Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (700)

Search Parameters:
Keywords = immunological efficacy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2609 KiB  
Article
Residual Tumor Resection After Anti-PD-1 Therapy: A Promising Treatment Strategy for Overcoming Immune Evasive Phenotype Induced by Anti-PD-1 Therapy in Gastric Cancer
by Hajime Matsuida, Kosaku Mimura, Shotaro Nakajima, Katsuharu Saito, Sohei Hayashishita, Chiaki Takiguchi, Azuma Nirei, Tomohiro Kikuchi, Hiroyuki Hanayama, Hirokazu Okayama, Motonobu Saito, Tomoyuki Momma, Zenichiro Saze and Koji Kono
Cells 2025, 14(15), 1212; https://doi.org/10.3390/cells14151212 - 6 Aug 2025
Abstract
Background: Anti-programmed death 1 receptor (PD-1) therapy is a promising treatment strategy for patients with unresectable advanced or recurrent gastric/gastroesophageal junction (G/GEJ) cancer. However, its response rate and survival benefits are still limited; an immunological analysis of the residual tumor after anti-PD-1 therapy [...] Read more.
Background: Anti-programmed death 1 receptor (PD-1) therapy is a promising treatment strategy for patients with unresectable advanced or recurrent gastric/gastroesophageal junction (G/GEJ) cancer. However, its response rate and survival benefits are still limited; an immunological analysis of the residual tumor after anti-PD-1 therapy would be important. Methods: We evaluated the clinical efficacy of tumor resection (TR) after chemotherapy or anti-PD-1 therapy in patients with unresectable advanced or recurrent G/GEJ cancer and analyzed the immune status of tumor microenvironment (TME) by immunohistochemistry using their surgically resected specimens. Results: Patients treated with TR after anti-PD-1 therapy had significantly longer survival compared to those treated with chemotherapy and anti-PD-1 therapy alone. Expression of human leukocyte antigen (HLA) class I and major histocompatibility complex (MHC) class II on tumor cells was markedly downregulated after anti-PD-1 therapy compared to chemotherapy. Furthermore, the downregulation of HLA class I may be associated with the activation of transforming growth factor-β signaling pathway in the TME. Conclusions: Immune escape from cytotoxic T lymphocytes may be induced in the TME in patients with unresectable advanced or recurrent G/GEJ cancer after anti-PD-1 therapy due to the downregulation of HLA class I and MHC class II expression on tumor cells. TR may be a promising treatment strategy for these patients when TR is feasible after anti-PD-1 therapy. Full article
Show Figures

Figure 1

24 pages, 1886 KiB  
Review
Potential Health Benefits of Dietary Tree Nut and Peanut Enrichment in Kidney Transplant Recipients—An In-Depth Narrative Review and Considerations for Future Research
by Daan Kremer, Fabian A. Vogelpohl, Yvonne van der Veen, Caecilia S. E. Doorenbos, Manuela Yepes-Calderón, Tim J. Knobbe, Adrian Post, Eva Corpeleijn, Gerjan Navis, Stefan P. Berger and Stephan J. L. Bakker
Nutrients 2025, 17(15), 2419; https://doi.org/10.3390/nu17152419 - 24 Jul 2025
Viewed by 423
Abstract
Kidney transplant recipients face a substantial burden of premature mortality and morbidity, primarily due to persistent inflammation, cardiovascular risk, and nutritional deficiencies. Traditional nutritional interventions in this population have either focused on supplementing individual nutrients—often with limited efficacy—or required comprehensive dietary overhauls that [...] Read more.
Kidney transplant recipients face a substantial burden of premature mortality and morbidity, primarily due to persistent inflammation, cardiovascular risk, and nutritional deficiencies. Traditional nutritional interventions in this population have either focused on supplementing individual nutrients—often with limited efficacy—or required comprehensive dietary overhauls that compromise patient adherence. In this narrative review, we explore the rationale for dietary nut enrichment as a feasible, multi-nutrient strategy tailored to the needs of kidney transplant recipients. Nuts, including peanuts and tree nuts with no added salt, sugar, or oil, are rich in beneficial fats, proteins, vitamins, minerals, and bioactive compounds. We summarize the multiple post-transplant challenges—including obesity, sarcopenia, dyslipidemia, hypertension, immunological dysfunction, and chronic inflammation—and discuss how nut consumption may mitigate these issues through mechanisms involving improved micro-nutrient intake (e.g., magnesium, potassium, selenium), lipid profile modulation, endothelial function, immune support, and gut microbiota health. Additionally, we highlight the scarcity of randomized controlled trials in high-risk populations such as kidney transplant recipients and make the case for studying this group as a model for investigating the clinical efficacy of nuts as a nutritional intervention. We also consider practical aspects for future clinical trials, including the choice of study population, intervention design, duration, nut type, dosage, and primary outcome measures such as systemic inflammation. Finally, potential risks such as nut allergies and oxalate or mycotoxin exposure are addressed. Altogether, this review proposes dietary nut enrichment as a promising, simple, and sustainable multi-nutrient approach to support cardiometabolic and immune health in kidney transplant recipients, warranting formal investigation in clinical trials. Full article
Show Figures

Figure 1

26 pages, 542 KiB  
Review
Challenges to the Effectiveness and Immunogenicity of COVID-19 Vaccines: A Narrative Review with a Systematic Approach
by Alexander A. Soldatov, Nickolay A. Kryuchkov, Dmitry V. Gorenkov, Zhanna I. Avdeeva, Oxana A. Svitich and Sergey Soshnikov
Vaccines 2025, 13(8), 789; https://doi.org/10.3390/vaccines13080789 - 24 Jul 2025
Viewed by 1017
Abstract
The COVID-19 pandemic accelerated the rapid development and distribution of various vaccine platforms, resulting in a significant reduction in disease severity, hospitalizations, and mortality. However, persistent challenges remain concerning the durability and breadth of vaccine-induced protection, especially in the face of emerging SARS-CoV-2 [...] Read more.
The COVID-19 pandemic accelerated the rapid development and distribution of various vaccine platforms, resulting in a significant reduction in disease severity, hospitalizations, and mortality. However, persistent challenges remain concerning the durability and breadth of vaccine-induced protection, especially in the face of emerging SARS-CoV-2 variants. This review aimed to evaluate the factors influencing the immunogenicity and effectiveness of COVID-19 vaccines to inform future vaccine advancement strategies. A narrative review with systematic approach was conducted following PRISMA guidelines for narrative review. Literature was sourced from databases including PubMed, Embase, and Web of Science for studies published between December 2019 and May 2025. Encompassed studies assessed vaccine efficacy, immunogenicity, and safety across various populations and vaccine platforms. Data were collected qualitatively, with quantitative data from reviews highlighted where available. We have uncovered a decline in vaccine efficacy over time and weakened protection against novel variants such as Delta and Omicron. Booster doses, specifically heterologous regimens, improved immunogenicity and increased protection. Vaccine-induced neutralizing antibody titers have been found to correlate with clinical protection, although the long-term correlates of immunity remain poorly defined. The induction of IgG4 antibodies after repeated mRNA vaccinations raised concerns about potential modulation of the immune response. COVID-19 vaccines have contributed significantly to pandemic control; however, their efficacy is limited by the evolution of the virus and declining immunity. Forthcoming vaccine strategies should focus on broad-spectrum, variant-adapted formulations and defining robust comparisons of protection. Recognizing the immunological basis of vaccine response, including the role of specific antibody subclasses, is fundamental for optimizing long-term protection. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

18 pages, 968 KiB  
Review
IL-4 and Brentuximab Vedotin in Mycosis Fungoides: A Perspective on Potential Therapeutic Interactions and Future Research Directions
by Mihaela Andreescu, Sorin Ioan Tudorache, Cosmin Alec Moldovan and Bogdan Andreescu
Curr. Issues Mol. Biol. 2025, 47(8), 586; https://doi.org/10.3390/cimb47080586 - 24 Jul 2025
Viewed by 292
Abstract
Background: Mycosis fungoides (MF), the most prevalent cutaneous T cell lymphoma, features clonal CD4⁺ T cell proliferation within a Th2-dominant microenvironment. Interleukin-4 (IL-4) promotes disease progression while Brentuximab Vedotin (BV), an anti-CD30 antibody–drug conjugate, shows efficacy but faces resistance challenges. Methods: We conducted [...] Read more.
Background: Mycosis fungoides (MF), the most prevalent cutaneous T cell lymphoma, features clonal CD4⁺ T cell proliferation within a Th2-dominant microenvironment. Interleukin-4 (IL-4) promotes disease progression while Brentuximab Vedotin (BV), an anti-CD30 antibody–drug conjugate, shows efficacy but faces resistance challenges. Methods: We conducted a narrative literature review (2010–2024) synthesizing evidence on IL-4 signaling and BV’s efficacy in MF to develop a theoretical framework for combination therapy. Results: IL-4 may modulate CD30 expression and compromise BV’s effectiveness through immunosuppressive microenvironment remodeling. Theoretical mechanisms suggest that IL-4 pathway inhibition could reprogram the microenvironment toward Th1 dominance and restore BV sensitivity. However, no direct experimental evidence validates this combination, and safety concerns including potential disease acceleration require careful evaluation. Conclusions: The proposed IL-4/BV combination represents a biologically compelling but unproven hypothesis requiring systematic preclinical validation and biomarker-driven clinical trials. This framework could guide future research toward transforming treatment approaches for CD30-positive MF by targeting both malignant cells and their immunologically permissive microenvironment. Full article
(This article belongs to the Special Issue Future Challenges of Targeted Therapy of Cancers: 2nd Edition)
Show Figures

Figure 1

15 pages, 1078 KiB  
Review
Immunological Insights into Photodynamic Therapy of Glioblastoma Multiforme
by Paweł Woźnicki, Dorota Bartusik-Aebisher, Agnieszka Przygórzewska and David Aebisher
Molecules 2025, 30(15), 3091; https://doi.org/10.3390/molecules30153091 - 24 Jul 2025
Viewed by 312
Abstract
The Gliomas account for 81% of all malignant central nervous system tumors and are classified by WHO into four grades of malignancy. Glioblastoma multiforme (GBM), the most common grade IV glioma, exhibits an extremely aggressive phenotype and a dismal five-year survival rate of [...] Read more.
The Gliomas account for 81% of all malignant central nervous system tumors and are classified by WHO into four grades of malignancy. Glioblastoma multiforme (GBM), the most common grade IV glioma, exhibits an extremely aggressive phenotype and a dismal five-year survival rate of only 6%, underscoring the urgent need for novel therapeutic approaches. Immunotherapy has emerged as a promising strategy, and photodynamic therapy (PDT) in particular has attracted attention for its dual cytotoxic and immunostimulatory effects. In GBM models, PDT induces immunogenic cell death characterized by the release of damage-associated molecular patterns (DAMPs), which promote antigen presentation and activate T cell responses. Additionally, PDT transiently increases blood–brain barrier permeability, facilitating immune cell infiltration into the tumor microenvironment, and enhances clearance of waste products via stimulation of meningeal lymphatic vessels. Importantly, PDT can reprogram or inactivate immunosuppressive tumor-associated macrophages, thereby counteracting the pro-tumoral microenvironment. Despite these encouraging findings, further preclinical and clinical studies are required to elucidate PDT’s underlying immunological mechanisms fully and to optimize treatment regimens that maximize its efficacy as part of integrated immunotherapeutic strategies against GBM. Full article
(This article belongs to the Special Issue Innovative Anticancer Compounds and Therapeutic Strategies)
Show Figures

Figure 1

18 pages, 1717 KiB  
Article
An Immune Assay to Quantify the Neutralization of Oxidation-Specific Epitopes by Human Blood Plasma
by Marija Jelic, Philipp Jokesch, Olga Oskolkova, Gernot Faustmann, Brigitte M. Winklhofer-Roob, Bernd Ullrich, Jürgen Krauss, Rudolf Übelhart, Bernd Gesslbauer and Valery Bochkov
Antioxidants 2025, 14(8), 903; https://doi.org/10.3390/antiox14080903 - 24 Jul 2025
Viewed by 355
Abstract
Oxidized phospholipids (OxPLs) are increasingly recognized as biologically active lipids involved in various pathologies. Both exposure to pathogenic factors and the efficacy of protective mechanisms are critical to disease development. In this study, we characterized an immunoassay that quantified the total capacity of [...] Read more.
Oxidized phospholipids (OxPLs) are increasingly recognized as biologically active lipids involved in various pathologies. Both exposure to pathogenic factors and the efficacy of protective mechanisms are critical to disease development. In this study, we characterized an immunoassay that quantified the total capacity of the plasma to degrade or mask OxPLs, thereby preventing their interaction with cells and soluble proteins. OxLDL-coated plates were first incubated with human blood plasma or a control vehicle, followed by an ELISA using a monoclonal antibody specific to oxidized phosphatidylethanolamine. Pretreatment with the diluted blood plasma markedly inhibited mAb binding. The masking assay was optimized by evaluating the buffer composition, the compatibility with various anticoagulants, potential interfering compounds, the kinetic parameters, pre-analytical stability, statistical robustness, and intra- and inter-individual variability. We propose that this masking assay provides a simple immunological approach to assessing protective mechanisms against lipid peroxidation products. Establishing this robust and reproducible method is essential for conducting clinical association studies that explore masking activity as a potential biomarker of the predisposition to a broad range of lipid-peroxidation-related diseases. Full article
(This article belongs to the Special Issue Exploring Biomarkers of Oxidative Stress in Health and Disease)
Show Figures

Figure 1

23 pages, 680 KiB  
Review
Immunological Strategies for Enhancing Viral Neutralization and Protection in Antibody-Guided Vaccine Design
by Dimitrina Miteva, Maria Kokudeva, Latchesar Tomov, Hristiana Batselova and Tsvetelina Velikova
Biologics 2025, 5(3), 21; https://doi.org/10.3390/biologics5030021 - 23 Jul 2025
Viewed by 428
Abstract
Background: Immunological strategies for antibody-guided vaccine design intend to enhance viral neutralization and protection and increase efficacy. Here, we discuss advances in antibody-guided vaccine design and current antibody-guided strategies, including epitope-based, nanoparticle-based, and scaffold-based vaccine approaches. We review the challenges and limitations of [...] Read more.
Background: Immunological strategies for antibody-guided vaccine design intend to enhance viral neutralization and protection and increase efficacy. Here, we discuss advances in antibody-guided vaccine design and current antibody-guided strategies, including epitope-based, nanoparticle-based, and scaffold-based vaccine approaches. We review the challenges and limitations of vaccines against different pathogens, such as influenza A virus, HIV-1 virus, single-celled malaria parasite, respiratory syncytial virus, and SARS-CoV-2. We summarize the available literature guidance, including emerging techniques in immunological vaccine design, to help understand and improve antibody-based immunity. The search strategy we applied is a comprehensive literature review of major databases, with specific search terms related to antibody-mediated vaccine design, viral neutralization, and immune protection. We discuss the how future directions for next-generation vaccine platforms and personalized vaccines based on immunogenetics will help improve vaccine design for increased specificity and potency of antibodies that neutralize pathogens, offering more precise and effective immune responses and, therefore, protection. Full article
(This article belongs to the Special Issue Progress in Antibody-Guided Vaccine Design for Viruses)
Show Figures

Figure 1

20 pages, 4705 KiB  
Article
GRK5 as a Novel Therapeutic Target for Immune Evasion in Testicular Cancer: Insights from Multi-Omics Analysis and Immunotherapeutic Validation
by Congcong Xu, Qifeng Zhong, Nengfeng Yu, Xuqiang Zhang, Kefan Yang, Hao Liu, Ming Cai and Yichun Zheng
Biomedicines 2025, 13(7), 1775; https://doi.org/10.3390/biomedicines13071775 - 21 Jul 2025
Viewed by 371
Abstract
Background: Personalized anti-tumor therapy that activates the immune response has demonstrated clinical benefits in various cancers. However, its efficacy against testicular cancer (TC) remains uncertain. This study aims to identify suitable patients for anti-tumor immunotherapy and to uncover potential therapeutic targets in TC [...] Read more.
Background: Personalized anti-tumor therapy that activates the immune response has demonstrated clinical benefits in various cancers. However, its efficacy against testicular cancer (TC) remains uncertain. This study aims to identify suitable patients for anti-tumor immunotherapy and to uncover potential therapeutic targets in TC for the development of tailored anti-tumor immunotherapy. Methods: Consensus clustering analysis was conducted to delineate immune subtypes, while weighted gene co-expression network analysis (WGCNA), least absolute shrinkage and selection operator (LASSO) regression, and support vector machine (SVM) algorithms were employed to evaluate the potential efficacy of anti-tumor immunotherapy. Candidate immunotherapy targets were systematically identified through multi-gene panel analyses and subsequently validated using molecular biology assays. A prioritized target emerging from cellular screening was further evaluated for its capacity to potentiate anti-tumor immunity. The therapeutic efficacy of this candidate was rigorously confirmed through a comprehensive suite of immunological experiments. Results: Following systematic screening of five candidate genes (WNT11, FAM181B, GRK5, FSCN1, and ECHS1), GRK5 emerged as a promising therapeutic target for immunotherapy based on its distinct functional and molecular associations with immune evasion mechanisms. Cellular functional assays revealed that GRK5 knockdown significantly attenuated the malignant phenotype of testicular cancer cells, as evidenced by reduced proliferative capacity and invasive potential. Complementary immunological validation established that specific targeting of GRK5 with the selective antagonist GRK5-IN-2 disrupts immune evasion pathways in testicular cancer, as quantified by T-cell-mediated cytotoxicity. Conclusions: These findings position GRK5 as a critical modulator of tumor-immune escape, warranting further preclinical exploration of GRK5-IN-2 as a candidate immunotherapeutic agent. Full article
(This article belongs to the Section Immunology and Immunotherapy)
Show Figures

Figure 1

23 pages, 752 KiB  
Review
Antibiotic Therapy Duration for Multidrug-Resistant Gram-Negative Bacterial Infections: An Evidence-Based Review
by Andrea Marino, Egle Augello, Carlo Maria Bellanca, Federica Cosentino, Stefano Stracquadanio, Luigi La Via, Antonino Maniaci, Serena Spampinato, Paola Fadda, Giuseppina Cantarella, Renato Bernardini, Bruno Cacopardo and Giuseppe Nunnari
Int. J. Mol. Sci. 2025, 26(14), 6905; https://doi.org/10.3390/ijms26146905 - 18 Jul 2025
Viewed by 651
Abstract
Determining the optimal duration of antibiotic therapy for infections caused by multidrug-resistant Gram-negative bacteria (MDR-GNB) is a critical challenge in clinical medicine, balancing therapeutic efficacy against the risks of adverse effects and antimicrobial resistance. This narrative review synthesises current evidence and guidelines regarding [...] Read more.
Determining the optimal duration of antibiotic therapy for infections caused by multidrug-resistant Gram-negative bacteria (MDR-GNB) is a critical challenge in clinical medicine, balancing therapeutic efficacy against the risks of adverse effects and antimicrobial resistance. This narrative review synthesises current evidence and guidelines regarding antibiotic duration for MDR-GNB infections, emphasising bloodstream infections (BSI), hospital-acquired and ventilator-associated pneumonia (HAP/VAP), complicated urinary tract infections (cUTIs), and intra-abdominal infections (IAIs). Despite robust evidence supporting shorter courses (3–7 days) in uncomplicated infections caused by more susceptible pathogens, data guiding optimal therapy duration for MDR-GNB remain limited, particularly concerning carbapenem-resistant Enterobacterales (CRE), difficult-to-treat Pseudomonas aeruginosa (DTR-Pa), and carbapenem-resistant Acinetobacter baumannii (CRAB). Current guidelines from major societies, including IDSA and ESCMID, provide explicit antimicrobial selection advice but notably lack detailed recommendations on the duration of therapy. Existing studies demonstrate non-inferiority of shorter versus longer antibiotic courses in specific clinical contexts but frequently exclude critically ill patients or those infected with non-fermenting MDR pathogens. Individualised duration decisions must integrate clinical response, patient immunologic status, infection severity, source control adequacy, and pharmacologic considerations. Significant knowledge gaps persist, underscoring the urgent need for targeted research, particularly randomised controlled trials assessing optimal antibiotic duration for the most challenging MDR-GNB infections. Clinicians must navigate considerable uncertainty, relying on nuanced judgement and close monitoring to achieve successful outcomes while advancing antimicrobial stewardship goals. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

27 pages, 441 KiB  
Review
Non-Hormonal Strategies in Endometriosis: Targets with Future Clinical Potential
by Maria E. Ramos-Nino
J. Clin. Med. 2025, 14(14), 5091; https://doi.org/10.3390/jcm14145091 - 17 Jul 2025
Viewed by 468
Abstract
Endometriosis is a chronic gynecological pathology marked by the aberrant proliferation of tissue analogous to the endometrial lining outside the uterine cavity. This disorder frequently engenders persistent pelvic discomfort, infertility, and an extensive array of additional manifestations, including menorrhagia, dyspareunia, and gastrointestinal anomalies. [...] Read more.
Endometriosis is a chronic gynecological pathology marked by the aberrant proliferation of tissue analogous to the endometrial lining outside the uterine cavity. This disorder frequently engenders persistent pelvic discomfort, infertility, and an extensive array of additional manifestations, including menorrhagia, dyspareunia, and gastrointestinal anomalies. Affecting an estimated 10% of women within the reproductive age demographic globally, endometriosis continues to present as a multifaceted and formidable challenge. The precise etiology remains elusive, leading to extended diagnostic intervals and personalized, often inadequate, therapeutic approaches. The intrinsic heterogeneity of endometriosis, evident in its varied phenotypes and clinical manifestations, further complicates both precise diagnosis and efficacious treatment. Conventional management hinges on hormonal interventions, which may not be appropriate for women desiring conception or for those experiencing substantial adverse effects. While surgical procedures are accessible, they do not provide a conclusive resolution, and the probability of recurrence remains high. Progress in diagnostic methodologies, such as non-invasive biomarker analyses, combined with an expanding understanding of the molecular and immunological frameworks that underpin the condition, presents promising prospects for the development of more targeted and individualized non-hormonal treatment modalities in the near future. Full article
(This article belongs to the Special Issue Current Advances in Endometriosis: An Update)
19 pages, 1049 KiB  
Review
MEK Inhibition in Glioblastoma: Current Perspectives and Future Directions
by Adam Shapira Levy, Jean-Paul Bryant, David Matichak, Shumpei Onishi and Yeshavanth Kumar Banasavadi-Siddegowda
Int. J. Mol. Sci. 2025, 26(14), 6875; https://doi.org/10.3390/ijms26146875 - 17 Jul 2025
Viewed by 317
Abstract
The Mitogen-activated protein kinase kinase (MEK) protein family has dual-specificity protein kinases with a myriad of cellular functions that include but are not limited to cell survival, cell division, immunologic response, angiogenesis, and cellular senescence. MEK is crucial in the MAPK signaling pathway, [...] Read more.
The Mitogen-activated protein kinase kinase (MEK) protein family has dual-specificity protein kinases with a myriad of cellular functions that include but are not limited to cell survival, cell division, immunologic response, angiogenesis, and cellular senescence. MEK is crucial in the MAPK signaling pathway, regulating different organ systems, including the CNS. Increased activation and dysregulation of the MEK pathway is reportedly observed in 30% of all malignancies. The diversity of MEK renders it a prime target for inhibition in treating cancer. MEK inhibition has been studied in the context of melanoma, non-small cell lung cancer, breast cancer, and colorectal cancer, among others. The standard treatment for glioblastoma (resection, temozolomide, and radiation) remains relatively futile, which warrants alternative treatment options. Therefore, MEK inhibition has garnered more attention in recent years as investigators have explored its role in treating the most aggressive and most common primary brain tumor, glioblastoma. MEK inhibitors have shown efficacy in pre-clinical investigations as well as some promise in clinical trials which have demonstrated improved overall and progression-free survival. This underscores the potential of MEK inhibition in glioblastoma therapy and represents an area that likely warrants further research. However, there are few comprehensive and unifying reviews discussing the current state of MEK inhibition in glioblastoma therapy. We begin this review by detailing the normal function of MEK as it pertains to the CNS. We then compiled relevant pre-clinical and clinical studies to investigate recent research discussing the role of MEK inhibition in glioblastoma therapy. Full article
(This article belongs to the Special Issue Novel Therapeutic Targets in Cancers: 3rd Edition)
Show Figures

Figure 1

29 pages, 438 KiB  
Review
Anti-Inflammatory Therapies for Atopic Dermatitis: A New Era in Targeted Treatment
by Karol Biliński, Katarzyna Rakoczy, Anna Karwowska, Oliwia Cichy, Aleksandra Wojno, Agata Wojno, Julita Kulbacka and Małgorzata Ponikowska
J. Clin. Med. 2025, 14(14), 5053; https://doi.org/10.3390/jcm14145053 - 16 Jul 2025
Viewed by 656
Abstract
Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin condition characterized by intense pruritus and a significant impact on a patient’s quality of life. Despite advancements in understanding AD pathophysiology, there remains a critical need for innovative therapeutic options to better manage this [...] Read more.
Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin condition characterized by intense pruritus and a significant impact on a patient’s quality of life. Despite advancements in understanding AD pathophysiology, there remains a critical need for innovative therapeutic options to better manage this debilitating disease. This review focuses on the evolving landscape of biological therapies for AD, offering insights into their role, mechanisms of action, and potential to revolutionize patient care. In this review, we explore the underlying immunological mechanisms of AD, particularly the role of cytokines and immune pathways implicated in the disease, and how targeted biological therapies modulate these pathways. Current FDA- and EMA-approved biologics, such as Dupilumab, are also discussed in terms of their mechanisms of action, efficacy, and safety. Additionally, we compare their effectiveness, highlighting the benefits and limitations observed in clinical practice. Emerging biological therapies currently under development offer new hope, with innovative targets like IL-13, IL-31, and thymic stromal lymphopoietin (TSLP) representing promising avenues for intervention. We also delve into personalized medicine, emphasizing the importance of biomarkers for predicting treatment response and stratifying AD patients to optimize therapeutic outcomes. Moreover, the synergistic potential of combining biologics with traditional therapies is reviewed, along with a discussion of the challenges involved, including safety, long-term efficacy, and patient adherence. We address the future direction of AD treatment, including microbiome-targeting biologics and the development of next-generation immune modulators. We highlight a new era of targeted treatment possibilities for this complex condition. Full article
(This article belongs to the Special Issue Innovative Systemic Treatments for Atopic Dermatitis)
22 pages, 498 KiB  
Review
The XEC Variant: Genomic Evolution, Immune Evasion, and Public Health Implications
by Alaa A. A. Aljabali, Kenneth Lundstrom, Altijana Hromić-Jahjefendić, Nawal Abd El-Baky, Debaleena Nawn, Sk. Sarif Hassan, Alberto Rubio-Casillas, Elrashdy M. Redwan and Vladimir N. Uversky
Viruses 2025, 17(7), 985; https://doi.org/10.3390/v17070985 - 15 Jul 2025
Viewed by 805
Abstract
Narrative review synthesizes the most current literature on the SARS-CoV-2 XEC variant, focusing on its genomic evolution, immune evasion characteristics, epidemiological dynamics, and public health implications. To achieve this, we conducted a structured search of the literature of peer-reviewed articles, preprints, and official [...] Read more.
Narrative review synthesizes the most current literature on the SARS-CoV-2 XEC variant, focusing on its genomic evolution, immune evasion characteristics, epidemiological dynamics, and public health implications. To achieve this, we conducted a structured search of the literature of peer-reviewed articles, preprints, and official surveillance data from 2023 to early 2025, prioritizing virological, clinical, and immunological reports related to XEC and its parent lineages. Defined by the distinctive spike protein mutations, T22N and Q493E, XEC exhibits modest reductions in neutralization in vitro, although current evidence suggests that mRNA booster vaccines, including those targeting JN.1 and KP.2, retain cross-protective efficacy against symptomatic and severe disease. The XEC strain of SARS-CoV-2 has drawn particular attention due to its increasing prevalence in multiple regions and its potential to displace other Omicron subvariants, although direct evidence of enhanced replicative fitness is currently lacking. Preliminary analyses also indicated that glycosylation changes at the N-terminal domain enhance infectivity and immunological evasion, which is expected to underpin the increasing prevalence of XEC. The XEC variant, while still emerging, is marked by a unique recombination pattern and a set of spike protein mutations (T22N and Q493E) that collectively demonstrate increased immune evasion potential and epidemiological expansion across Europe and North America. Current evidence does not conclusively associate XEC with greater disease severity, although additional research is required to determine its clinical relevance. Key knowledge gaps include the precise role of recombination events in XEC evolution and the duration of cross-protective T-cell responses. New research priorities include genomic surveillance in undersampled regions, updated vaccine formulations against novel spike epitopes, and long-term longitudinal studies to monitor post-acute sequelae. These efforts can be augmented by computational modeling and the One Health approach, which combines human and veterinary sciences. Recent computational findings (GISAID, 2024) point to the potential of XEC for further mutations in under-surveilled reservoirs, enhancing containment challenges and risks. Addressing the potential risks associated with the XEC variant is expected to benefit from interdisciplinary coordination, particularly in regions where genomic surveillance indicates a measurable increase in prevalence. Full article
(This article belongs to the Special Issue Translational Research in Virology)
Show Figures

Figure 1

29 pages, 2844 KiB  
Review
Hsp90 pan and Isoform-Selective Inhibitors as Sensitizers for Cancer Immunotherapy
by Shiying Jia, Neeraj Maurya, Brian S. J. Blagg and Xin Lu
Pharmaceuticals 2025, 18(7), 1025; https://doi.org/10.3390/ph18071025 - 10 Jul 2025
Viewed by 801
Abstract
The 90 kDa heat shock proteins (Hsp90) are molecular chaperones that regulate the stability and maturation of numerous client proteins implicated in the regulation of cancer hallmarks. Despite the potential of pan-Hsp90 inhibitors as anticancer therapeutics, their clinical development has been hindered [...] Read more.
The 90 kDa heat shock proteins (Hsp90) are molecular chaperones that regulate the stability and maturation of numerous client proteins implicated in the regulation of cancer hallmarks. Despite the potential of pan-Hsp90 inhibitors as anticancer therapeutics, their clinical development has been hindered by on-target toxicities, particularly ocular and cardiotoxic effects, as well as the induction of pro-survival, compensatory heat shock responses. Together, these and other complications have prompted the development of isoform-selective Hsp90 inhibitors. In this review, we discuss the molecular bases for Hsp90 function and inhibition and emphasize recent advances in isoform-selective targeting. Importantly, we highlight how Hsp90 inhibition can sensitize tumors to cancer immunotherapy by enhancing antigen presentation, reducing immune checkpoint expression, remodeling the tumor microenvironment, and promoting innate immune activation. Special focus is given to Hsp90β-selective inhibitors, which modulate immunoregulatory pathways without eliciting the deleterious effects observed with pan-inhibition. Preclinical and early clinical data support the integration of Hsp90 inhibitors with immune checkpoint blockade and other immunotherapeutic modalities to overcome resistance mechanisms in immunologically cold tumors. Therefore, the continued development of isoform-selective Hsp90 inhibitors offers a promising avenue to potentiate cancer immunotherapy with improved efficacy. Full article
Show Figures

Graphical abstract

17 pages, 2353 KiB  
Article
High TCR Degeneracy Enhances Antiviral Efficacy of HTLV-1-Specific CTLs by Targeting Variant Viruses in HAM Patients
by Ryuji Kubota, Kousuke Hanada, Mineki Saito, Mika Dozono, Satoshi Nozuma and Hiroshi Takashima
Int. J. Mol. Sci. 2025, 26(14), 6602; https://doi.org/10.3390/ijms26146602 - 10 Jul 2025
Viewed by 326
Abstract
T-cell receptors (TCRs) exhibit degeneracy, enabling individual TCRs to recognize multiple altered peptide ligands (APLs) derived from a single cognate antigen. This characteristic has been involved in the pathogenesis of autoimmune diseases through cross-reactivity between microbial and self-antigens. Cytotoxic T lymphocytes (CTLs), which [...] Read more.
T-cell receptors (TCRs) exhibit degeneracy, enabling individual TCRs to recognize multiple altered peptide ligands (APLs) derived from a single cognate antigen. This characteristic has been involved in the pathogenesis of autoimmune diseases through cross-reactivity between microbial and self-antigens. Cytotoxic T lymphocytes (CTLs), which recognize peptide–MHC class I complexes via TCRs, play a critical role in the immune response against viral infections. However, the extent to which TCR degeneracy within a population of virus-specific CTLs contributes to effective viral control remains poorly understood. In this study, we investigated the magnitude and functional relevance of TCR degeneracy in CTLs targeting an immunodominant epitope of human T-cell leukemia virus type 1 (HTLV-1) in patients with HTLV-1-associated myelopathy (HAM). Using peripheral blood mononuclear cells (PBMCs) from these patients, we quantified TCR degeneracy at the population level by comparing CTL responses to a panel of APLs with responses to the cognate epitope. Our findings demonstrated that increased TCR degeneracy, particularly at the primary TCR contact residue at position 5 of the antigen, was inversely correlated with HTLV-1 proviral load (p = 0.038, R = −0.40), despite similar functional avidity across patient-derived CTLs. Viral sequencing further revealed that CTLs with high TCR degeneracy exerted stronger selective pressure on the virus, as indicated by a higher frequency of nonsynonymous substitutions within the epitope-encoding region in patients with highly degenerate TCR repertoires. Moreover, TCR degeneracy was positively correlated with the recognition rate of epitope variants (p = 0.018, R = 0.76), suggesting that CTLs with high TCR degeneracy exhibited enhanced recognition of naturally occurring epitope variants compared to those with low TCR degeneracy. Taken together, these results suggest that virus-specific CTLs with high TCR degeneracy possess superior antiviral capacity, characterized by broadened epitope recognition and more effective suppression of HTLV-1 infection. To our knowledge, this is the first study to systematically quantify TCR degeneracy in HTLV-1-specific CTLs and evaluate its contribution to viral control in HAM patients. These findings establish TCR degeneracy as a critical determinant of antiviral efficacy and provide a novel immunological insight into the mechanisms of viral suppression in chronic HTLV-1 infection. Full article
Show Figures

Figure 1

Back to TopTop