Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,539)

Search Parameters:
Keywords = impedance spectroscopy method

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1269 KB  
Article
A New, Quick Method for Testing Organic Soils Based on the Electrical Impedance Spectrum of the Measuring Coil
by Barbara Solecka, Andrzej Nowrot, Katarzyna Nowińska, Jarosław Sikorski and Adam Michczyński
Materials 2026, 19(2), 381; https://doi.org/10.3390/ma19020381 - 17 Jan 2026
Viewed by 50
Abstract
This paper presents a new, quick method for testing the content of magnetic forms of iron in organic soils. These forms are an important marker of changes occurring in the environment. This method is based on impedance spectroscopy of a measuring coil inside [...] Read more.
This paper presents a new, quick method for testing the content of magnetic forms of iron in organic soils. These forms are an important marker of changes occurring in the environment. This method is based on impedance spectroscopy of a measuring coil inside which the tested material is placed—the material serves as the core of the coil. Unlike EIS (electrochemical impedance spectroscopy), the new method does not use electrodes, is sensitive to magnetic forms of iron, and is non-contact (the measuring current does not flow through the tested material). The results of research on three materials, including brown peat and silt with plant detritus, are presented in this paper. The results showed that changes in the standardized components of the measuring coil impedance in the frequency range of 100–135 kHz enable the determination of the content of ferromagnetic iron oxide (Fe3O4). The proposed method is very sensitive to soil oxide content in the range of 0% to 8%. Additionally, elemental composition analysis was performed using ICP-AES (inductively coupled plasma–atomic emission spectroscopy), which allowed for comparison of iron and other metal content with impedance measurement results. The final results confirm the usefulness of impedance spectroscopy as a non-destructive method for studying sedimentary environments and assessing their mineral properties. Full article
Show Figures

Graphical abstract

20 pages, 3081 KB  
Article
Fractional-Order Bioimpedance Modelling for Early Detection of Tissue Freezing in Cryogenic and Thermal Medical Applications
by Noelia Vaquero-Gallardo, Herminio Martínez-García and Oliver Millán-Blasco
Sensors 2026, 26(2), 603; https://doi.org/10.3390/s26020603 - 15 Jan 2026
Viewed by 210
Abstract
Cryotherapy and radiofrequency (RF) treatments modulate tissue temperature to induce therapeutic effects; however, improper application can result in thermal injury. Traditional temperature-based monitoring methods rely on multiple thermal sensors whose accuracy strongly depends on their number and spatial positioning, often failing to detect [...] Read more.
Cryotherapy and radiofrequency (RF) treatments modulate tissue temperature to induce therapeutic effects; however, improper application can result in thermal injury. Traditional temperature-based monitoring methods rely on multiple thermal sensors whose accuracy strongly depends on their number and spatial positioning, often failing to detect early tissue crystallization. This study introduces a fractional order bioimpedance modelling framework for the early detection of tissue freezing during cryogenic and thermal medical treatments, with the feasibility and effectiveness of this approach having been reported in our prior publications. While bioimpedance spectroscopy itself is a well-est. The corresponablished technique in biomedical engineering, its novel application to predict and identify premature freezing events provides a new pathway for safe and efficient energy-based therapies. Fractional-order models derived from the Cole family accurately reproduce the complex electrical behavior of biological tissues using fewer parameters than classical integer-order models, thus reducing both hardware requirements and computational cost. Experimental impedance data from human abdominal, gluteal, and femoral regions were modelled to extract fractional parameters that serve as sensitive indicators of phase-transition onset. The results demonstrate that the proposed approach enables real-time identification of freezing-induced electrical transitions, offering a physiologically grounded alternative to conventional temperature-based monitoring. Furthermore, the fractional order bioimpedance method exhibits high reproducibility and selectivity, and its analytical figures of merit, including the limits of detection and quantification, support its use for reliable real-time tissue monitoring and early injury detection. Overall, the proposed fractional order bioimpedance framework enhances both safety and control precision in cryogenic and thermal medical applications. Full article
(This article belongs to the Special Issue Feature Papers in Biosensors Section 2025)
Show Figures

Figure 1

21 pages, 8110 KB  
Article
Study on the Performance of Bi2O3/BiOBrγIx Adsorptive Photocatalyst for Removal of 2,4-Dichlorophenoxyacetic Acid
by Rixiong Mo, Yuanzhen Li, Bo Liu, Yi Yang, Yaoyao Zhou, Yuxi Cheng, Haorong Shi and Guanlong Yu
Separations 2026, 13(1), 30; https://doi.org/10.3390/separations13010030 - 14 Jan 2026
Viewed by 61
Abstract
In this study, a novel Bi2O3/BiOBr0.9I0.1 (BO0.9−BBI0.1) composite photocatalyst was successfully synthesized via a single-pot solvothermal method for the efficient degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under visible light. The structure, morphology, and optical properties of the [...] Read more.
In this study, a novel Bi2O3/BiOBr0.9I0.1 (BO0.9−BBI0.1) composite photocatalyst was successfully synthesized via a single-pot solvothermal method for the efficient degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under visible light. The structure, morphology, and optical properties of the photocatalyst were characterized through X-ray diffraction (XRD), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectra (DRS), Steady-state photoluminescence (PL), and Electrochemical Impedance Spectroscopy (EIS). The composite exhibits a 3D hierarchical morphology with increased specific surface area and optimized pore structure, enhancing pollutant adsorption and providing more active sites. Under visible light irradiation, BO0.9−BBI0.1 achieved a 92.4% removal rate of 2,4-D within 2 h, with a reaction rate constant 5.3 and 4.6 times higher than that of pure BiOBr and BiOI, respectively. Mechanism studies confirm that photogenerated holes (h+) and superoxide radicals (·O2) are the primary active species, and the Z-scheme charge transfer pathway significantly promotes the separation of electron-hole pairs while maintaining strong redox capacity. The catalyst also demonstrated good stability over multiple cycles. This work provides a feasible dual-modification strategy for designing efficient bismuth-based photocatalysts for pesticide wastewater treatment. Full article
Show Figures

Figure 1

16 pages, 4202 KB  
Article
Metol Electrochemical Sensing over LASIS Gold Nanoparticle-Modified Screen-Printed Carbon Electrodes in Adsorption Studies with Waste Biomass-Derived Highly Porous Carbon Material
by Marina Radenković, Ana Lazić, Marija Kovačević, Miloš Ognjanović, Dalibor Stanković, Dubravka Relić, Ana Kalijadis, Aleksandra Dimitrijević and Sanja Živković
Sustain. Chem. 2026, 7(1), 5; https://doi.org/10.3390/suschem7010005 - 13 Jan 2026
Viewed by 220
Abstract
This work used activated carbon material obtained by chemical activation of abundantly available agricultural sunflower waste residues to remove metol (4-(methylamino) phenol sulfate, MTL) from aqueous solutions. The adsorbent structure was characterized using SEM-EDS and FT-IR spectroscopy. A modified screen-printed carbon electrode (SPCE) [...] Read more.
This work used activated carbon material obtained by chemical activation of abundantly available agricultural sunflower waste residues to remove metol (4-(methylamino) phenol sulfate, MTL) from aqueous solutions. The adsorbent structure was characterized using SEM-EDS and FT-IR spectroscopy. A modified screen-printed carbon electrode (SPCE) with gold nanoparticles synthesized using the Laser Ablation Synthesis in Solution (LASIS) method was used to detect MTL. The successful LASIS formation of gold nanoparticles was confirmed by the specific dark burgundy–red color. TEM measurements showed uniform pseudo-spherical particles with an average diameter of 7.9 ± 0.2 nm. The modified electrode showed improved electrochemical activity, which was confirmed by comparing it with an unmodified electrode using cyclic voltammetry and electrochemical impedance spectroscopy. The modified electrode was subsequently used to optimize the MTL detection conditions. UV–Vis spectroscopy was used to optimize the adsorption conditions, with the optimal values for pH and contact time found to be 8 and 120 min, respectively. The electrochemical detection of MTL was performed using differential pulse voltammetry, and the linear calibration range was established for concentrations ranging from 0.73–49.35 µM. The obtained limits of detection (LOD) and quantification (LOQ) were 0.06 µM and 0.2 µM, respectively. The efficiency of MTL removal was 100% after a contact time of 1 min and remained at 100% after 120 min. Full article
Show Figures

Figure 1

15 pages, 6356 KB  
Article
Hexagonal Microsphere/Cubic Particle ZnIn2S4 Heterojunctions: A Robust Photocatalyst for Visible-Light-Driven Conversion of 5-Hydroxymethylfurfural to 2,5-Diformylfuran Under Ambient Air Conditions
by Lin-Yu Jiao, Ze-Long Sun, Wen-Yu Luo, Fei Wen, Jun-Bo Ye, Kang-Lai Chen, Long Xu, Bin Tian and Shan-Shan Liu
Catalysts 2026, 16(1), 69; https://doi.org/10.3390/catal16010069 - 7 Jan 2026
Viewed by 251
Abstract
In recent years, biomass utilization has attracted extensive attention. Herein, hexagonal/cubic ZnIn2S4 (ZIS) heterojunction catalysts were synthesized via a solvothermal method for the selective oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF). The results demonstrated that the constructed heterojunctions effectively promoted [...] Read more.
In recent years, biomass utilization has attracted extensive attention. Herein, hexagonal/cubic ZnIn2S4 (ZIS) heterojunction catalysts were synthesized via a solvothermal method for the selective oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF). The results demonstrated that the constructed heterojunctions effectively promoted carrier separation. The optimal catalyst achieved an HMF conversion rate of 88.8% and a DFF yield of 86.6% within 1 h in the open air. X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) characterizations confirmed the successful fabrication of the composite phase structure and revealed a porous spherical morphology. Equivalent circuit fitting of electrochemical impedance spectroscopy (EIS) data indicated that the hexagonal/cubic heterojunctions possessed the lowest charge transfer resistance (Rct = 5825 Ω), which effectively reduced interfacial charge transfer resistance and accelerated the transport of photoinduced carriers. Radical quenching experiments and electron paramagnetic resonance (EPR) spectroscopy identified superoxide radicals (·O2) as the primary reactive species. Meanwhile, density functional theory (DFT) calculations elucidated the formation of the built-in electric field and the charge transfer mechanism. This work’s construction of Type-II ZIS heterojunctions effectively addressed the issue of rapid carrier recombination in pristine ZIS materials, providing a feasible strategy for biomass valorization. Full article
Show Figures

Figure 1

24 pages, 4055 KB  
Article
Cadmium Removal from Synthetic Waste-Water Using TiO2-Modified Polymeric Membrane Through Electrochemical Separation System
by Simona Căprărescu, Roxana Gabriela Zgârian, Grațiela Teodora Tihan, Alexandru Mihai Grumezescu, Eugenia Eftimie Totu, Daniel Costinel Petre and Cristina Modrogan
Polymers 2026, 18(2), 150; https://doi.org/10.3390/polym18020150 - 6 Jan 2026
Viewed by 236
Abstract
In this paper, a new polymeric membrane including polymers (cellulose acetate, polyethylene glycol 400), copolymer poly(4-vinylpyridine)-block-polystyrene, and TiO2 nanoparticles were synthesized by the phase inversion method. In order to investigate the presence and the influence of the TiO2 nanoparticles on the [...] Read more.
In this paper, a new polymeric membrane including polymers (cellulose acetate, polyethylene glycol 400), copolymer poly(4-vinylpyridine)-block-polystyrene, and TiO2 nanoparticles were synthesized by the phase inversion method. In order to investigate the presence and the influence of the TiO2 nanoparticles on the membrane matrix, a polymeric membrane without TiO2 nanoparticles was prepared by the same preparation method. The structure of the polymeric membranes was characterized by several techniques, such as Fourier transform infrared spectroscopy and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, thermogravimetric analysis, and impedance spectroscopy. Also, the water contact angle, water retention, and porosity were determined. The results showed that the TiO2 nanoparticles were incorporated into the pores and onto the surface of the polymeric membrane, which resulted in a more uniform structure. In addition, these polymeric membranes were tested for the removal of cadmium ions from synthetic waste-water using a laboratory-scale electrochemical separation system with a custom-built setup. The results showed that the polymeric membrane with TiO2 nanoparticles showed a high cadmium ions removal rate (95.53%), compared to the polymeric membrane without TiO2 nanoparticles (85.29%), after a 1.5 h electrochemical separation test. The final results indicated that the polymeric membranes prepared with TiO2 nanoparticles had excellent thermal stability and exhibited the best ionic conductivity. The electrochemical separation system proved that the obtained polymeric membranes effectively remove cadmium from the synthetic waste-water. Full article
(This article belongs to the Special Issue Innovative Polymers and Technology for Membrane Fabrication)
Show Figures

Figure 1

30 pages, 4841 KB  
Review
Recent Progress in Advanced Electrode Materials for the Detection of 4-Nitrophenol and Its Derivatives for Environmental Monitoring
by Shanmugam Vignesh, Chellakannu Rajkumar, Rohit Kumar Singh Gautam, Sanjeevamuthu Suganthi, Khursheed Ahmad and Tae Hwan Oh
Sensors 2026, 26(1), 306; https://doi.org/10.3390/s26010306 - 3 Jan 2026
Viewed by 435
Abstract
It is understood that 4-nitrophenol (4-NP) and its derivatives/isomers, such as m-NP and o-NP, are considered toxic nitroaromatic pollutants that pose health risks for human beings and have negative impacts on the environment. Therefore, monitoring of 4-NP is of particular importance to avoid [...] Read more.
It is understood that 4-nitrophenol (4-NP) and its derivatives/isomers, such as m-NP and o-NP, are considered toxic nitroaromatic pollutants that pose health risks for human beings and have negative impacts on the environment. Therefore, monitoring of 4-NP is of particular importance to avoid the negative impacts of these environmental pollutants on aquatic life and human health. Electrochemical sensors have emerged as the most promising next-generation technology for the detection of environmental pollutants. The electrochemical method has been extensively used for the detection of 4-NP, p-NP, etc., which has delivered an interesting electrochemical performance. This review provides an overview of the advances in electrode modifiers designed for the electrochemical detection of 4-NP and its isomers. This review includes the use of carbon-based materials, metal oxides, metal sulfides, metal-organic-frameworks (MOFs), conducting polymers, MXenes, covalent organic frameworks (COF), and composites for the development of 4-NP electrochemical sensors. Various electrochemical techniques, such as differential pulse voltammetry, square wave voltammetry, linear sweep voltammetry, cyclic voltammetry (CV), electrochemical impedance spectroscopy, and amperometry, are discussed for the detection of 4-NP and other isomers. Full article
(This article belongs to the Special Issue Electrochemical Sensing: Technologies, Applications and Challenges)
Show Figures

Figure 1

19 pages, 4993 KB  
Article
A Biopolymer System Based on Chitosan and an Anisotropic Network of Nickel Fibers in the Hydrogen Evolution Reaction
by Guliya R. Nizameeva, Elgina M. Lebedeva, Viktoria V. Vorobieva, Evgeniy A. Soloviev, Ruslan M. Sarimov and Irek R. Nizameev
Molecules 2026, 31(1), 150; https://doi.org/10.3390/molecules31010150 - 1 Jan 2026
Viewed by 175
Abstract
In this study, we developed a method for creating an active layer based on a composite material consisting of chitosan and an anisotropic network of nickel fibers (Chitosan/Ni + NiFs). Using this chitosan biopolymer matrix and anisotropic network, we achieved a [...] Read more.
In this study, we developed a method for creating an active layer based on a composite material consisting of chitosan and an anisotropic network of nickel fibers (Chitosan/Ni + NiFs). Using this chitosan biopolymer matrix and anisotropic network, we achieved a high specific surface area for the catalytic material, high lateral conductivity for the layer, and stable characteristics, ultimately leading to increased overall electrocatalytic activity in the hydrogen evolution reaction (HER). Through linear voltammetry and impedance spectroscopy, we identified the mechanism and kinetics of the HER in the developed system. The overpotential of the electrochemical reaction was 213 mV at a current density of 10 mA/cm2. Chromatographic analysis confirmed the effectiveness of the Chitosan/Ni + NiFs system in the HER. Our results show how the chitosan biopolymer matrix and oriented nickel fiber network influence charge transfer and electrode reactions, as reflected in the activation energies of hydrogen bonds on the electrocatalytic layers. These findings show that it is feasible to combine a biopolymer matrix and an anisotropic nickel fiber network to create effective electrocatalysts. This approach enables the development of environmentally friendly electrolytic hydrogen production technologies. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Graphical abstract

19 pages, 3156 KB  
Article
Effect of Mn Rate on Structural, Optical and Electrical Properties in LiCo1−xMnxO2 (x = 0.5; 0.7) Compounds
by Miftah Ali Bin Yazeed, Moufida Krimi, Abdulrahman Alsawi, Mohamed Houcine Dhaou, Abdelfattah Mahmoud and Abdallah Ben Rhaiem
Inorganics 2026, 14(1), 19; https://doi.org/10.3390/inorganics14010019 - 30 Dec 2025
Viewed by 303
Abstract
The compounds LiCo1−xMnxO2 (x = 0.5, 0.7) were synthesized via the solid-state method and exhibited crystallization in the cubic spinel structure (space group Fd-3m). UV–Vis spectroscopy reveals strong visible-light absorption and a reduction in the indirect optical band [...] Read more.
The compounds LiCo1−xMnxO2 (x = 0.5, 0.7) were synthesized via the solid-state method and exhibited crystallization in the cubic spinel structure (space group Fd-3m). UV–Vis spectroscopy reveals strong visible-light absorption and a reduction in the indirect optical band gap from 1.85 eV (x = 0.5) to 1.60 eV (x = 0.7) with increasing Mn content, which is consistent with semiconducting behavior. This narrowing arises from Mn3+/Mn4+ mixed valence, which introduces mid-gap states and enhances Co/Mn 3d–O 2p orbital hybridization within the spinel framework. In contrast, the Urbach energy increases from 0.55 eV to 0.65 eV, indicating greater structural and energetic disorder in the Mn-rich composition which is attributed to the Jahn–Teller distortions and valence heterogeneity associated with Mn3+. Impedance and dielectric modulus analyses confirm two distinct non-Debye relaxation processes related to grains and grain boundaries. AC conductivity is governed by the Correlated Barrier Hopping (CBH) model, with bipolaron hopping identified as the dominant conduction mechanism. The x = 0.7 sample displays significantly enhanced conductivity due to increased Mn3+/Mn4+ mixed valence, lattice expansion, efficient 3D electronic connectivity of the spinel lattice, and reduced interfacial resistance. These findings highlight the potential of these two spinels compounds as narrow-gap semiconductors for optoelectronic applications including visible-light photodetectors, photocatalysts, and solar absorber layers extending their utility beyond conventional battery cathodes. Full article
(This article belongs to the Special Issue Advanced Inorganic Semiconductor Materials, 4th Edition)
Show Figures

Figure 1

19 pages, 3085 KB  
Article
Bismuth-Based Ceramic Processed at Ultra-Low-Temperature for Dielectric Applications
by Susana Devesa, Sílvia Soreto Teixeira, Manuel Pedro Graça and Luís Cadillon Costa
Nanomaterials 2026, 16(1), 46; https://doi.org/10.3390/nano16010046 - 29 Dec 2025
Viewed by 300
Abstract
High-performance dielectric materials that can be processed at ultra-low temperatures are essential for next-generation LTCC technologies and compact RF–microwave components. In this work, a multicomponent Bi–Fe–Nb oxide system was synthesized using a modified citrate sol–gel method and thermally treated at only 400 °C [...] Read more.
High-performance dielectric materials that can be processed at ultra-low temperatures are essential for next-generation LTCC technologies and compact RF–microwave components. In this work, a multicomponent Bi–Fe–Nb oxide system was synthesized using a modified citrate sol–gel method and thermally treated at only 400 °C to investigate its structural evolution and dielectric behavior. XRD and Raman analysis revealed the coexistence of a well-crystallized BiOCl phase embedded within a partially amorphous Bi–Fe–Nb–O matrix. SEM and EDS mapping confirmed the presence of two distinct microstructural regions, reflecting differences in local composition and crystallization kinetics. Microwave measurements at 2.7 and 5.0 GHz showed low dielectric losses and a stable dielectric response. Impedance spectroscopy in the RF range revealed strong Maxwell–Wagner polarization at low frequencies and thermally activated relaxation evidenced by the temperature shift in the modulus and impedance peaks. Arrhenius analysis of the relaxation frequencies yielded similar activation energies from both modulus and impedance formalisms, indicating a single underlying relaxation mechanism. Equivalent-circuit fitting confirmed non-Debye behavior, with nearly temperature-independent capacitance and decreasing resistance consistent with thermally activated conduction. These results demonstrate that the Bi–Fe–Nb system exhibits promising dielectric stability and functional behavior even when processed at exceptionally low temperatures. Full article
(This article belongs to the Special Issue Advanced Ceramics and Polymer Nanocomposites for Energy Storage)
Show Figures

Figure 1

17 pages, 8451 KB  
Article
Atomic Layer Deposition of Oxide-Based Nanocoatings for Regulation of AZ31 Alloy Biocorrosion in Ringer’s Solution
by Denis Nazarov, Lada Kozlova, Vladislava Vartiajnen, Sergey Kirichenko, Maria Rytova, Anton P. Godun, Maxim Maximov, Arina Ilina, Stephanie E. Combs, Mark Pitkin and Maxim Shevtsov
Corros. Mater. Degrad. 2026, 7(1), 3; https://doi.org/10.3390/cmd7010003 - 26 Dec 2025
Viewed by 250
Abstract
Research into methods for regulating the biocorrosion rate of biodegradable magnesium implants is one of the most urgent tasks in the field of biomedical materials science. Atomic layer deposition (ALD) is a highly effective method for the preparation of nanocoatings, which can be [...] Read more.
Research into methods for regulating the biocorrosion rate of biodegradable magnesium implants is one of the most urgent tasks in the field of biomedical materials science. Atomic layer deposition (ALD) is a highly effective method for the preparation of nanocoatings, which can be used to regulate the biodegradation rate. The present paper presents the findings of a research study in which the most commonly used simple oxide ALD coatings (Al2O3, TiO2, and ZnO) were examined, in addition to mixed coatings obtained by alternating ALD cycles of the application of ZnO-TiO2 (ZTO) and Al2O3-TiO2 (ATO). The coating thicknesses exhibited a variation within the most typical range for ALD coatings, measuring between 20 and 80 nanometres. The biocorrosion testing was conducted in Ringer’s physiological solution through the measurement of potentiodynamic polarisation curves and impedance spectroscopy. The findings demonstrated that, for Al2O3 coatings, the protective properties exhibited an increase with increasing thickness, while for TiO2, the trend was found to be dependent on the type of precursor utilised. The protective properties of titanium tetraisopropoxide (TTIP) have been observed to increase with increasing thickness. Conversely, the protective properties of titanium tetrachloride (TiCl4) have been observed to decrease. The application of mixed ZTO oxides with a thickness of 40 nm has been demonstrated to reduce the corrosion current by 1.7 and 3.4 times, depending on the use of TiCl4 or TTIP. Furthermore, the effectiveness of ATO coatings of similar thicknesses has been shown to be higher, with a reduction in corrosion currents of 54 and 24 times for samples obtained using TiCl4 and TTIP, respectively. A thorough analysis of the collected data unequivocally demonstrates the superior efficacy of mixed oxides in comparison to their pure oxide counterparts. Full article
(This article belongs to the Special Issue Advances in Material Surface Corrosion and Protection)
Show Figures

Figure 1

24 pages, 19021 KB  
Article
Methodology for Impedance Spectroscopy of Photovoltaic Modules Using a Power Converter
by Diego Alejandro Herrera-Jaramillo, Juan David Bastidas-Rodríguez, Carlos Andrés Ramos-Paja, Carlos Pavon-Vargas, Luis E. Garcia-Marrero and Sergio Ignacio Serna-Garcés
Sensors 2026, 26(1), 161; https://doi.org/10.3390/s26010161 - 25 Dec 2025
Viewed by 418
Abstract
Impedance Spectroscopy (IS) is widely used to analyze the dynamic behavior and degradation of electrochemical systems such as batteries. IS has also been successfully applied to study the performance and degradation mechanisms of photovoltaic (PV) devices. Traditionally, IS is performed with Frequency Response [...] Read more.
Impedance Spectroscopy (IS) is widely used to analyze the dynamic behavior and degradation of electrochemical systems such as batteries. IS has also been successfully applied to study the performance and degradation mechanisms of photovoltaic (PV) devices. Traditionally, IS is performed with Frequency Response Analyzers (FRA), which apply small-signal perturbations and measure the impedance response of the system. However, those instruments are costly and not suitable for in situ diagnostics. This work proposes a methodology to perform IS measurements on PV systems using a power converter, thereby eliminating the need for external specialized equipment. The proposed approach includes a theoretical analysis of the converter dynamics to derive an expression for the duty cycle amplitude, which is required to maintain a constant perturbation magnitude across a range of frequencies. The methodology is experimentally validated using a synchronous Boost converter connected to a PV panel and controlled by a Texas Instruments F28379D digital signal processor (DSP), which injects the perturbation signal in the converter’s duty cycle. Moreover, the voltage and current measurements are performed with an oscilloscope. The results demonstrate that the proposed converter-based IS method accurately reproduces the impedance spectra obtained with a commercial FRA, confirming its feasibility as a low-cost, flexible, and scalable solution for PV impedance characterization and diagnostics. Full article
(This article belongs to the Special Issue Sensing and Estimation Techniques in Electrical Systems)
Show Figures

Figure 1

15 pages, 1468 KB  
Article
AI-Assisted Impedance Biosensing of Yeast Cell Concentration
by Amir A. AlMarzooqi, Mahmoud Al Ahmad, Jisha Chalissery and Ahmed H. Hassan
Biosensors 2026, 16(1), 18; https://doi.org/10.3390/bios16010018 - 25 Dec 2025
Viewed by 378
Abstract
Quantifying microbial growth with high temporal resolution remains essential yet challenging due to limitations of optical, manual, and biochemical methods. Here, we introduce an AI-enhanced electrochemical impedance spectroscopy platform for real-time, label-free monitoring of Saccharomyces cerevisiae growth. Broadband impedance measurements (1 Hz–100 kHz) [...] Read more.
Quantifying microbial growth with high temporal resolution remains essential yet challenging due to limitations of optical, manual, and biochemical methods. Here, we introduce an AI-enhanced electrochemical impedance spectroscopy platform for real-time, label-free monitoring of Saccharomyces cerevisiae growth. Broadband impedance measurements (1 Hz–100 kHz) were collected from yeast cultures across log-phase development. Engineered features—derived from impedance magnitude and phase—captured dielectric and conductive shifts associated with cell proliferation, membrane polarization, and ionic redistribution. A Gaussian Process Regression model trained on these features predicted optical density (OD600) with high precision (RMSE = 0.79 min; R2 = 0.9996; r = 0.9998), and achieved 100% classification accuracy when discretized into 15-min growth intervals. The system operated with sub-millisecond latency and minimal memory footprint, enabling embedded deployment. Benchmarking against conventional methods revealed superior throughput, automation potential, and independence from labeling or turbidity-based optics. This AI-driven platform forms the core of a real-time digital twin for yeast culture monitoring, capable of predictive tracking and adaptive control. By fusing electrochemical biosensing with machine learning, our method offers a scalable and robust solution for intelligent fermentation and bioprocess optimization. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Graphical abstract

24 pages, 3207 KB  
Article
Research on Two-Stage Parameter Identification for Various Lithium-Ion Battery Models Using Bio-Inspired Optimization Algorithms
by Shun-Chung Wang and Yi-Hua Liu
Appl. Sci. 2026, 16(1), 202; https://doi.org/10.3390/app16010202 - 24 Dec 2025
Viewed by 265
Abstract
Lithium-ion batteries (LIBs) are vital components in electric vehicles (EVs) and battery energy storage systems (BESS). Accurate estimation of the state of charge (SOC) and state of health (SOH) depends heavily on precise battery modeling. This paper examines six commonly used equivalent circuit [...] Read more.
Lithium-ion batteries (LIBs) are vital components in electric vehicles (EVs) and battery energy storage systems (BESS). Accurate estimation of the state of charge (SOC) and state of health (SOH) depends heavily on precise battery modeling. This paper examines six commonly used equivalent circuit models (ECMs) by deriving their impedance transfer functions and comparing them with measured electrochemical impedance spectroscopy (EIS) data. The particle swarm optimization (PSO) algorithm is first utilized to identify the ECM with the best EIS fit. Then, thirteen bio-inspired optimization algorithms (BIOAs) are employed for parameter identification and comparison. Results show that the fractional-order R(RQ)(RQ) model with a mean absolute percentage error (MAPE) of 10.797% achieves the lowest total model fitting error and possesses the highest matching accuracy. In model parameter identification using BIOAs, the marine predators algorithm (MPA) reaches the lowest estimated MAPE of 10.694%, surpassing other algorithms in this study. The Friedman ranking test further confirms MPA as the most effective method. When combined with an Internet-of-Things-based online battery monitoring system, the proposed approach provides a low-cost, high-precision platform for rapid modeling and parameter identification, supporting advanced SOC and SOH estimation technologies. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

15 pages, 3009 KB  
Article
Application of PVA Membrane Doped with TiO2 and ZrO2 for Higher Efficiency of Alkaline Electrolysis Process
by Maslovara Sladjana, Katarina Dimic Misic, Dubravka Milovanovic, Danilo Lj Vujosevic, Andrijana Minic, Vladimir Nikolic and Milica Marceta Kaninski
Nanomaterials 2026, 16(1), 27; https://doi.org/10.3390/nano16010027 - 24 Dec 2025
Viewed by 296
Abstract
Alkaline water electrolysis is a widely researched method for hydrogen generation due to its low cost, scalability and its advantage of being able to produce hydrogen using only renewable energy. Enhancing the efficiency of electrolysis systems relies mainly on the development of high-performance [...] Read more.
Alkaline water electrolysis is a widely researched method for hydrogen generation due to its low cost, scalability and its advantage of being able to produce hydrogen using only renewable energy. Enhancing the efficiency of electrolysis systems relies mainly on the development of high-performance ion-conductive membranes. The incorporation of ceramic fillers into polyvinyl alcohol (PVA) membranes as a composite material has shown considerable promise in enhancing the performance of electrolyzers. In this work, novel composite separator membranes for use in alkaline electrolyzers were developed from aqueous PVA solutions and physically crosslinked through a freeze–thawing process. To enhance the membrane properties, two types of ceramic fillers—titanium dioxide (TiO2) and zirconium dioxide (ZrO2)—were incorporated into the starting crosslinking solution. The thermal stability of these membranes was studied by a Differential Scanning Calorimetry (DSC) technique where we can conclude that addition of TiO2 and ZrO2 significantly influences the thermal properties of PVA membranes. These metal oxides enhance thermal stability, as shown by the shift in exothermic peaks toward higher temperatures and alterations in the degradation mechanism, evidenced by changes in the intensity and number of DSC peaks. The effect is concentration-dependent for TiO2, where higher contents produce more pronounced yet increasingly complex thermal behavior. Compared with commercial membrane (Zirfon Perl), these types of membranes exhibit better electrochemical performance at ambient temperature and pressure; however, the process of preparation is simpler, reducing the cost of the hydrogen production process. The polarization curves (U-I curves) indicated a decrease in voltage with the addition of an ionic activator based on cobalt and molybdenum. Conductivity measurements performed using electrochemical impedance spectroscopy utilizing a two-probe method revealed that PVA membranes with TiO2 exhibit ionic conductivity comparable to that of the commercial membrane. Compared to the commercial membrane, these types of membranes demonstrated similar mechanical properties and improved electrochemical performance at ambient temperature and pressure, along with a simplified production process and lower cost of hydrogen production. Full article
(This article belongs to the Topic Advanced Materials in Chemical Engineering)
Show Figures

Figure 1

Back to TopTop