maria Augusta Neto, Ana Paula Piedade, Ana Amaro, Jack T. Krauser, and Fernando Guerra. 2025. "Comparison of Surface Strains of Polymeric Frameworks for Fixed Implant-Supported Prostheses: A Digital Image Correlation Study" Materials 18, no. 8: 1700. https://doi.org/10.3390/ma18081700
APA StyleMessias, A., Neto, M. A., Piedade, A. P., Amaro, A., Krauser, J. T., & Guerra, F. (2025). Comparison of Surface Strains of Polymeric Frameworks for Fixed Implant-Supported Prostheses: A Digital Image Correlation Study. Materials, 18(8), 1700. https://doi.org/10.3390/ma18081700