Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,375)

Search Parameters:
Keywords = immunostaining

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6895 KiB  
Article
Generation of Individualized, Standardized, and Electrically Synchronized Human Midbrain Organoids
by Sanae El Harane, Bahareh Nazari, Nadia El Harane, Manon Locatelli, Bochra Zidi, Stéphane Durual, Abderrahim Karmime, Florence Ravier, Adrien Roux, Luc Stoppini, Olivier Preynat-Seauve and Karl-Heinz Krause
Cells 2025, 14(15), 1211; https://doi.org/10.3390/cells14151211 - 6 Aug 2025
Abstract
Organoids allow to model healthy and diseased human tissues. and have applications in developmental biology, drug discovery, and cell therapy. Traditionally cultured in immersion/suspension, organoids face issues like lack of standardization, fusion, hypoxia-induced necrosis, continuous agitation, and high media volume requirements. To address [...] Read more.
Organoids allow to model healthy and diseased human tissues. and have applications in developmental biology, drug discovery, and cell therapy. Traditionally cultured in immersion/suspension, organoids face issues like lack of standardization, fusion, hypoxia-induced necrosis, continuous agitation, and high media volume requirements. To address these issues, we developed an air–liquid interface (ALi) technology for culturing organoids, termed AirLiwell. It uses non-adhesive microwells for generating and maintaining individualized organoids on an air–liquid interface. This method ensures high standardization, prevents organoid fusion, eliminates the need for agitation, simplifies media changes, reduces media volume, and is compatible with Good Manufacturing Practices. We compared the ALi method to standard immersion culture for midbrain organoids, detailing the process from human pluripotent stem cell (hPSC) culture to organoid maturation and analysis. Air–liquid interface organoids (3D-ALi) showed optimized size and shape standardization. RNA sequencing and immunostaining confirmed neural/dopaminergic specification. Single-cell RNA sequencing revealed that immersion organoids (3D-i) contained 16% fibroblast-like, 23% myeloid-like, and 61% neural cells (49% neurons), whereas 3D-ALi organoids comprised 99% neural cells (86% neurons). Functionally, 3D-ALi organoids showed a striking electrophysiological synchronization, unlike the heterogeneous activity of 3D-i organoids. This standardized organoid platform improves reproducibility and scalability, demonstrated here with midbrain organoids. The use of midbrain organoids is particularly relevant for neuroscience and neurodegenerative diseases, such as Parkinson’s disease, due to their high incidence, opening new perspectives in disease modeling and cell therapy. In addition to hPSC-derived organoids, the method’s versatility extends to cancer organoids and 3D cultures from primary human cells. Full article
(This article belongs to the Special Issue The Current Applications and Potential of Stem Cell-Derived Organoids)
Show Figures

Figure 1

14 pages, 1400 KiB  
Article
Potential Roles of Extracellular Vesicles in Murine Tear Fluids in the Physiology of Corneal Epithelial Cells In Vitro
by Saya Oya, Kazunari Higa, Tomohiro Yasutake, Risa Yamazaki-Hokama and Masatoshi Hirayama
Int. J. Mol. Sci. 2025, 26(15), 7559; https://doi.org/10.3390/ijms26157559 - 5 Aug 2025
Viewed by 2
Abstract
Biological extracellular vesicles in tear fluids, such as exosomes, are thought to have physiological functions in the management of healthy ocular surface epithelium, including corneal epithelium. However, the physiological roles of tear extracellular vesicles in the ocular surface remain unclear. In this study, [...] Read more.
Biological extracellular vesicles in tear fluids, such as exosomes, are thought to have physiological functions in the management of healthy ocular surface epithelium, including corneal epithelium. However, the physiological roles of tear extracellular vesicles in the ocular surface remain unclear. In this study, we investigated the physiological function of tear extracellular vesicles in mouse tear fluids in the ocular surface epithelium in vitro. Morphological analysis of the isolated extracellular vesicles from mouse tear fluids was performed using nanoparticle tracking analysis and transmission electron microscopy. The identified particles were characterised by immunoblotting for exosomal markers. After confirming the uptake of tear exosomes in cultured corneal epithelial cells, gene expression changes in mouse cultured corneal epithelial cells after tear exosome treatment were analysed. Immunostaining analysis was performed to confirm cell proliferation in the cultured corneal epithelial cells with tear exosome treatment. Tear fluids from mice contain nanoparticles with exosome-like morphologies, which express the representative exosomal markers CD9 and TSG101. The extracellular vesicles can be taken up by cultivated murine corneal epithelial cells in vitro and induce expression changes in genes related to the cell cycle, cell membranes, microtubules, and signal peptides. Treatment with the tear extracellular vesicles promoted cell proliferation of cultured murine corneal epithelial cells. Our study provides evidence that murine tear fluids contain extracellular vehicles like exosomes and they may contribute to the maintenance of the physiological homeostatic environment of the ocular surface. Full article
(This article belongs to the Special Issue Molecular Advances in Dry Eye Syndrome)
Show Figures

Figure 1

18 pages, 914 KiB  
Article
Microvascular, Biochemical, and Clinical Impact of Hyperbaric Oxygen Therapy in Recalcitrant Diabetic Foot Ulcers
by Daniela Martins-Mendes, Raquel Costa, Ilda Rodrigues, Óscar Camacho, Pedro Barata Coelho, Vítor Paixão-Dias, Carla Luís, Ana Cláudia Pereira, Rúben Fernandes, Jorge Lima and Raquel Soares
Cells 2025, 14(15), 1196; https://doi.org/10.3390/cells14151196 - 4 Aug 2025
Viewed by 181
Abstract
Background: Diabetic foot ulcers (DFUs) are a serious complication of diabetes and are often difficult to treat. Hyperbaric oxygen therapy (HBOT) has been proposed as an adjunctive treatment to promote healing, but its long-term clinical and biological effects remain insufficiently characterized. This study [...] Read more.
Background: Diabetic foot ulcers (DFUs) are a serious complication of diabetes and are often difficult to treat. Hyperbaric oxygen therapy (HBOT) has been proposed as an adjunctive treatment to promote healing, but its long-term clinical and biological effects remain insufficiently characterized. This study aimed to evaluate the impact of HBOT on systemic biomarkers, local microvasculature, and clinical outcomes in patients with DFUs. Methods: In this non-randomized prospective study, 20 patients with ischemic DFUs were followed over a 36-month period. Fourteen received HBOT in addition to standard care, while six received standard care alone. Clinical outcomes—including DFU resolution, recurrence, lower extremity amputation (LEA), and mortality—were assessed alongside systemic inflammatory and angiogenic biomarkers and wound characteristics at baseline and at 3, 6, 12, and 36 months. CD31 immunostaining was performed on available tissue samples. Results: The two groups were comparable at baseline (mean age 62 ± 12 years; diabetes duration 18 ± 9 years). At 3 months, the HBOT group showed significant reductions in erythrocyte sedimentation rate and DFU size (p < 0.05), with downward trends observed in C-reactive protein (CRP), vascular endothelial growth factor (VEGF), and placental growth factor (PlGF), and an increase in stromal-derived factor-1 alpha (SDF1-α). No significant changes were observed in the control group. CD31+ microvessel density appeared to increase in HBOT-treated DFU tissue after one month, although the sample size was limited. Patients receiving HBOT had lower rates of LEA and mortality, improved wound healing, and sustained outcomes over three years. DFU recurrence rates were similar between groups. Conclusions: HBOT was associated with improved wound healing and favorable biomarker profiles in patients with treatment-resistant ischemic DFUs. While these findings are encouraging, the small sample size and non-randomized design limit their generalizability, highlighting the need for larger, controlled studies. Full article
Show Figures

Figure 1

19 pages, 2606 KiB  
Article
Influence of Monosodium Glutamate on Astroglia of Rat Habenula
by Aleksandra Krawczyk, Karol Rycerz, Jadwiga Jaworska-Adamu and Marcin B. Arciszewski
Biomolecules 2025, 15(8), 1111; https://doi.org/10.3390/biom15081111 - 1 Aug 2025
Viewed by 143
Abstract
The habenula (Hb) of the epithalamus is formed of the medial (MHb) and lateral (LHb) parts. The improper functioning of the Hb may lead to depression and anxiety. The glutamate excitotoxicity is accompanied by astroglia reactivity and leads to the damage of nervous [...] Read more.
The habenula (Hb) of the epithalamus is formed of the medial (MHb) and lateral (LHb) parts. The improper functioning of the Hb may lead to depression and anxiety. The glutamate excitotoxicity is accompanied by astroglia reactivity and leads to the damage of nervous system structures. The aim of the study was to assess the influence of monosodium glutamate (MSG) administrated subcutaneously to rats in doses of 2 g/kg b.w. (I) and 4 g/kg b.w. (II), on astroglia in the MHb and LHb. Based on immunohistochemical reactions, the morphology, number of astrocytes immunoreactive for glial fibrillary acidic protein (GFAP-IR) and S100β protein (S100β-IR), and their surface area, perimeter, number and length of processes, and cytoplasmic-nuclear immunostaining intensity for the studied proteins were assessed. In the MHb of animals receiving MSG, especially at a high dose, hypertrophy and an increase in the number of GFAP-IR and S100β-IR cells were demonstrated. In the LHb, only hypertrophy of processes in S100β-positive glia was observed. The immunostaining intensity increased in GFAP-IR glia and decreased in S100β-IR cells only in animals from group I. The results revealed that astroglia respond to MSG depending on its dose and the Hb part. This different behavior of glia may indicate their different sensitivity and resistance to damaging factors. Full article
Show Figures

Graphical abstract

19 pages, 6032 KiB  
Article
Recombinant Human Annexin A5 Ameliorates Localized Scleroderma by Inhibiting the Activation of Fibroblasts and Macrophages
by Bijun Kang, Zhuoxuan Jia, Wei Li and Wenjie Zhang
Pharmaceutics 2025, 17(8), 986; https://doi.org/10.3390/pharmaceutics17080986 (registering DOI) - 30 Jul 2025
Viewed by 210
Abstract
Background: Localized scleroderma (LoS) is a chronic autoimmune condition marked by cutaneous fibrosis and persistent inflammation. Modulating the activation of inflammatory cells and fibroblasts remains a central strategy in LoS treatment. We investigate the anti-fibrotic effects of Annexin A5 (AnxA5), identified as [...] Read more.
Background: Localized scleroderma (LoS) is a chronic autoimmune condition marked by cutaneous fibrosis and persistent inflammation. Modulating the activation of inflammatory cells and fibroblasts remains a central strategy in LoS treatment. We investigate the anti-fibrotic effects of Annexin A5 (AnxA5), identified as a key inflammatory component in fat extract, and assess its therapeutic efficacy. Methods: In vitro experiments were performed using TGF-β-stimulated primary human dermal fibroblasts treated with recombinant AnxA5. The anti-fibrotic effects and underlying mechanisms were assessed using CCK-8 assays, quantitative real-time PCR, Western blotting, and immunocytochemistry. In vivo, AnxA5 was administered via both preventative and therapeutic protocols in bleomycin-induced LoS mouse models. Treatment outcomes were evaluated by histological staining, collagen quantification, immunostaining, and measurement of pro-inflammatory cytokines. Results: TGF-β stimulation induced myofibroblast differentiation and extracellular matrix (ECM) production in dermal fibroblasts, both of which were significantly attenuated by AnxA5 treatment through the inhibition of phosphorylation of Smad2. In vivo, both preventative and therapeutic administration of AnxA5 effectively reduced dermal thickness, collagen deposition, ECM accumulation, M1 macrophage infiltration, and levels of pro-inflammatory cytokines. Conclusions: Through both preventative and therapeutic administration, AnxA5 ameliorates LoS by exerting dual anti-fibrotic and anti-inflammatory effects, underscoring its potential for treating fibrotic diseases. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

14 pages, 4042 KiB  
Article
Conditional Deletion of Translin/Trax in Dopaminergic Neurons Reveals No Impact on Psychostimulant Behaviors or Adiposity
by Yunlong Liu, Renkun Wu, Gaiyuan Geng, Helian Yang, Chunmiao Wang, Mengtian Ren and Xiuping Fu
Biomolecules 2025, 15(7), 1040; https://doi.org/10.3390/biom15071040 - 17 Jul 2025
Viewed by 333
Abstract
Despite the abundant expression of the microRNA-degrading Translin (TN)/Trax (TX) complex in midbrain dopaminergic (DA) neurons and its implication in neuropsychiatric disorders, its cell-autonomous roles in metabolic and behavioral responses remain unclear. To address this, we generated DA neuron-specific conditional knockout (cKO) mice [...] Read more.
Despite the abundant expression of the microRNA-degrading Translin (TN)/Trax (TX) complex in midbrain dopaminergic (DA) neurons and its implication in neuropsychiatric disorders, its cell-autonomous roles in metabolic and behavioral responses remain unclear. To address this, we generated DA neuron-specific conditional knockout (cKO) mice for Tsn (TN) or Tsnax (TX) using DAT-Cre. Immunostaining confirmed efficient TX loss in Tsnax cKO DA neurons without affecting TN, while Tsn deletion abolished TX expression, revealing asymmetric protein dependency. Body composition analysis showed no alterations in adiposity in either cKO model. Locomotor responses to acute or repeated administration of cocaine (20 mg/kg) or amphetamine (2.5 mg/kg) were unchanged in Tsn or Tsnax cKO mice. Furthermore, amphetamine-induced conditioned place preference (1 mg/kg) was unaffected. These results demonstrate that the TN/TX complex within DA neurons is dispensable for regulating adiposity, psychostimulant-induced locomotion (both acute and sensitized), or amphetamine reward-related behavior, suggesting its critical functions may lie outside these specific domains. Full article
(This article belongs to the Section Molecular Genetics)
Show Figures

Figure 1

12 pages, 1565 KiB  
Case Report
Severe Rectal Syphilis in the Setting of Profound HIV Immunosuppression: A Case Report Highlighting ERG/CD38 Immunophenotyping and a Review of the Literature
by Diana Marcela Carmona Valencia, Juan Diego López, Shirley Vanessa Correa Forero, Diana Marcela Bonilla Bonilla, Jorge Karim Assis and Yamil Liscano
Infect. Dis. Rep. 2025, 17(4), 85; https://doi.org/10.3390/idr17040085 - 16 Jul 2025
Viewed by 362
Abstract
Background and Aim: Syphilis, caused by Treponema pallidum, classically presents with genital or anal chancres; rectal involvement is rare and frequently misdiagnosed as inflammatory bowel disease or malignancy. We describe an unusually severe case of syphilitic proctitis in the setting of advanced [...] Read more.
Background and Aim: Syphilis, caused by Treponema pallidum, classically presents with genital or anal chancres; rectal involvement is rare and frequently misdiagnosed as inflammatory bowel disease or malignancy. We describe an unusually severe case of syphilitic proctitis in the setting of advanced HIV-related immunosuppression (CD4 39 cells/µL), in which targeted immunophenotyping (ERG and CD38) was a valuable adjunctive tool in the differential diagnosis. Case Presentation: A 46-year-old man with a recent history of erosive gastritis and esophageal candidiasis presented after six months of unintentional 20 kg weight loss, profound fatigue, intermittent fevers, profuse diarrhea, and two episodes of hematemesis. Workup revealed a new diagnosis of HIV infection (CD4: 39 cells/µL; viral load: 87,837 copies/mL). Contrast-enhanced CT demonstrated uniform, concentric rectal wall thickening (“target sign”). Colonoscopic biopsy showed exuberant granulation tissue and dense plasma cell infiltrates. Immunohistochemistry revealed a dense infiltrate of CD38-positive plasma cells and ERG-positive endothelial proliferation. These findings, in the context of positive serology, were highly supportive of a spirochetal etiology and helped differentiate it from potential mimics. Serology was positive for latent late syphilis (VDRL 1:64). The patient received three weekly doses of intramuscular benzathine penicillin; lumbar puncture excluded neurosyphilis. Discussion: This is among the first reported cases of syphilitic proctitis in a patient with CD4 < 50 cells/µL, where advanced immunophenotyping differentiated syphilitic inflammation from neoplastic or inflammatory mimics. Profound immunosuppression accelerates disease progression and yields atypical clinical features. Conclusion: In HIV-infected patients with chronic rectal symptoms, especially those with CD4 < 50 cells/µL, syphilitic proctitis must be considered. Integration of radiologic assessment, histopathology with ERG/CD38 staining, and serologic testing permits prompt diagnosis. Early benzathine penicillin therapy and rigorous clinical and serologic follow-up are essential to prevent complications, including neurosyphilis. Full article
(This article belongs to the Section Bacterial Diseases)
Show Figures

Figure 1

23 pages, 2728 KiB  
Article
Shear Stress-Dependent Modulation of Endothelin B Receptor: The Role of Endothelial Glycocalyx Heparan Sulfate
by Camden Holm, Son Nam Nguyen and Solomon A. Mensah
Cells 2025, 14(14), 1088; https://doi.org/10.3390/cells14141088 - 16 Jul 2025
Viewed by 380
Abstract
The endothelial glycocalyx (GCX) plays a crucial role in vascular health and integrity and influences many biochemical activities through mechanotransduction, in which heparan sulfate (HS) plays a major role. Endothelin-1 (ET-1) is a potent vasoregulator that binds to the endothelin B receptor (ETB) [...] Read more.
The endothelial glycocalyx (GCX) plays a crucial role in vascular health and integrity and influences many biochemical activities through mechanotransduction, in which heparan sulfate (HS) plays a major role. Endothelin-1 (ET-1) is a potent vasoregulator that binds to the endothelin B receptor (ETB) on endothelial cells (ECs), stimulating vasodilation, and to the endothelin A receptor on smooth muscle cells, stimulating vasoconstriction. While the shear stress (SS) dependence of ET-1 and HS is well documented, there is limited research documenting the SS dependence of the ETB. Understanding the SS dependence of the ETB is crucial for clarifying the role of hemodynamic forces in the endothelin system. We hypothesize that GCX HS regulates the expression of the ETB on the EC surface in an SS-dependent manner. Human lung microvascular ECs were exposed to SS in a parallel-plate flow chamber for 12 h. Damage to the GCX was simulated by treatment with 15 mU/mL heparinase-III during SS exposure. Immunostaining and qPCR were used to evaluate changes in ET-1, ETB, and HS expression. Results indicate that ETB expression is SS sensitive, with at least a 1.3-fold increase in ETB protein expression and a 0.6 to 0.4-fold-change decrease in ETB mRNA expression under SS. This discrepancy suggests post-translational regulation. In some cases, enzymatic degradation of HS attenuated the SS-induced increase in ETB protein, reducing the fold-change difference to 1.1 relative to static controls. This implies that ETB expression may be partially dependent on HS-mediated mechanotransduction, though inconclusively. Furthermore, ET-1 mRNA levels were elevated two-fold under SS without a corresponding rise in ET-1 protein expression or significant impact from HS degradation, implying that post-translational regulation of ET-1 occurs independently of HS. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Vascular-Related Diseases)
Show Figures

Figure 1

19 pages, 3360 KiB  
Article
PTEN Inactivation in Mouse Colonic Epithelial Cells Curtails DSS-Induced Colitis and Accelerates Recovery
by Larissa Kotelevets, Francine Walker, Godefroy Mamadou, Bruno Eto, Thérèse Lehy and Eric Chastre
Cancers 2025, 17(14), 2346; https://doi.org/10.3390/cancers17142346 - 15 Jul 2025
Viewed by 383
Abstract
Background: PTEN is a tumor suppressor that controls many pathophysiological pathways, including cell proliferation, differentiation, apoptosis and invasiveness. Although PTEN down-modulation is a critical event in neoplastic progression, it becomes apparent that transient and local inhibition of PTEN activity might be beneficial [...] Read more.
Background: PTEN is a tumor suppressor that controls many pathophysiological pathways, including cell proliferation, differentiation, apoptosis and invasiveness. Although PTEN down-modulation is a critical event in neoplastic progression, it becomes apparent that transient and local inhibition of PTEN activity might be beneficial for the healing process. Methods: In the present study, we investigated the impact of PTEN invalidation in mouse intestinal epithelium under a physiological condition and after dextran sulfate sodium (DSS) treatment to induce experimental colitis. PTEN conditional knockout was induced in intestinal epithelial cells after crossing villin-Cre and PTENflox/flox mice. Results: PTEN invalidation alleviates experimental colitis induced by DSS, as evidenced by decreased weight loss during the acute phase, the lower expression of inflammation markers, including the proinflammatory cytokines IFN-γ, CXCL1 and CXCL2, reduced mucosal lesions, and faster recovery after resolution of inflammation. This protective effect might result in part from the sustained proliferation of colonic epithelium, leading to hyperplasia and increased colonic crypt depth under physiological conditions, which was further exacerbated in the vicinity of mucosal injury induced by DSS treatment. Furthermore, PTEN knockout decreased paracellular permeability, thereby enhancing the intestinal barrier function. This process was associated with the reinforcement of claudin-3 immunostaining, especially on the surface epithelium of villin-Cre PTENflox/flox mice. Conclusions: PTEN inactivation exerts a protective effect on the onset of colitis, and the transient and local down-modulation of PTEN might constitute an approach to drive recovery following acute intestinal inflammation. Full article
(This article belongs to the Special Issue PTEN: Regulation, Signalling and Targeting in Cancer)
Show Figures

Figure 1

23 pages, 22555 KiB  
Article
Citrate Transporter Expression and Localization: The Slc13a5Flag Mouse Model
by Jan C.-C. Hu, Tian Liang, Hong Zhang, Yuanyuan Hu, Yasuo Yamakoshi, Ryuji Yamamoto, Chuhua Zhang, Hui Li, Charles E. Smith and James P. Simmer
Int. J. Mol. Sci. 2025, 26(14), 6707; https://doi.org/10.3390/ijms26146707 - 12 Jul 2025
Viewed by 361
Abstract
The sodium–citrate cotransporter (NaCT) plays a crucial role in citrate transport during amelogenesis. Mutations in the SLC13A5 gene, which encodes the NaCT, cause early infantile epileptic encephalopathy 25 and amelogenesis imperfecta. We analyzed developing pig molars and determined that the citrate concentrations in [...] Read more.
The sodium–citrate cotransporter (NaCT) plays a crucial role in citrate transport during amelogenesis. Mutations in the SLC13A5 gene, which encodes the NaCT, cause early infantile epileptic encephalopathy 25 and amelogenesis imperfecta. We analyzed developing pig molars and determined that the citrate concentrations in secretory- and maturation-stage enamel are both 5.3 µmol/g, with about 95% of the citrate being bound to mineral. To better understand how citrate might enter developing enamel, we developed Slc13a5Flag reporter mice that express NaCT with a C-terminal Flag-tag (DYKDDDDK) that can be specifically and accurately recognized by commercially available anti-Flag antibodies. The 24-base Flag coding sequence was located immediately upstream of the natural translation termination codon (TAG) and was validated by Sanger sequencing. The general development, physical activities, and reproductive outcomes of this mouse strain were comparable to those of the C57BL/6 mice. No differences were detected between the Slc13a5Flag and wild-type mice. Tooth development was extensively characterized using dissection microscopy, bSEM, light microscopy, in situ hybridization, and immunohistochemistry. Tooth formation was not altered in any detectable way by the introduction of the Flag. The Slc13a5Flag citrate transporter was observed on all outer membranes of secretory ameloblasts (distal, lateral, and proximal), with the strongest signal on the Tomes process, and was detectable in all but the distal membrane of maturation-stage ameloblasts. The papillary layer also showed positive immunostaining for Flag. The outer membrane of odontoblasts stained stronger than ameloblasts, except for the odontoblastic processes, which did not immunostain. As NaCT is thought to only facilitate citrate entry into the cell, we performed in situ hybridization that showed Ank is not expressed by secretory- or maturation-stage ameloblasts, ruling out that ANK can transport citrate into enamel. In conclusion, we developed Slc13a5Flag reporter mice that provide specific and sensitive localization of a fully functional NaCT-Flag protein. The localization of the Slc13a5Flag citrate transporter throughout the ameloblast membrane suggests that either citrate enters enamel by a paracellular route or NaCT can transport citrate bidirectionally (into or out of ameloblasts) depending upon local conditions. Full article
(This article belongs to the Special Issue Molecular Metabolism of Ameloblasts in Tooth Development)
Show Figures

Figure 1

26 pages, 7157 KiB  
Article
Succinimidyl Alginate-Modified Fibrin Hydrogels from Human Plasma for Skin Tissue Engineering
by Ana Matesanz, Raúl Sanz-Horta, Alberto Gallardo, Cristina Quílez, Helmut Reinecke, Pablo Acedo, Diego Velasco, Enrique Martínez-Campos, José Luis Jorcano and Carlos Elvira
Gels 2025, 11(7), 540; https://doi.org/10.3390/gels11070540 - 11 Jul 2025
Viewed by 299
Abstract
Plasma-derived fibrin hydrogels are widely used in tissue engineering because of their excellent biological properties. Specifically, human plasma-derived fibrin hydrogels serve as 3D matrices for autologous skin graft production, skeletal muscle repair, and bone regeneration. Nevertheless, for advanced applications such as in vitro [...] Read more.
Plasma-derived fibrin hydrogels are widely used in tissue engineering because of their excellent biological properties. Specifically, human plasma-derived fibrin hydrogels serve as 3D matrices for autologous skin graft production, skeletal muscle repair, and bone regeneration. Nevertheless, for advanced applications such as in vitro skin equivalents and engineered grafts, the intrinsic limitations of native fibrin hydrogels in terms of long-term mechanical stability and resistance to degradation need to be addressed to enhance the usefulness and application of these hydrogels in tissue engineering. In this study, we chemically modified plasma-derived fibrin by incorporating succinimidyl alginate (SA), a version of alginate chemically modified to introduce reactive succinimidyl groups. These NHS ester groups (N-hydroxysuccinimide esters), attached to the alginate backbone, are highly reactive toward the primary amine groups present in plasma proteins such as fibrinogen. When mixed with plasma, the NHS groups covalently bond to the amine groups in fibrin, forming stable amide linkages that reinforce the fibrin network during hydrogel formation. This chemical modification improved mechanical properties, reduces contraction, and enhanced the stability of the resulting hydrogels. Hydrogels were prepared with a final fibrinogen concentration of 1.2 mg/mL and SA concentrations of 0.5, 1, 2, and 3 mg/mL. The objective was to evaluate whether this modification could create a more stable matrix suitable for supporting skin tissue development. The mechanical and microstructure properties of these new hydrogels were evaluated, as were their biocompatibility and potential to create 3D skin models in vitro. Dermo-epidermal skin cultures with primary human fibroblast and keratinocyte cells on these matrices showed improved dermal stability and better tissue structure, particularly SA concentrations of 0.5 and 1 mg/mL, as confirmed by H&E (Hematoxylin and Eosin) staining and immunostaining assays. Overall, these results suggest that SA-functionalized fibrin hydrogels are promising candidates for creating more stable in vitro skin models and engineered skin grafts, as well as for other types of engineered tissues, potentially. Full article
Show Figures

Figure 1

22 pages, 4817 KiB  
Article
LightSpot Fluorescent Conjugates as Highly Efficient Tools for Lysosomal P-gp Quantification in Olaparib-Treated Triple-Negative Breast Cancer Cells
by Antoine Goisnard, Pierre Daumar, Maxime Dubois, Elodie Gay, Manon Roux, Marie Depresle, Frédérique Penault-Llorca, Emmanuelle Mounetou and Mahchid Bamdad
Int. J. Mol. Sci. 2025, 26(14), 6675; https://doi.org/10.3390/ijms26146675 - 11 Jul 2025
Viewed by 361
Abstract
P-glycoprotein (P-gp) is a key element of cancer treatment resistance, actively extruding cytotoxic drugs from cells and diminishing their efficacy. While its role at the plasma membrane is well established, its intracellular localization, particularly on lysosomes, is increasingly recognized as a critical contributor [...] Read more.
P-glycoprotein (P-gp) is a key element of cancer treatment resistance, actively extruding cytotoxic drugs from cells and diminishing their efficacy. While its role at the plasma membrane is well established, its intracellular localization, particularly on lysosomes, is increasingly recognized as a critical contributor to drug resistance. This study investigates four innovative LightSpot fluorescent compounds to detect and quantify both membrane and lysosomal P-gp in Triple-Negative Breast Cancer (TNBC) SUM1315 and DU4475 cell lines. Results highlighted lysosomal P-gp staining by the LightSpot-FL-1, LightSpot-BrX-1, and LightSpot-BdO-1 fluorescent compounds (Mander’s coefficients > 0.8 overlapping with LAMP2 immunostaining). After both cell lines were exposed to Olaparib, a significant increase in P-gp expression level and lysosomal distribution of P-gp was detected. Indeed, after 100 µM Olaparib exposure, LightSpot-FL-1 allowed us to quantify an increase in P-gp-positive lysosome number of 1293 and 334% for SUM1315 and DU4475 cells, respectively, compared to the control. Findings suggest that P-gp may relocate to lysosomes upon drug exposure, highlighting a dual resistance mechanism involving both membrane and lysosomal P-gp. This study demonstrated the potential of LightSpot fluorescent compounds to evaluate P-gp-mediated cell resistance to treatment and emphasized the need to assess global cell P-gp expression to improve cancer diagnosis. Full article
Show Figures

Figure 1

14 pages, 2893 KiB  
Article
Morphological and Molecular Evaluation of a Gel Based on Hyaluronic Acid and Spermidine for Oral Regenerative Purposes
by Dolaji Henin, Elena Canciani, Daniela Carmagnola, Stefano Ferrero, Gaia Pellegrini, Mariachiara Perrotta, Riccardo Sirello, Claudia Dellavia and Nicoletta Gagliano
Cells 2025, 14(14), 1047; https://doi.org/10.3390/cells14141047 - 9 Jul 2025
Viewed by 405
Abstract
Background: Oral wound healing is a complex process influenced by extracellular matrix (ECM) remodeling and cellular migration. Hyaluronic acid (HA) and spermidine (SP) have shown regenerative potential, but their combined effects on oral tissues remain unexplored. This study aimed to characterize the effect [...] Read more.
Background: Oral wound healing is a complex process influenced by extracellular matrix (ECM) remodeling and cellular migration. Hyaluronic acid (HA) and spermidine (SP) have shown regenerative potential, but their combined effects on oral tissues remain unexplored. This study aimed to characterize the effect of a gel composed of a mixture of HA and SP on the epithelial and connective compartments of oral tissue separately, evaluating (i) collagen turnover and cell migration on primary human gingival fibroblasts (HGFs) and (ii) epithelial integrity and cell proliferation on gingival organotypic cultures (OCs). Methods: HGFs were cultured, treated with HA-SP gel (1:0.5 HA-SP ratio) and evaluated for collagen types I and III (COL-I, COL-III), matrix metalloproteinase (MMP-1) protein and tissue inhibitor of MMP-1 (TIMP-1) levels secreted by the cells upon gel treatment, compared to CT. HGFs were also analyzed through a wound healing assay. Gingival samples were obtained to set OCs and were treated with different HA-SP formulations (HA 0.2%; 1:0.5 HA-SP ratio; 1:5 HA-SP ratio) to evaluate the beneficial addition of SP to HA for epithelial tissue. OC samples were formalin-fixed and paraffin-embedded and were stained with hematoxylin and eosin and immunostained for Ki-67 analysis. Results: In HGFs, the gel induced increased COL-III gene expression relative to that of COL-I after 48 h and stimulated cell migration, in turn favoring connective tissue remodeling and repair. In OCs, the gel preserved epithelial integrity up to 48 h, with the best effects observed with the 1:0.5 HA-SP ratio. After 72 h, epithelial detachment was more evident in HA formulations, suggesting that SP contributes to epithelial integrity. Conclusions: The HA-SP gel may support oral tissue healing by modulating ECM remodeling and maintaining epithelial integrity. The gel containing HA and SP at the 1:0.5 ratio may provide a promising solution for enhancing wound healing. Full article
Show Figures

Figure 1

12 pages, 1832 KiB  
Brief Report
HIV Protein TAT Dysregulates Multiple Pathways in Human iPSCs-Derived Microglia
by Liam Liyang Guo, Robert Jiang, Yan Cheng, Brooke Russell, Sanders Y. Yan and Ming-Lei Guo
Life 2025, 15(7), 1082; https://doi.org/10.3390/life15071082 - 9 Jul 2025
Viewed by 493
Abstract
In the era of combined antiretroviral therapy, around 50% of chronic HIV (+) individuals show varying degrees of memory and cognitive deficiency (NeuroHIV), a phenomenon of accelerated brain aging. HIV protein transactivator of transcription (TAT) has been well-accepted as a risk factor contributing [...] Read more.
In the era of combined antiretroviral therapy, around 50% of chronic HIV (+) individuals show varying degrees of memory and cognitive deficiency (NeuroHIV), a phenomenon of accelerated brain aging. HIV protein transactivator of transcription (TAT) has been well-accepted as a risk factor contributing to NeuroHIV through dysregulating microglia (Mg) functions. Previous studies have demonstrated that HIV-TAT can affect lipid metabolism, immune responses, autophagy, and senescence in rodent Mg. However, due to the significant species differences between rodent and human Mg (hMg), it is essential to take caution when interpreting the results obtained from rodent models into human conditions. For the unanswered questions, we generated hMg from human inducible pluripotent stem cells (iPSCs) and exposed them to HIV-TAT. The results obtained from Flow analysis and immunostaining experiments reveal that TAT can induce LD accumulation and increase perilipin-2 (Plin2) levels in hMg. Meanwhile, HIV-TAT can upregulate autophagosome formation and p53 levels. Through human immune array assay, we showed that TAT can increase the expression of multiple pro-inflammatory mediators, cytokines, and chemokines in hMg. Extensive bioinformatic analysis shows that HIV-TAT can affect multiple neuroimmune signaling pathways and indicates that microRNAs (miRNAs) are coherently involved in such dysregulation. Overall, our findings provide direct evidence showing that HIV-TAT can affect lipid metabolism, autophagy, senescence signaling, and multiple neuroimmune-related pathways in hMg and indicate the roles of novel miRNAs on NeuroHIV pathogenesis, which deserves further investigations. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

13 pages, 1488 KiB  
Article
Respiratory Syncytial Virus Induces B Cell Activating Factor (BAFF) in Airway Epithelium: A Potential Avenue for Mucosal Vaccine Development
by Wael Alturaiki and Brian Flanagan
Viruses 2025, 17(7), 946; https://doi.org/10.3390/v17070946 - 4 Jul 2025
Viewed by 593
Abstract
Respiratory syncytial virus (RSV) is a major etiological agent of lower respiratory tract infections, particularly among infants and the elderly. Activation of B cells in the mucosa and the production of specific neutralizing antibodies are essential for protective immunity against pulmonary infection. B-cell [...] Read more.
Respiratory syncytial virus (RSV) is a major etiological agent of lower respiratory tract infections, particularly among infants and the elderly. Activation of B cells in the mucosa and the production of specific neutralizing antibodies are essential for protective immunity against pulmonary infection. B-cell activating factor (BAFF) is a critical survival factor for B cells and has been associated with antiviral responses; however, its regulation during RSV infection remains poorly understood. This study examined BAFF regulation in BEAS-2B cells exposed to RSV or IFN-β. The treatments resulted in a progressive increase in gene expression over time, accompanied by higher protein levels. BAFF mRNA peaked at 12 h post-infection and declined by 48 h, coinciding with the release of soluble BAFF protein into the culture supernatant. Pre-treatment with anti-IFN-β antibodies prior to RSV infection reduced both BAFF mRNA and protein levels, indicating that IFN-β plays a regulatory role in BAFF production by airway epithelial cells. Western blot analysis revealed membrane-bound BAFF (~31 kDa) in non-infected cells, with elevated expression at 24 h post-infection. By 48 h, this form was cleaved into a soluble ~17 kDa form, which was detected in the supernatant. Immunostaining further demonstrated reduced surface expression of membrane-bound BAFF in RSV-infected cells compared to uninfected controls, suggesting that RSV infection promotes the cleavage and release of BAFF into the extracellular environment. Additionally, the release of BAFF was not affected by furin convertase inhibition or ER–Golgi transport blockade, indicating a potentially novel cleavage mechanism. Co-culturing BAFF produced by BEAS-2B cells with isolated B cells enhanced B cell viability. Overall, these results indicate that RSV infection stimulates BAFF production in airway epithelial cells through a pathway involving IFN-β, potentially contributing to B cell activation and promoting local antibody-mediated immunity. Understanding this mechanism may offer valuable insights for improving mucosal vaccine strategies and enhancing immunity against respiratory pathogens. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

Back to TopTop