Non-Hormonal Strategies in Endometriosis: Targets with Future Clinical Potential
Abstract
1. Introduction
2. Factors Influencing Endometriosis
- a.
- Family History
- b.
- Menstrual Cycle Characteristics
- c.
- Reproductive History
- d.
- Anatomical and Medical Conditions
- e.
- Body Mass Index (BMI)
- f.
- Hormonal Factors
- g.
- Immune System Dysfunction
- h.
- Environmental Influences
3. Non-Hormonal Targets for Endometriosis
3.1. Inflammatory Pathway
3.2. Immune Dysregulation Pathways
3.3. Epithelial-Mesenchymal Transition (EMT) and Fibrosis Pathways
3.4. Angiogenesis Pathways
3.5. Oxidative Stress Pathway
- Silymarin: Derived from milk thistle, silymarin exhibits potent antioxidant and anti-inflammatory properties, reducing lipid peroxidation and modulating inflammatory cytokine production [99,100]. Silymarin has been shown to significantly reduce interleukin-6 levels, the size of endometrioma lesions, and pain symptoms in women with endometriosis, according to a randomized, double-blind, placebo-controlled trial. In this study, 70 women received either 140 mg of silymarin or a placebo twice daily for 12 weeks, resulting in significant improvements in endometrioma volume (p = 0.04), IL-6 levels (p = 0.002), and pain (p < 0.001), although quality of life and sexual function did not improve substantially [101].
- Omega-3 Fatty Acids: Omega-3 polyunsaturated fatty acids (PUFAs) exert anti-inflammatory effects by modulating eicosanoid pathways, reducing pro-inflammatory prostaglandins and cytokines. PUFAs have been studied for their potential therapeutic effects on endometriosis [104]. These fatty acids, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are known to modulate inflammatory pathways, which could theoretically alleviate symptoms associated with endometriosis, such as pelvic pain. However, the evidence from clinical trials remains inconclusive, with some studies showing benefits in animal models but limited evidence of significant effects in human trials. A pilot trial indicated the feasibility of conducting larger studies to evaluate the efficacy of omega-3 PUFAs for endometriosis-associated pain, although no significant pain reduction was observed in the short term [105].
- Curcumin: The active compound in turmeric, curcumin, is a powerful antioxidant and anti-inflammatory agent [106]. It inhibits NF-kB activation and reduces cytokine production, with preclinical studies indicating its potential to reduce lesion growth and pain [106]. Despite promising preclinical results, a clinical trial indicated that curcumin did not significantly alleviate pain or improve the quality of life in women with endometriosis, suggesting that its efficacy in humans may be limited or require further investigation [107].
3.6. Genetic and Epigenetic Pathways
3.7. Microbiota Dysbiosis
3.8. Metabolic Reprogramming
3.9. Neuropathic Pain Modulators
3.9.1. Neuroinflammation and Central Sensitization
3.9.2. Endocannabinoid Dysfunction
4. Off-Label Selected Non-Hormonal Therapies
4.1. The Renin–Angiotensin System
- Mechanism of Action
- Preclinical and Clinical Evidence:
- ✓
- Reduce VEGF-mediated angiogenesis, thereby limiting lesion vascularization and growth [164].
- ✓
- Suppress inflammatory cytokine production, including IL-6 and TNF-α, which may contribute to pain reduction [164].
- ✓
- Decrease fibrosis and adhesion formation, potentially improving reproductive outcomes by mitigating tissue remodeling and scarring [184].
- Limitations:
- Safety Profile:
- Future Directions:
4.2. Antibiotic Therapy in Endometriosis: Emerging Insights
- Mechanism of Action:
- Preclinical and Clinical Evidence:
- Limitations:
- Safety Profile:
- Future Directions:
5. Benefits and Limitations of Non-Hormonal Therapies
- Challenges and Future Directions
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Endometriosis. Available online: https://www.who.int/news-room/fact-sheets/detail/endometriosis (accessed on 25 May 2025).
- Gete, D.G.; Doust, J.; Mortlock, S.; Montgomery, G.; Mishra, G.D. Impact of Endometriosis on Women’s Health-Related Quality of Life: A National Prospective Cohort Study. Maturitas 2023, 174, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mayo Clinic. Endometriosis. n.d. Available online: https://www.mayoclinic.org/diseases-conditions/endometriosis/symptoms-causes/syc-20354656 (accessed on 25 March 2025).
- Menni, K.; Facchetti, L.; Cabassa, P. Extragenital Endometriosis: Assessment with MR Imaging. A Pictorial Review. Br. J. Radiol. 2016, 89, 20150672. [Google Scholar] [CrossRef] [PubMed]
- Nezhat, C.R.; Oskotsky, T.T.; Robinson, J.F.; Fisher, S.J.; Tsuei, A.; Liu, B.; Irwin, J.C.; Gaudilliere, B.; Sirota, M.; Stevenson, D.K.; et al. Real World Perspectives on Endometriosis Disease Phenotyping through Surgery, Omics, Health Data, and Artificial Intelligence. npj Womens Health 2025, 3, 8. [Google Scholar] [CrossRef] [PubMed]
- Tosti, C.; Pinzauti, S.; Santulli, P.; Chapron, C.; Petraglia, F. Pathogenetic Mechanisms of Deep Infiltrating Endometriosis. Reprod. Sci. 2015, 22, 1053–1059. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-Y.; Koo, Y.-J.; Lee, D.-H. Classification of Endometriosis. Yeungnam Univ. J. Med. 2021, 38, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, M.M. Weighing up GnRH Agonist Therapy for Endometriosis: Outcomes and the Treatment Paradigm. Expert Opin. Pharmacother. 2025, 26, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Gan, Z.; Wang, Y.; Hu, D.; Zhang, L.; Ye, F.; Duan, P. A Noninvasive Menstrual Blood-Based Diagnostic Platform for Endometriosis Using Digital Droplet Enzyme-Linked Immunosorbent Assay and Single-Cell RNA Sequencing. Research 2025, 8, 0652. [Google Scholar] [CrossRef] [PubMed]
- Harder, C.; Velho, R.V.; Brandes, I.; Sehouli, J.; Mechsner, S. Assessing the True Prevalence of Endometriosis: A Narrative Review of Literature Data. Int. J. Gynecol. Obstet. 2024, 167, 883–900. [Google Scholar] [CrossRef] [PubMed]
- Benlioglu, C.; Telek, S.B.; Ata, B. Reproductive Outcomes in Infertile Women with Endometriosis Undergoing ART. Gynecol. Obstet. Investig. 2025; ahead of print. [Google Scholar] [CrossRef]
- Moen, M.H.; Magnus, P. The Familial Risk of Endometriosis. Acta Obstet. Gynecol. Scand. 1993, 72, 560–564. [Google Scholar] [CrossRef] [PubMed]
- Guare, L.A.; Das, J.; Caruth, L.; Rajagopalan, A.; Akerele, A.T.; Brumpton, B.M.; Chen, T.-T.; Kottyan, L.; Lin, Y.-F.; Moreno, E.; et al. Expanding the Genetic Landscape of Endometriosis: Integrative-Omics Analyses Uncover Key Pathways from a Multi-Ancestry Study of over 900,000 Women. medRxiv 2024. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Li, W.; Sun, X. The Association between Genetically Predicted Systemic Inflammatory Regulators and Endometriosis: A Bidirectional Mendelian Randomization Study. Medicine 2024, 103, e38972. [Google Scholar] [CrossRef] [PubMed]
- Nnoaham, K.E.; Webster, P.; Kumbang, J.; Kennedy, S.H.; Zondervan, K.T. Is Early Age at Menarche a Risk Factor for Endometriosis? A Systematic Review and Meta-Analysis of Case-Control Studies. Fertil. Steril. 2012, 98, 702–712.e6. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Cheng, Y.; Bu, H.; Zhao, Y.; Zhao, W. Length of Menstrual Cycle and Risk of Endometriosis: A Meta-Analysis of 11 Case–Control Studies. Medicine 2016, 95, e2922. [Google Scholar] [CrossRef] [PubMed]
- Darrow, S.L.; Vena, J.E.; Batt, R.E.; Zielezny, M.A.; Michalek, A.M.; Selman, S. Menstrual Cycle Characteristics and the Risk of Endometriosis. Epidemiology 1993, 4, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Treloar, S.A.; Bell, T.A.; Nagle, C.M.; Purdie, D.M.; Green, A.C. Early Menstrual Characteristics Associated with Subsequent Diagnosis of Endometriosis. Am. J. Obstet. Gynecol. 2010, 202, 534.e1–534.e6. [Google Scholar] [CrossRef] [PubMed]
- El-Hadad, S.; Lässer, D.; Sachs, M.-K.; Schwartz, A.S.K.; Haeberlin, F.; Von Orelli, S.; Eberhard, M.; Leeners, B. Dysmenorrhea in Adolescents Requires Careful Investigation of Endometriosis—An Analysis of Early Menstrual Experiences in a Large Case-Control Study. Front. Reprod. Health 2023, 5, 1121515. [Google Scholar] [CrossRef] [PubMed]
- Nicolaus, K.; Bräuer, D.; Sczesny, R.; Lehmann, T.; Diebolder, H.; Runnebaum, I.B. Unexpected Coexistent Endometriosis in Women with Symptomatic Uterine Leiomyomas Is Independently Associated with Infertility, Nulliparity and Minor Myoma Size. Arch. Gynecol. Obstet. 2019, 300, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Parazzini, F.; Esposito, G.; Tozzi, L.; Noli, S.; Bianchi, S. Epidemiology of Endometriosis and Its Comorbidities. Eur. J. Obstet. Gynecol. Reprod. Biol. 2017, 209, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Harlev, A.; Agarwal, A.; Pandithurai, E. Predisposing and Protective Factors of Endometriosis. In Endometriosis; SpringerBriefs in Reproductive Biology; Springer International Publishing: Cham, Switzerland, 2015; pp. 7–15. ISBN 978-3-319-18307-7. [Google Scholar]
- Bulun, S.E. Endometriosis Caused by Retrograde Menstruation: Now Demonstrated by DNA Evidence. Fertil. Steril. 2022, 118, 535–536. [Google Scholar] [CrossRef] [PubMed]
- D’Hooghe, T.M. Endometriosis, Retrograde Menstruation and Peritoneal Inflammation in Women and in Baboons. Hum. Reprod. Update 2002, 8, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Sampson, J.A. Peritoneal Endometriosis Due to the Menstrual Dissemination of Endometrial Tissue into the Peritoneal Cavity. Am. J. Obstet. Gynecol. 1927, 14, 422–469. [Google Scholar] [CrossRef]
- Vercellini, P.; Salmeri, N.; Somigliana, E.; Piccini, M.; Caprara, F.; Viganò, P.; De Matteis, S. Müllerian Anomalies and Endometriosis as Potential Explanatory Models for the Retrograde Menstruation/Implantation and the Embryonic Remnants/Celomic Metaplasia Pathogenic Theories: A Systematic Review and Meta-Analysis. Hum. Reprod. 2024, 39, 1460–1470. [Google Scholar] [CrossRef] [PubMed]
- Pitot, M.A.; Bookwalter, C.A.; Dudiak, K.M. Müllerian Duct Anomalies Coincident with Endometriosis: A Review. Abdom. Radiol. 2020, 45, 1723–1740. [Google Scholar] [CrossRef] [PubMed]
- Lamceva, J.; Uljanovs, R.; Strumfa, I. The Main Theories on the Pathogenesis of Endometriosis. Int. J. Mol. Sci. 2023, 24, 4254. [Google Scholar] [CrossRef] [PubMed]
- Shah, D.K.; Correia, K.F.; Vitonis, A.F.; Missmer, S.A. Body Size and Endometriosis: Results from 20 Years of Follow-up within the Nurses’ Health Study II Prospective Cohort. Hum. Reprod. 2013, 28, 1783–1792. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, W. Association between Body Mass Index and Endometriosis Risk: A Meta-Analysis. Oncotarget 2017, 8, 46928–46936. [Google Scholar] [CrossRef] [PubMed]
- Lafay Pillet, M.-C.; Schneider, A.; Borghese, B.; Santulli, P.; Souza, C.; Streuli, I.; De Ziegler, D.; Chapron, C. Deep Infiltrating Endometriosis Is Associated with Markedly Lower Body Mass Index: A 476 Case-Control Study. Hum. Reprod. 2012, 27, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Rowlands, I.J.; Hockey, R.; Abbott, J.A.; Montgomery, G.W.; Mishra, G.D. Body Mass Index and the Diagnosis of Endometriosis: Findings from a National Data Linkage Cohort Study. Obes. Res. Clin. Pract. 2022, 16, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Giudice, L.C. Endometriosis. N. Engl. J. Med. 2010, 362, 2389–2398. [Google Scholar] [CrossRef] [PubMed]
- Vannuccini, S.; Clemenza, S.; Rossi, M.; Petraglia, F. Hormonal Treatments for Endometriosis: The Endocrine Background. Rev. Endocr. Metab. Disord. 2022, 23, 333–355. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, K.D.A.; Malvezzi, H.; Dobo, C.; Neme, R.M.; Filippi, R.Z.; Aloia, T.P.A.; Prado, E.R.; Meola, J.; Piccinato, C.D.A. Site-Specific Regulation of Sulfatase and Aromatase Pathways for Estrogen Production in Endometriosis. Front. Mol. Biosci. 2022, 9, 854991. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, S.; Canis, M.; Pouly, J.-L.; Déchelotte, P.J.; Mage, G. Analysis of Aromatase and 17β-Hydroxysteroid Dehydrogenase Type 2 Messenger Ribonucleic Acid Expression in Deep Endometriosis and Eutopic Endometrium Using Laser Capture Microdissection. Fertil. Steril. 2006, 85, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, H.; Shozu, M. Aromatase Expression in Endometriosis and Its Significance. In Endometriosis; Harada, T., Ed.; Springer: Tokyo, Japan, 2014; pp. 155–178. ISBN 978-4-431-54420-3. [Google Scholar]
- Chantalat, E.; Valera, M.-C.; Vaysse, C.; Noirrit, E.; Rusidze, M.; Weyl, A.; Vergriete, K.; Buscail, E.; Lluel, P.; Fontaine, C.; et al. Estrogen Receptors and Endometriosis. Int. J. Mol. Sci. 2020, 21, 2815. [Google Scholar] [CrossRef] [PubMed]
- Bulun, S.; Monsavais, D.; Pavone, M.; Dyson, M.; Xue, Q.; Attar, E.; Tokunaga, H.; Su, E. Role of Estrogen Receptor-β in Endometriosis. Semin. Reprod. Med. 2012, 30, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Jeng, C.-J.; Chuang, L.; Shen, J. A Comparison of Progestogens or Oral Contraceptives and Gonadotropin-Releasing Hormone Agonists for the Treatment of Endometriosis: A Systematic Review. Expert Opin. Pharmacother. 2014, 15, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Rojek, K.; Juda, A.; Kamińska, M.; Strzoda, A.; Strzoda, A.; Sowiński, W.; Zdybel, M.; Strzoda, A. Progestins and Combined Oral Contraceptives in the Hormonal Treatment of Endometriosis—A Review. Eur. J. Clin. Exp. Med. 2023, 21, 397–404. [Google Scholar] [CrossRef]
- Kauppila, A. Reappraisal of Progestins in Endometriosis Therapy. Eur. J. Endocrinol. 1998, 138, 134–136. [Google Scholar] [CrossRef] [PubMed]
- Schweppe, K.-W. The Place of Dydrogesterone in the Treatment of Endometriosis and Adenomyosis. Maturitas 2009, 65, S23–S27. [Google Scholar] [CrossRef] [PubMed]
- Oosterlynck, D.J.; Meuleman, C.; Waer, M.; Vandeputte, M.; Koninckx, P.R. The Natural Killer Activity of Peritoneal Fluid Lymphocytes Is Decreased in Women with Endometriosis. Fertil. Steril. 1992, 58, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Lebovic, D.I.; Mueller, M.D.; Taylor, R.N. Immunobiology of Endometriosis. Fertil. Steril. 2001, 75, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gazvani, R.; Templeton, A. Peritoneal Environment, Cytokines and Angiogenesis in the Pathophysiology of Endometriosis. Reproduction 2002, 123, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Harada, T.; Iwabe, T.; Terakawa, N. Role of Cytokines in Endometriosis. Fertil. Steril. 2001, 76, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Zeng, K.; Peng, Q.; Wu, X.; Lei, X. Clinical Significance of Serum Th1/Th2 Cytokines in Patients with Endometriosis. Women Health 2023, 63, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Abramiuk, M.; Grywalska, E.; Małkowska, P.; Sierawska, O.; Hrynkiewicz, R.; Niedźwiedzka-Rystwej, P. The Role of the Immune System in the Development of Endometriosis. Cells 2022, 11, 2028. [Google Scholar] [CrossRef] [PubMed]
- Le, N.X.H.; Loret De Mola, J.R.; Bremer, P.; Groesch, K.; Wilson, T.; Diaz-Sylvester, P.; Braundmeier-Fleming, A.G. Alteration of Systemic and Uterine Endometrial Immune Populations in Patients with Endometriosis. Am. J. Rep. Immunol. 2021, 85, e13362. [Google Scholar] [CrossRef] [PubMed]
- Sisnett, D.J.; Zutautas, K.B.; Miller, J.E.; Lingegowda, H.; Ahn, S.H.; McCallion, A.; Bougie, O.; Lessey, B.A.; Tayade, C. The Dysregulated IL-23/TH17 Axis in Endometriosis Pathophysiology. J. Immunol. 2024, 212, 1428–1441. [Google Scholar] [CrossRef] [PubMed]
- Berbic, M.; Fraser, I.S. Regulatory T Cells and Other Leukocytes in the Pathogenesis of Endometriosis. J. Reprod. Immunol. 2011, 88, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Olkowska-Truchanowicz, J.; Bocian, K.; Maksym, R.B.; Bialoszewska, A.; Wlodarczyk, D.; Baranowski, W.; Zabek, J.; Korczak-Kowalska, G.; Malejczyk, J. CD4+ CD25+ FOXP3+ Regulatory T Cells in Peripheral Blood and Peritoneal Fluid of Patients with Endometriosis. Hum. Reprod. 2013, 28, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.N.; Yamamoto, K.; Fujishita, A.; Muto, H.; Koshiba, A.; Kuroboshi, H.; Saito, S.; Teramukai, S.; Nakashima, M.; Kitawaki, J. Differential Levels of Regulatory T Cells and T-Helper-17 Cells in Women With Early and Advanced Endometriosis. J. Clin. Endocrinol. Metab. 2019, 104, 4715–4729. [Google Scholar] [CrossRef] [PubMed]
- Shigesi, N.; Kvaskoff, M.; Kirtley, S.; Feng, Q.; Fang, H.; Knight, J.C.; Missmer, S.A.; Rahmioglu, N.; Zondervan, K.T.; Becker, C.M. The Association between Endometriosis and Autoimmune Diseases: A Systematic Review and Meta-Analysis. Hum. Reprod. Update 2019, 25, 486–503. [Google Scholar] [CrossRef] [PubMed]
- Sinaii, N. High Rates of Autoimmune and Endocrine Disorders, Fibromyalgia, Chronic Fatigue Syndrome and Atopic Diseases among Women with Endometriosis: A Survey Analysis. Hum. Reprod. 2002, 17, 2715–2724. [Google Scholar] [CrossRef] [PubMed]
- Diamanti-Kandarakis, E.; Bourguignon, J.-P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement. Endocr. Rev. 2009, 30, 293–342. [Google Scholar] [CrossRef] [PubMed]
- Heindel, J.J.; Blumberg, B.; Cave, M.; Machtinger, R.; Mantovani, A.; Mendez, M.A.; Nadal, A.; Palanza, P.; Panzica, G.; Sargis, R.; et al. Metabolism Disrupting Chemicals and Metabolic Disorders. Reprod. Toxicol. 2017, 68, 3–33. [Google Scholar] [CrossRef] [PubMed]
- Rudel, R.A.; Attfield, K.R.; Schifano, J.N.; Brody, J.G. Chemicals Causing Mammary Gland Tumors in Animals Signal New Directions for Epidemiology, Chemicals Testing, and Risk Assessment for Breast Cancer Prevention. Cancer 2007, 109, 2635–2666. [Google Scholar] [CrossRef] [PubMed]
- Mustieles, V.; Pérez-Lobato, R.; Olea, N.; Fernández, M.F. Bisphenol A: Human Exposure and Neurobehavior. NeuroToxicology 2015, 49, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Vercellini, P.; Viganò, P.; Somigliana, E.; Fedele, L. Endometriosis: Pathogenesis and Treatment. Nat. Rev. Endocrinol. 2014, 10, 261–275. [Google Scholar] [CrossRef] [PubMed]
- Dunselman, G.A.J.; Vermeulen, N.; Becker, C.; Calhaz-Jorge, C.; D’Hooghe, T.; De Bie, B.; Heikinheimo, O.; Horne, A.W.; Kiesel, L.; Nap, A.; et al. ESHRE Guideline: Management of Women with Endometriosis. Hum. Reprod. 2014, 29, 400–412. [Google Scholar] [CrossRef] [PubMed]
- The ESHRE Guideline Group on RPL; Bender Atik, R.; Christiansen, O.B.; Elson, J.; Kolte, A.M.; Lewis, S.; Middeldorp, S.; Mcheik, S.; Peramo, B.; Quenby, S.; et al. ESHRE Guideline: Recurrent Pregnancy Loss: An Update in 2022. Hum. Reprod. Open 2022, 2023, hoad002. [Google Scholar] [CrossRef] [PubMed]
- The Practice Committee of the American Society for Reproductive Medicine. Endometriosis and Infertility: A Committee Opinion. Fertil. Steril. 2012, 98, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Armour, M.; Sinclair, J.; Chalmers, K.J.; Smith, C.A. Self-Management Strategies amongst Australian Women with Endometriosis: A National Online Survey. BMC Complement. Altern. Med. 2019, 19, 17. [Google Scholar] [CrossRef] [PubMed]
- Koga, K.; Osuga, Y.; Yoshino, O.; Hirota, Y.; Yano, T.; Tsutsumi, O.; Taketani, Y. Elevated Interleukin-16 Levels in the Peritoneal Fluid of Women with Endometriosis May Be a Mechanism for Inflammatory Reactions Associated with Endometriosis. Fertil. Steril. 2005, 83, 878–882. [Google Scholar] [CrossRef] [PubMed]
- Kuteken, F.S.; Lucia, C.; Lancellotti, P. Expressão de Mediadores Neurotróficos e Pró-Inflamatórios Na Endometriose de Reto e Sigmoide Expression of Neurotrophic and Inflammatory Mediators in Rectosigmoid Endometriosis. Rev. Bras. Ginecol. Obstet. 2012, 34, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Scholl, B.; Bersinger, N.A.; Kuhn, A.; Mueller, M.D. Correlation between Symptoms of Pain and Peritoneal Fluid Inflammatory Cytokine Concentrations in Endometriosis. Gynecol. Endocrinol. 2009, 25, 701–706. [Google Scholar] [CrossRef] [PubMed]
- Riley, C.F.; Moen, M.H.; Videm, V. Inflammatory Markers in Endometriosis: Reduced Peritoneal Neutrophil Response in Minimal Endometriosis. Acta Obstet. Gynecol. Scand. 2007, 86, 877–881. [Google Scholar] [CrossRef] [PubMed]
- Capellino, S.; Montagna, P.; Villaggio, B.; Sulli, A.; Soldano, S.; Ferrero, S.; Remorgida, V.; Cutolo, M. Role of Estrogens in Inflammatory Response: Expression of Estrogen Receptors in Peritoneal Fluid Macrophages from Endometriosis. Ann. N. Y. Acad. Sci. 2006, 1069, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Montagna, P.; Capellino, S.; Villaggio, B.; Remorgida, V.; Ragni, N.; Cutolo, M.; Ferrero, S. Peritoneal Fluid Macrophages in Endometriosis: Correlation between the Expression of Estrogen Receptors and Inflammation. Fertil. Steril. 2008, 90, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z. Inflammation and Endometriosis. Front. Biosci. 2016, 21, 941–948. [Google Scholar] [CrossRef] [PubMed]
- Vallvé-Juanico, J.; Houshdaran, S.; Giudice, L.C. The Endometrial Immune Environment of Women with Endometriosis. Hum. Reprod. Update 2019, 25, 565–592. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Liu, X.; Guo, S.-W. Interleukin-33 Derived from Endometriotic Lesions Promotes Fibrogenesis through Inducing the Production of Profibrotic Cytokines by Regulatory T Cells. Biomedicines 2022, 10, 2893. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-G.; Chen, J.-J.; Zhou, H.-L.; Wu, Y.; Lin, F.; Shi, J.; Wu, H.-Z.; Xiao, H.-Q.; Wang, W. Identification and Validation of the Signatures of Infiltrating Immune Cells in the Eutopic Endometrium Endometria of Women With Endometriosis. Front. Immunol. 2021, 12, 671201. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Wang, X.; Shi, Z.; Jiang, Y.; Zheng, B.; Xu, L.; Zhou, S. Understanding Endometriosis from an Immunomicroenvironmental Perspective. Chin. Med. J. 2023, 136, 1897–1909. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Mori, T.; Ito, F.; Koshiba, A.; Takaoka, O.; Kataoka, H.; Maeda, E.; Okimura, H.; Mori, T.; Kitawaki, J. Exacerbation of Endometriosis Due To Regulatory T-Cell Dysfunction. J. Clin. Endocrinol. Metab. 2017, 102, 3206–3217. [Google Scholar] [CrossRef] [PubMed]
- Bulun, S.E.; Nezhat, C. Aromatase, microRNA, and Inflammation: A Complex Relationship. Fertil. Steril. 2016, 106, 552–553. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.; Cruz, M.L.; Chompre, G.; Hernández, S.; Isidro, R.A.; Flores, I.; Appleyard, C.B. Influence of Stress on the Vitamin D-Vitamin D Receptor System, Macrophages, and the Local Inflammatory Milieu in Endometriosis. Reprod. Sci. 2020, 27, 2175–2186. [Google Scholar] [CrossRef] [PubMed]
- Gołąbek-Grenda, A.; Juzwa, W.; Kaczmarek, M.; Olejnik, A. Resveratrol and Its Natural Analogs Mitigate Immune Dysregulation and Oxidative Imbalance in the Endometriosis Niche Simulated in a Co-Culture System of Endometriotic Cells and Macrophages. Nutrients 2024, 16, 3483. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Chen, Y.; Gu, X.; Miao, M.; Hu, D.; Zhou, H.; Chen, J.; Teichmann, A.T.; Yang, Y. Review of the Potential Therapeutic Effects and Molecular Mechanisms of Resveratrol on Endometriosis. Int. J. Womens Health 2023, 15, 741–763. [Google Scholar] [CrossRef] [PubMed]
- Mikuš, M.; Vitale, S.G.; Ćorić, M.; Zajec, V.; Ciebiera, M.; Carugno, J.; D’alterio, M.N.; Herman, M.; Puževski, T.; Angioni, S. State of the Art, New Treatment Strategies, and Emerging Drugs for Non-Hormonal Treatment of Endometriosis: A Systematic Review of Randomized Control Trials. Gynecol. Endocrinol. 2022, 38, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Dolmans, M.-M.; Donnez, J. Emerging Drug Targets for Endometriosis. Biomolecules 2022, 12, 1654. [Google Scholar] [CrossRef] [PubMed]
- Sanamiri, K.; Mahdian, S.; Moini, A.; Shahhoseini, M. Non-Hormonal Therapy for Endometriosis Based on Angiogenesis Oxidative Stress and Inflammation. Int. J. Fertil. Steril. 2024, 18, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Maybin, J.A.; Critchley, H.O.D.; Jabbour, H.N. Inflammatory Pathways in Endometrial Disorders. Mol. Cell. Endocrinol. 2011, 335, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Thiruchelvam, U.; Wingfield, M.; O’Farrelly, C. Natural Killer Cells: Key Players in Endometriosis. Am. J. Rep. Immunol. 2015, 74, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Reis, J.L.; Rosa, N.N.; Ângelo-Dias, M.; Martins, C.; Borrego, L.M.; Lima, J. Natural Killer Cell Receptors and Endometriosis: A Systematic Review. Int. J. Mol. Sci. 2022, 24, 331. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-M.; Yang, W.-X. Epithelial-to-Mesenchymal Transition in the Development of Endometriosis. Oncotarget 2017, 8, 41679–41689. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Duan, J.; Olson, M.; Fazleabas, A.; Guo, S.-W. Cellular Changes Consistent With Epithelial–Mesenchymal Transition and Fibroblast-to-Myofibroblast Transdifferentiation in the Progression of Experimental Endometriosis in Baboons. Reprod. Sci. 2016, 23, 1409–1421. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.B.; Zhou, F.; Zhu, H.Y.; Huang, D.; Jin, X.Y.; Li, C.; Dai, Y.; Pan, Y.B.; Zhang, S.Y. Transforming Growth Factor Beta1 from Endometriomas Promotes Fibrosis in Surrounding Ovarian Tissues via Smad2/3 Signaling†. Biol. Reprod. 2017, 97, 873–882. [Google Scholar] [CrossRef] [PubMed]
- McLaren, J. Vascular Endothelial Growth Factor and Endometriotic Angiogenesis. Hum. Reprod. Update 2000, 6, 45–55. [Google Scholar] [CrossRef] [PubMed]
- McLaren, J.; Prentice, A.; Charnock-Jones, D.S.; Millican, S.A.; Müller, K.H.; Sharkey, A.M.; Smith, S.K. Vascular Endothelial Growth Factor Is Produced by Peritoneal Fluid Macrophages in Endometriosis and Is Regulated by Ovarian Steroids. J. Clin. Investig. 1996, 98, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Kianpour, M.; Nematbakhsh, M.; Ahmadi, S.M.; Jafarzadeh, M.; Hajjarian, M.; Pezeshki, Z.; Safari, T.; Eshraghi-Jazi, F. Serum and Peritoneal Fluid Levels of Vascular Endothelial Growth Factor in Women with Endometriosis. Int. J. Fertil. Steril. 2013, 7, 96–99. [Google Scholar] [PubMed]
- Chung, M.S.; Han, S.J. Endometriosis-Associated Angiogenesis and Anti-Angiogenic Therapy for Endometriosis. Front. Glob. Womens Health 2022, 3, 856316. [Google Scholar] [CrossRef] [PubMed]
- Malvezzi, H.; Cestari, B.A.; Meola, J.; Podgaec, S. Higher Oxidative Stress in Endometriotic Lesions Upregulates Senescence-Associated P16ink4a and β-Galactosidase in Stromal Cells. Int. J. Mol. Sci. 2023, 24, 914. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.J.; Kim, H.Y. Oxidative Stress and Endometriosis. Kosin Med. J. 2018, 33, 135–140. [Google Scholar] [CrossRef]
- Clower, L.; Fleshman, T.; Geldenhuys, W.J.; Santanam, N. Targeting Oxidative Stress Involved in Endometriosis and Its Pain. Biomolecules 2022, 12, 1055. [Google Scholar] [CrossRef] [PubMed]
- Surya Udayana, I.G.N.B.; Praja Adnyana, I.B.P.; Diningrat, M.A.; Setiawan, W.A. Association of Endometriosis and Oxidative Stress. Eur. J. Med. Health Sci. 2022, 4, 109–113. [Google Scholar] [CrossRef]
- Daud, V.P.A.; Dyarma, K.R.; Farida, L.S. Antioxidant Agent to Improve Endometriosis Related Pain (Dysmenorrhea, Dyspareunia, Pelvic Pain): A Systematic Review and Meta-Analysis. Asian J. Health Res. 2024, 3, 79–86. [Google Scholar] [CrossRef]
- Akhtar, M.N.; Saeed, R.; Saeed, F.; Asghar, A.; Ghani, S.; Ateeq, H.; Ahmed, A.; Rasheed, A.; Afzaal, M.; Waheed, M.; et al. Silymarin: A Review on Paving the Way towards Promising Pharmacological Agent. Int. J. Food Prop. 2023, 26, 2256–2272. [Google Scholar] [CrossRef]
- Mirzaei, N.; Sadatmahalleh, S.J.; Rouholamin, S.; Nasiri, M. Effect of Silymarin on Interleukin-6 Level and Size of Endometrioma Lesions in Women with Ovarian Endometriosis: A Randomized, Double-Blind Placebo-Controlled Trial. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Anastasi, E.; Scaramuzzino, S.; Viscardi, M.F.; Viggiani, V.; Piccioni, M.G.; Cacciamani, L.; Merlino, L.; Angeloni, A.; Muzii, L.; Porpora, M.G. Efficacy of N-Acetylcysteine on Endometriosis-Related Pain, Size Reduction of Ovarian Endometriomas, and Fertility Outcomes. Int. J. Environ. Res. Public Health 2023, 20, 4686. [Google Scholar] [CrossRef] [PubMed]
- Porpora, M.G.; Brunelli, R.; Costa, G.; Imperiale, L.; Krasnowska, E.K.; Lundeberg, T.; Nofroni, I.; Piccioni, M.G.; Pittaluga, E.; Ticino, A.; et al. A Promise in the Treatment of Endometriosis: An Observational Cohort Study on Ovarian Endometrioma Reduction by N-Acetylcysteine. Evid. Based Complement. Altern. Med. 2013, 2013, 240702. [Google Scholar] [CrossRef] [PubMed]
- Harzif, A.K.; Ummah, N.; Puspawardani, A.R.; Nurbaeti, P.; Wiweko, B. Effect of Omega-3 Fatty Acids on Endometriosis: A Systematic Review. Bali Med. J. 2024, 13, 1374–1379. [Google Scholar] [CrossRef]
- Abokhrais, I.M.; Denison, F.C.; Whitaker, L.H.R.; Saunders, P.T.K.; Doust, A.; Williams, L.J.; Horne, A.W. A Two-Arm Parallel Double-Blind Randomised Controlled Pilot Trial of the Efficacy of Omega-3 Polyunsaturated Fatty Acids for the Treatment of Women with Endometriosis-Associated Pain (PurFECT1). PLoS ONE 2020, 15, e0227695. [Google Scholar] [CrossRef] [PubMed]
- Vallée, A.; Lecarpentier, Y. Curcumin and Endometriosis. Int. J. Mol. Sci. 2020, 21, 2440. [Google Scholar] [CrossRef] [PubMed]
- Gudarzi, R.; Shabani, F.; Mohammad-Alizadeh-Charandabi, S.; Naghshineh, E.; Shaseb, E.; Mirghafourvand, M. Effect of Curcumin on Painful Symptoms of Endometriosis: A Triple-blind Randomized Controlled Trial. Phytother. Res. 2024, 38, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, Y.; Steinthorsdottir, V.; Morris, A.P.; Fassbender, A.; Rahmioglu, N.; De Vivo, I.; Buring, J.E.; Zhang, F.; Edwards, T.L.; Jones, S.; et al. Meta-Analysis Identifies Five Novel Loci Associated with Endometriosis Highlighting Key Genes Involved in Hormone Metabolism. Nat. Commun. 2017, 8, 15539. [Google Scholar] [CrossRef] [PubMed]
- Painter, J.N.; Anderson, C.A.; Nyholt, D.R.; Macgregor, S.; Lin, J.; Lee, S.H.; Lambert, A.; Zhao, Z.Z.; Roseman, F.; Guo, Q.; et al. Genome-Wide Association Study Identifies a Locus at 7p15.2 Associated with Endometriosis. Nat. Genet. 2011, 43, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.-W. Epigenetics of Endometriosis. Mol. Hum. Reprod. 2009, 15, 587–607. [Google Scholar] [CrossRef] [PubMed]
- Méar, L.; Herr, M.; Fauconnier, A.; Pineau, C.; Vialard, F. Polymorphisms and Endometriosis: A Systematic Review and Meta-Analyses. Hum. Reprod. Update 2020, 26, 73–103. [Google Scholar] [CrossRef] [PubMed]
- Akbar, A. In Silico Analysis of Non-Coding RNA Regulation in Human Gene Expression: A Systematic Computational Approach to Understanding Regulatory Networks. bioRxiv 2025. [Google Scholar] [CrossRef]
- Zhang, T. Non-Coding RNAs in Tumor Biology: Exploring miRNAs, lncRNAs, and circRNAs Roles and Therapeutic Potentials. Theor. Nat. Sci. 2025, 69, 35–40. [Google Scholar] [CrossRef]
- Yuad, H.; Utama, B.I.; Lipoeto, N.I.; Putra, A.E. Gut Microbiota Profile in Endometriosis Patients at Dr. M. Djamil Padang, West Sumatra, Indonesia. J. OBGIN EMAS 2025, 9, 134–145. [Google Scholar] [CrossRef]
- Verma, S.; Sowdhamini, R. Toll-like Receptor 4 Pathway Evolutionary Trajectory and Functional Emergence. Front. Immunol. 2025, 15, 1494017. [Google Scholar] [CrossRef] [PubMed]
- Meria, S.Z.; Yuad, H.; Putra, A.E. Comparison of Vaginal Microbiota Profiles in Patients With Endometriosis and Without Endometriosis. Andalas Obstet. Gynecol. J. 2025, 9, 74–85. [Google Scholar] [CrossRef]
- Horne, A.W.; Ahmad, S.F.; Carter, R.; Simitsidellis, I.; Greaves, E.; Hogg, C.; Morton, N.M.; Saunders, P.T.K. Repurposing Dichloroacetate for the Treatment of Women with Endometriosis. Proc. Natl. Acad. Sci. USA 2019, 116, 25389–25391. [Google Scholar] [CrossRef] [PubMed]
- Chiara, F.; Allegra, S.; Caudana, M.; Mula, J.; Turco, D.; Liuzzi, S.; Puccinelli, M.P.; Mengozzi, G.; De Francia, S. Central Serous Chorioretinopathy in Endometriosis Treatment with Progestogen: A Metabolic Understanding. Life 2025, 15, 144. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Liu, L.; Chai, W.; Zhao, T.; Jin, X.; Guo, X.; Han, L.; Yuan, C. Dichloroacetic Acid Upregulates Apoptosis of Ovarian Cancer Cells by Regulating Mitochondrial Function. OncoTargets Ther. 2019, 12, 1729–1739. [Google Scholar] [CrossRef] [PubMed]
- Alkarakooly, Z.; Al-Anbaky, Q.A.; Kannan, K.; Ali, N. Metabolic Reprogramming by Dichloroacetic Acid Potentiates Photodynamic Therapy of Human Breast Adenocarcinoma MCF-7 Cells. PLoS ONE 2018, 13, e0206182. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.G.; Mak, T.W. Metabolic Targeting as an Anticancer Strategy: Dawn of a New Era? Sci. STKE 2007, 2007, pe14. [Google Scholar] [CrossRef] [PubMed]
- Harvey, M.E.; Shi, M.; Oh, Y.; Mitchell, D.A.; Slayden, O.D.; MacLean, J.A.; Hayashi, K. Multiple Lesion Inductions Intensify Central Sensitization Driven by Neuroinflammation in a Mouse Model of Endometriosis. bioRxiv 2025. [Google Scholar] [CrossRef] [PubMed]
- Scarpina, F.; Navarra, M.E.; Varallo, G.; Bernorio, R. The Role of Interoceptive Sensibility on Central Sensitization to Pain in Vulvodynia. J. Sex. Med. 2025, 22, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Whitaker, L.H.R.; Page, C.; Morgan, C.; Horne, A.W.; Saunders, P.T.K. Endometriosis: Cannabidiol Therapy for Symptom Relief. Trends Pharmacol. Sci. 2024, 45, 1150–1161. [Google Scholar] [CrossRef] [PubMed]
- Thalia, O.P. Immunomodulation via the Endocannabinoid System: Mechanisms and Therapeutic Potentials. Res. Invent. J. Biol. Appl. Sci. 2024, 4, 7–10. [Google Scholar] [CrossRef]
- Filho, R.F.B.; Marchiori, C.H.; Malheiros, K.D.P. Relationship of the Endocannabinoid System with Hormonal Functions. Middle East Res. J. Med. Sci. 2024, 4, 245–260. [Google Scholar] [CrossRef]
- Kimber-Trojnar, Ż.; Dłuski, D.F.; Wierzchowska-Opoka, M.; Ruszała, M.; Leszczyńska-Gorzelak, B. Metformin as a Potential Treatment Option for Endometriosis. Cancers 2022, 14, 577. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, B.; Sucak, A.; Kilic, S.; Aksakal, O.; Aksoy, Y.; Lortlar, N.; Sut, N.; Gungor, T. Metformin Regresses Endometriotic Implants in Rats by Improving Implant Levels of Superoxide Dismutase, Vascular Endothelial Growth Factor, Tissue Inhibitor of Metalloproteinase-2, and Matrix Metalloproteinase-9. Am. J. Obstet. Gynecol. 2010, 202, 368.e1–368.e8. [Google Scholar] [CrossRef] [PubMed]
- Lasker, N.; Banu, J.; Munira, S.M.; Al Tarique, M.M.; Anwary, S.A.; Ghosh, T.; Sultana, S.; Laila, R.; Akter, A. Effects of Pentoxifylline and Metformin Combination Therapy Compared to Metformin Alone in Infertile Women with Symptomatic Endometrioma. Int. J. Reprod. Contracept. Obstet. Gynecol. 2024, 13, 1369–1375. [Google Scholar] [CrossRef]
- A.Omer, N.; A.Taher, M.; Dh Skheel Aljebory, H. Effect of Metformin Treatment on Some Blood Biomarkers in Women with Endometriosis. Iraqi J. Pharm. Sci. 2017, 25, 28–36. [Google Scholar] [CrossRef]
- Takemura, Y.; Osuga, Y.; Yoshino, O.; Hasegawa, A.; Hirata, T.; Hirota, Y.; Nose, E.; Morimoto, C.; Harada, M.; Koga, K.; et al. Metformin Suppresses Interleukin (IL)-1β-Induced IL-8 Production, Aromatase Activation, and Proliferation of Endometriotic Stromal Cells. J. Clin. Endocrinol. Metab. 2007, 92, 3213–3218. [Google Scholar] [CrossRef] [PubMed]
- Neto Cerqueira, A.C.; Botelho, M.; Rodrigues, A.; Lamas, S.; Araújo, B.; Guimarães, J.T.; Gouveia, A.; Almeida, H.; Neves, D. P-331 Unlocking Metformin’s Potential: Exploring Its Impact on Inflammation and Oxidative Pathways in an Endometriosis Mouse Model. Hum. Reprod. 2024, 39, deae108.695. [Google Scholar] [CrossRef]
- Cheng, J.; Li, C.; Ying, Y.; Lv, J.; Qu, X.; McGowan, E.; Lin, Y.; Zhu, X. Metformin Alleviates Endometriosis and Potentiates Endometrial Receptivity via Decreasing VEGF and MMP9 and Increasing Leukemia Inhibitor Factor and HOXA10. Front. Pharmacol. 2022, 13, 750208. [Google Scholar] [CrossRef] [PubMed]
- Mulyantoro, I.; Indrapraja, O.; Widjiati, W.; Noerpramana, N.P. Effect of Metformin on Bcl-2/Bax Expression Ratio and Endometrial Implants: A Mouse Model in Endometriosis Study. J. Biomed. Transl. Res. 2020, 6, 53–58. [Google Scholar] [CrossRef]
- Shao, X.; Li, C.; Liang, J.; Changzhong, L. Metformin Enhances Epithelial Cell Growth Inhibition via the Protein Kinase–Insulin-like Growth Factor Binding Protein-1 Pathway. J. Obstet. Gynaecol. 2024, 44, 2321651. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.-N.; Zeng, C.; Zhou, Y.; Peng, C.; Zhou, Y.-F.; Xue, Q. Metformin Inhibits StAR Expression in Human Endometriotic Stromal Cells via AMPK-Mediated Disruption of CREB-CRTC2 Complex Formation. J. Clin. Endocrinol. Metab. 2014, 99, 2795–2803. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Xu, J.-N.; Zeng, C.; Li, X.; Zhou, Y.-F.; Qi, Y.; Xue, Q. Metformin Suppresses Prostaglandin E2-Induced Cytochrome P450 Aromatase Gene Expression and Activity via Stimulation of AMP-Activated Protein Kinase in Human Endometriotic Stromal Cells. Reprod. Sci. 2015, 22, 1162–1170. [Google Scholar] [CrossRef] [PubMed]
- Shoshan, Q.; Elshamy, M.; Wageh, A.; Thabet, M. Cabergoline, Metformin and Clomiphene Citrate Therapy in Infertile Female with Mild Endometriosis: A Randomized Clinical Trial. Egypt. J. Fertil. Steril. 2024, 28, 106–111. [Google Scholar] [CrossRef]
- Stochino-Loi, E.; Major, A.L.; Gillon, T.E.R.; Ayoubi, J.-M.; Feki, A.; Bouquet De Joliniere, J. Metformin, the Rise of a New Medical Therapy for Endometriosis? A Systematic Review of the Literature. Front. Med. 2021, 8, 581311. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.; Crawford, T.J.; Allen, C.; Hopewell, S.; Prentice, A. Nonsteroidal Anti-Inflammatory Drugs for Pain in Women with Endometriosis. Cochrane Database Syst. Rev. 2017, 2017, CD004753. [Google Scholar] [CrossRef] [PubMed]
- Cabergoline in the Treatment of Endometriosis-Associated Pain. Available online: https://clinicaltrials.gov/ct2/show/NCT05231060 (accessed on 6 January 2025).
- Pellicer, N.; Galliano, D.; Herraiz, S.; Bagger, Y.Z.; Arce, J.-C.; Pellicer, A. Use of Dopamine Agonists to Target Angiogenesis in Women with Endometriosis. Hum. Reprod. 2021, 36, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Novella-Maestre, E.; Carda, C.; Ruiz-Sauri, A.; Garcia-Velasco, J.A.; Simon, C.; Pellicer, A. Identification and Quantification of Dopamine Receptor 2 in Human Eutopic and Ectopic Endometrium: A Novel Molecular Target for Endometriosis Therapy1. Biol. Reprod. 2010, 83, 866–873. [Google Scholar] [CrossRef] [PubMed]
- DiVasta, A.D.; Stamoulis, C.; Gallagher, J.S.; Laufer, M.R.; Anchan, R.; Hornstein, M.D. Nonhormonal Therapy for Endometriosis: A Randomized, Placebo-Controlled, Pilot Study of Cabergoline versus Norethindrone Acetate. F S Rep. 2021, 2, 454–461. [Google Scholar] [CrossRef] [PubMed]
- The 7 Hottest Biotech Companies Advancing Endometriosis Care. Available online: https://www.labiotech.eu/best-biotech/biotech-companies-endometriosis-therapies/ (accessed on 27 May 2025).
- Groundbreaking Immunotherapy to Target Endometriosis. Available online: https://www.femtechworld.co.uk/pain-conditions/groundbreaking-immunotherapy-to-target-endometriosis// (accessed on 27 May 2025).
- Madasu, C.; Liao, Z.; Parks, S.E.; Sharma, K.L.; Bohren, K.M.; Ye, Q.; Li, F.; Palaniappan, M.; Tan, Z.; Yuan, F.; et al. Identification of Potent Pan-Ephrin Receptor Kinase Inhibitors Using DNA-Encoded Chemistry Technology. Proc. Natl. Acad. Sci. USA 2024, 121, e2322934121. [Google Scholar] [CrossRef] [PubMed]
- Murakami, M.; Sato, H.; Taketomi, Y. Updating Phospholipase A2 Biology. Biomolecules 2020, 10, 1457. [Google Scholar] [CrossRef] [PubMed]
- Perelló, M.; González-Foruria, I.; Castillo, P.; Martínez-Florensa, M.; Lozano, F.; Balasch, J.; Carmona, F. Oral Administration of Pentoxifylline Reduces Endometriosis-Like Lesions in a Nude Mouse Model. Reprod. Sci. 2017, 24, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Grammatis, A.L.; Georgiou, E.X.; Becker, C.M. Pentoxifylline for the Treatment of Endometriosis-Associated Pain and Infertility. Cochrane Database Syst. Rev. 2021, 2021, CD007677. [Google Scholar] [CrossRef] [PubMed]
- Koninckx, P.R.; Craessaerts, M.; Timmerman, D.; Cornillie, F.; Kennedy, S. Anti-TNF- Treatment for Deep Endometriosis-Associated Pain: A Randomized Placebo-Controlled Trial. Hum. Reprod. 2008, 23, 2017–2023. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Song, H.; Shi, G. Anti-TNF-α Treatment for Pelvic Pain Associated with Endometriosis. In Cochrane Database of Systematic Reviews; The Cochrane Collaboration, Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2010; p. CD008088.pub2. [Google Scholar]
- Domiciano, C.B.; Costa Filho, A.; Camilo Neto, G.; Felipe, D.H.D.C.N.; Maia, A.C.; Oliveira, D.C.N.D.; Cavalcante, B.V.B.; Ferreira, P.C.; Pereira, A.L.G.X.D.N. O Impacto Do Tratamento Com Antibióticos No Prognóstico Obstétrico de Pacientes Com Endometriose Crônica. Res. Soc. Dev. 2022, 11, e323111335460. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Z.A.; Liu, Y.; Cheng, L.; Yan, L. Impact of Antibiotic Treatment for Chronic Endometritis on Pregnancy Outcomes in Women with Reproductive Failures (RIF and RPL): A Systematic Review and Meta-Analysis. Front. Med. 2022, 9, 980511. [Google Scholar] [CrossRef] [PubMed]
- Luncan, M.; Huniadi, A.; Bimbo-Szuhai, E.; Botea, M.; Zaha, I.; Stefan, L.; Beiusanu, C.; Romanescu, D.; Pallag, A.; Bodog, A.; et al. The Effectiveness of Intrauterine Antibiotic Infusion versus Oral Antibiotic Therapy in the Treatment of Chronic Endometritis in Patients during IVF (in Vitro Fertilization) Procedures. BMC Womens Health 2022, 22, 529. [Google Scholar] [CrossRef] [PubMed]
- Chadchan, S.B.; Cheng, M.; Parnell, L.A.; Yin, Y.; Schriefer, A.; Mysorekar, I.U.; Kommagani, R. Antibiotic Therapy with Metronidazole Reduces Endometriosis Disease Progression in Mice: A Potential Role for Gut Microbiota. Hum. Reprod. 2019, 34, 1106–1116. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Wei, J.; Zhong, Y.; Feng, Y.; Ma, B.; Xiong, Y.; Wei, K.; Tan, B.; Chen, T. Antibiotic Therapy and Vaginal Microbiota Transplantation Reduce Endometriosis Disease Progression in Female Mice via NF-κB Signaling Pathway. Front. Med. 2022, 9, 831115. [Google Scholar] [CrossRef] [PubMed]
- Cicinelli, E.; De Ziegler, D.; Vitagliano, A. In Women with Endometriosis, Effective Treatment of Chronic Endometritis with Antibiotics Lowers Serum CA-125 Levels. Fertil. Steril. 2024, 121, 1066–1068. [Google Scholar] [CrossRef] [PubMed]
- Salliss, M.E.; Farland, L.V.; Mahnert, N.D.; Herbst-Kralovetz, M.M. The Role of Gut and Genital Microbiota and the Estrobolome in Endometriosis, Infertility and Chronic Pelvic Pain. Hum. Reprod. Update 2021, 28, 92–131. [Google Scholar] [CrossRef] [PubMed]
- Recent Advancements in Research on Endometriosis. MDPI Blog. 2025. Available online: https://blog.mdpi.com/2025/03/04/recent-advancements-in-research-on-endometriosis (accessed on 27 May 2025).
- Nenicu, A.; Korbel, C.; Gu, Y.; Menger, M.D.; Laschke, M.W. Combined Blockade of Angiotensin II Type 1 Receptor and Activation of Peroxisome Proliferator-Activated Receptor- by Telmisartan Effectively Inhibits Vascularization and Growth of Murine Endometriosis-like Lesions. Hum. Reprod. 2014, 29, 1011–1024. [Google Scholar] [CrossRef] [PubMed]
- Moazen, S.; Arjmand, M.-H. The Role of Local Angiotensin II/Angiotensin Type 1 Receptor in Endometriosis: A Potential Target for New Treatment Approaches. Curr. Mol. Pharmacol. 2024, 17, e18761429315431. [Google Scholar] [CrossRef] [PubMed]
- Zanon, P.; Terraciano, P.B.; Quandt, L.; Palma Kuhl, C.; Pandolfi Passos, E.; Berger, M. Angiotensin II—AT1 Receptor Signalling Regulates the Plasminogen-Plasmin System in Human Stromal Endometrial Cells Increasing Extracellular Matrix Degradation, Cell Migration and Inducing a Proinflammatory Profile. Biochem. Pharmacol. 2024, 225, 116280. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, B.; Cavusoglu, T.; Ates, U.; Meral, A.; Nacar, M.C.; Erbaş, O. Regression of Experimental Endometriotic Implants in a Rat Model with the Angiotensin II Receptor Blocker Losartan. J. Obstet. Gynaecol. Res. 2015, 41, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Shabanian, S.; Khazaie, M.; Ferns, G.A.; Arjmand, M.-H. Local Renin-Angiotensin System Molecular Mechanisms in Intrauterine Adhesions Formation Following Gynecological Operations, New Strategy for Novel Treatment. J. Obstet. Gynaecol. 2022, 42, 1613–1618. [Google Scholar] [CrossRef] [PubMed]
- Wartan, S. Pain Management Strategies and Alternative Therapies. In Endometriosis; CRC Press: Boca Raton, FL, USA, 2022; pp. 95–114. ISBN 978-0-429-48811-5. [Google Scholar]
- Gubbiotti, M.; Giannantoni, A. Management of the Central Nervous System Chronic Pelvic Pain. In Suprapontine Lesions and Neurogenic Pelvic Dysfunctions; Lamberti, G., Giraudo, D., Musco, S., Eds.; Urodynamics, Neurourology and Pelvic Floor Dysfunctions; Springer International Publishing: Cham, Switzerland, 2020; pp. 61–69. ISBN 978-3-030-29774-9. [Google Scholar]
- Simpson, G.; Philip, M.; Lucky, T.; Ang, C.; Kathurusinghe, S. A Systematic Review of the Efficacy and Availability of Targeted Treatments for Central Sensitization in Women With Endometriosis. Clin. J. Pain 2022, 38, 640–648. [Google Scholar] [CrossRef] [PubMed]
- Zheng, P.; Jia, S.; Guo, D.; Chen, S.; Zhang, W.; Cheng, A.; Xie, W.; Sun, G.; Leng, J.; Lang, J. Central Sensitization-Related Changes in Brain Function Activity in a Rat Endometriosis-Associated Pain Model. J. Pain Res. 2020, 13, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Quintas-Marquès, L.; Martínez-Zamora, M.-Á.; Camacho, M.; Gràcia, M.; Rius, M.; Ros, C.; Carrión, A.; Carmona, F. Central Sensitization in Patients with Deep Endometriosis. Pain Med. 2023, 24, 1005–1007. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Berga, S.L.; Zou, E.; Schrepf, A.D.; Clauw, D.J.; As-Sanie, S.; Taylor, R.N. Neurotrophins and Their Receptors, Novel Therapeutic Targets for Pelvic Pain in Endometriosis, Are Coordinately Regulated by IL-1β via the JNK Signaling Pathway. Am. J. Pathol. 2023, 193, 1046–1058. [Google Scholar] [CrossRef] [PubMed]
- Rocha, A.L.L.; Reis, F.M.; Taylor, R.N. Angiogenesis and Endometriosis. Obstet. Gynecol. Int. 2013, 2013, 859619. [Google Scholar] [CrossRef] [PubMed]
- Machairiotis, N.; Vasilakaki, S.; Thomakos, N. Inflammatory Mediators and Pain in Endometriosis: A Systematic Review. Biomedicines 2021, 9, 54. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ortega, M.; Ruperez, M.; Lorenzo, O.; Esteban, V.; Blanco, J.; Mezzano, S.; Egido, J. Angiotensin II Regulates the Synthesis of Proinflammatory Cytokines and Chemokines in the Kidney. Kidney Int. 2002, 62, S12–S22. [Google Scholar] [CrossRef] [PubMed]
- Casalechi, M.; Dela Cruz, C.; Lima, L.C.; Maciel, L.P.; Pereira, V.M.; Reis, F.M. Angiotensin Peptides in the Non-Gravid Uterus: Paracrine Actions beyond Circulation. Peptides 2018, 101, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Zhu, D.; Zou, Y.; Wang, K.; Rao, P.; Shen, Y. Catalpol Attenuates Pulmonary Fibrosis by Inhibiting Ang II/AT1 and TGF-β/Smad-Mediated Epithelial Mesenchymal Transition. Front. Med. 2022, 9, 878601. [Google Scholar] [CrossRef] [PubMed]
- Valcourt, U.; Kowanetz, M.; Niimi, H.; Heldin, C.-H.; Moustakas, A. TGF-β and the Smad Signaling Pathway Support Transcriptomic Reprogramming during Epithelial-Mesenchymal Cell Transition. Mol. Biol. Cell 2005, 16, 1987–2002. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Gu, C.; Meng, Y. Meta-Analysis of the Association between Endometriosis and Polymorphisms in ACE and PAI-1. Int. J. Clin. Exp. Med. 2016, 9, 10602–10614. [Google Scholar]
- Falconer, H.; D’Hooghe, T.; Fried, G. Endometriosis and Genetic Polymorphisms. Obstet. Gynecol. Surv. 2007, 62, 616–628. [Google Scholar] [CrossRef] [PubMed]
- Ino, K.; Shibata, K.; Yamamoto, E.; Kajiyama, H.; Nawa, A.; Mabuchi, Y.; Yagi, S.; Minami, S.; Tanizaki, Y.; Kobayashi, A.; et al. Role of the Renin-Angiotensin System in Gynecologic Cancers. Curr. Cancer Drug Targets 2011, 11, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hao, H.; Lan, T.; Jia, R.; Cao, M.; Zhou, L.; Zhao, Z.; Pan, W. Physiological and Pathological Roles of Ang II and Ang- (1-7) in the Female Reproductive System. Front. Endocrinol. 2022, 13, 1080285. [Google Scholar] [CrossRef] [PubMed]
- Herr, D.; Bekes, I.; Wulff, C. Local Renin-Angiotensin System in the Reproductive System. Front. Endocrinol. 2013, 4, 150. [Google Scholar] [CrossRef] [PubMed]
- Domińska, K. Involvement of ACE2/Ang-(1-7)/MAS1 Axis in the Regulation of Ovarian Function in Mammals. Int. J. Mol. Sci. 2020, 21, 4572. [Google Scholar] [CrossRef] [PubMed]
- Shan, T.; Shang, W.; Zhang, L.; Zhao, C.; Chen, W.; Zhang, Y.; Li, G. Effect of Angiotensin-(1-7) and Angiotensin II on the Proliferation and Activation of Human Endometrial Stromal Cells in Vitro. Int. J. Clin. Exp. Pathol. 2015, 8, 8948–8957. [Google Scholar] [PubMed]
- Nakao, T.; Chishima, F.; Sugitani, M.; Tsujimura, R.; Hayashi, C.; Yamamoto, T. Expression of Angiotensin II Types 1 and 2 Receptors in Endometriotic Lesions. Gynecol. Obstet. Investig. 2017, 82, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Delforce, S.J.; Lumbers, E.R.; Corbisier De Meaultsart, C.; Wang, Y.; Proietto, A.; Otton, G.; Scurry, J.; Verrills, N.M.; Scott, R.J.; Pringle, K.G. Expression of Renin–Angiotensin System (RAS) Components in Endometrial Cancer. Endocr. Connect. 2017, 6, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Qi, R.; Li, T.C.; Chen, X. The Role of the Renin–Angiotensin System in Regulating Endometrial Neovascularization during the Peri-Implantation Period: Literature Review and Preliminary Data. Ther. Adv. Endocrinol. 2020, 11, 2042018820920560. [Google Scholar] [CrossRef] [PubMed]
- Sabbadin, C.; Saccardi, C.; Andrisani, A.; Vitagliano, A.; Marin, L.; Ragazzi, E.; Bordin, L.; Ambrosini, G.; Armanini, D. Role of Renin-Angiotensin-Aldosterone System and Cortisol in Endometriosis: A Preliminary Report. Int. J. Mol. Sci. 2022, 24, 310. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Zhao, C.; Jiang, W.; Li, X.; Ni, D.; Chen, Y.; Li, X.; Hua, X.; Shen, R.; Ling, X. Antibiotics Improve Reproductive Outcomes after Frozen-Thaw Embryo Transfer for Chronic Endometritis Treatment, Especially in Those with Repeated Implantation Failure. BMC Womens Health 2024, 4, 430. [Google Scholar] [CrossRef] [PubMed]
- Dîră, L.-M.; Drăguşin, R.C.; Văduva, C.-C.; Zorilă, G.L.; Nagy, R.D.; Ciobanu, Ş.-G.; Berbecaru, E.-I.-A.; Enache, I.-A.; Iliescu, G.D. Importanţa Endometritei Cronice Şi a Disbiozei În Eşecul de Implantare În Ciclurile de FIV. Obstet. Ginecol. 2023, 2, 86–89. [Google Scholar] [CrossRef]
- Kitaya, K.; Ishikawa, T. Lincomycin Administration against Persistent Multi-Drug Resistant Chronic Endometritis in Infertile Women with a History of Repeated Implantation Failure. Appl. Microbiol. 2022, 2, 554–560. [Google Scholar] [CrossRef]
- Khan, K.N.; De Ziegler, D.; Guo, S.-W. Bacterial Infection in Endometriosis: A Silver-Lining for the Development of New Non-Hormonal Therapy? Hum. Reprod. 2024, 39, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Brichant, G.; Laraki, I.; Henry, L.; Munaut, C.; Nisolle, M. New Therapeutics in Endometriosis: A Review of Hormonal, Non-Hormonal, and Non-Coding RNA Treatments. Int. J. Mol. Sci. 2021, 22, 10498. [Google Scholar] [CrossRef] [PubMed]
Mechanism | Key Features | Therapeutic Approaches |
---|---|---|
Inflammatory | Cytokines (IL-1β, IL-6, TNF-α); immune cells; chemokines | Anti-inflammatory agents (e.g., NSAIDs, vitamin D agonists, resveratrol, curcumin, metformin, NAC) |
Immune Dysregulation | NK cell dysfunction; regulatory T cells (Tregs); inflammasome (NLRP3) | Immune modulators (cabergoline, pentoxifylline), NK cell enhancers, NLRP3 inhibitors, JNK inhibitors |
EMT and Fibrosis | TGF-β signaling; myofibroblast transformation; collagen deposition | Anti-fibrotic agents (RAS blockers like losartan), TGF-β pathway inhibitors, tissue remodeling modulators |
Angiogenesis | VEGF, neovascularization, endothelial proliferation | Anti-angiogenic drugs (e.g., kinase inhibitors like VAL-301), VEGF inhibitors, cabergoline |
Oxidative Stress | Reactive oxygen species (ROS); iron overload; lipid peroxidation | Antioxidants (NAC, silymarin, omega-3 fatty acids, curcumin), redox modulators |
Genetic/Epigenetic | Susceptibility genes (e.g., WNT4, GREB1); DNA methylation; histone modifications | Epigenetic therapies (experimental), gene expression modulators, biomarker-based interventions (TTX334Dx) |
Microbiota Dysbiosis | Altered vaginal/gut microbiome; bacterial contamination | Microbiome modulators (antibiotics like metronidazole and chloramphenicol; FP-300 bacterial therapies) |
Metabolic Reprogramming | Altered glycolysis; lactate accumulation; mitochondrial dysfunction | Metabolic modulators (e.g., dichloroacetate) |
Neuropathic Pain Modulators: Neuroinflammation/Central Sensitization | Central nervous system sensitization; persistent nociceptive signaling | Neuromodulators (gabapentinoids, antidepressants), CBT, TENS, NMDA antagonists (experimental) |
Neuropathic Pain Modulators: Endocannabinoid Dysfunction | CB1/CB2 receptor alterations; pain signaling dysregulation | Cannabinoid-based therapies (CBD, Gynica formulations under clinical investigation) |
Mechanism | Therapy | Study Type | Model | Outcomes | References |
---|---|---|---|---|---|
Anti-inflammatory/ Antioxidant | Curcumin | Preclinical and clinical | Animal, Human | Preclinical efficacy; limited clinical benefit | [106,107] |
Metformin | Preclinical mainly | Cells, Animal, Human | ↓ lesion size and inflammation; some human support | [127,128,129,130,131,132,133,134,135,136,137,138,139] | |
N-acetylcysteine (NAC) | Preclinical and clinical | Animal, Human | ↓ lesion size and oxidative stress; improved symptoms | [102,103] | |
Omega-3 Fatty Acids | Pilot study | Animal, Human | Feasible; inconclusive short-term pain outcomes | [105] | |
NSAIDs (e.g., ibuprofen) | Clinical/observational | Human | Mild pain relief; no disease-modifying effect | [140] | |
Silymarin | RCT (n = 70) | Human | ↓ IL-6 (p = 0.002), ↓ endometrioma (p = 0.04), ↓ pain (p < 0.001); no QoL improvement | [99,100,101] | |
Immunomodulatory/ Cytokine Inhibitors | Cabergoline (dopamine agonist) | RCT; multicenter (ongoing) | Human | Improved pain and QoL; fewer hormonal side effects; anti-angiogenic | [82,141,142,143,144] |
Celmatix JNK Inhibitor | Preclinical | Animal | Immunotherapy-induced lesion regression | [145,146] | |
Kinase Inhibitors (e.g., VAL-301) | Preclinical, early clinical | Animal, Human | ↓ angiogenesis and lesion growth; early clinical evaluation ongoing | [145,146,147] | |
NLRP3 Inhibitors | Preclinical | Animal | ↓ lesions and inflammatory markers | [148] | |
Pentoxifylline | Pilot (animal, human) | Animal, Human | ↓ inflammation in preclinical models; limited clinical support | [149,150] | |
TNF-α Inhibitors (Infliximab, Etanercept, Adalimumab) | RCT and pilot studies | Animal, Human | Some efficacy in models; minimal clinical benefit | [151,152] | |
Microbiota-Targeting | Antibiotics (Metronidazole, Chloramphenicol) | Preclinical, clinical | Animal, Human | ↓ inflammation and lesion growth and improve fertility outcomes, though human trial evidence remains limited | [153,154,155,156,157,158,159] |
FP-300 (Flightpath Bio) | Preclinical | Animal | [145] | ||
Metabolic Modulators | Dichloroacetate | RCT (Phase 2 ongoing); preclinical | Animal, Human | ↓ lactate production and lesion volume | [145,160] |
Fibrosis and Tissue Remodeling | RAS Blockers (e.g., Losartan, Candesartan, Telmisartan) | Animal; pilot human | Animal, Human | ↓ lesion burden, fibrosis, and pain; early human support | [161,162,163,164,165] |
Temple TTX334Dx | Preclinical, early clinical | Animal, Human | Biomarker-based targeting under development | [145] | |
Immune-Directed/ Targeted | FimmCyte (FMC2) | Preclinical (mouse); clinical planned 2025 | Animal, Human | ↓ disease burden in models; human trials pending | [145,160] |
Neuropathic Pain Modulators: Neuroinflammation/ Central Sensitization | Gabapentinoids (Gabapentin, Pregabalin) | Clinical/observational | Human | ↓ neuronal hyperexcitability; improved chronic pelvic pain | [166,167,168] |
SNRIs (e.g., Duloxetine), TCAs (e.g., Amitriptyline) | Clinical/observational | Human | ↓ central pain sensitization; enhanced descending pain inhibition | [166,168] | |
NMDA Receptor Antagonists (e.g., Ketamine) | Preclinical and early clinical | Animal, Human | ↓ glutamate-mediated excitatory signaling; ↓ chronic pelvic pain | [169,170] | |
JNK Inhibitors (e.g., SP600125) | Preclinical (cell-based models) | Human cells | ↓ IL-1β-induced neurotrophins (NGF, BDNF); ↓ neuroinflammatory signaling | [171] | |
P2X3 Antagonists (e.g., Gefapixant) | Preclinical/Phase I–II | Animal, Human | ↓ afferent sensory hypersensitivity; under investigation for pelvic pain relief | [171] | |
Neuropathic Pain Modulators: Endocannabinoid Dysfunction | Cannabidiol (CBD) | Double-blind RCT (ongoing) | Human | Results pending on pain outcomes | [126,141,142] |
Gynica Cannabinoids | Early clinical | Human | Clinical symptom relief under investigation | [126] |
Study/Review | Year | Model/ Population | Main Findings | References |
---|---|---|---|---|
Expression of Angiotensin II Types 1 and 2 Receptors in Endometriosis | 2016 | Premenopausal Japanese women (endometriosis vs. controls) | Both AT1 and AT2 receptors are expressed in endometrial tissue of women with and without endometriosis; expression patterns may differ between groups. | [185] |
Expression of RAS genes in endometrial samples | 2017 | Cancerous and non-cancerous endometrial samples | AGT, AGTR1, ACE1, and ACE2 genes were detected in most endometrial samples, indicating broad RAS component expressions in endometrial tissue. | [186] |
The role of the renin–angiotensin system in regulating endometrial angiogenesis | 2020 | Human endometrial tissue: literature review and pilot study | AT1R and AT2R (angiotensin II receptors) are expressed in all endometrial compartments; altered expression is linked to endometrial vascular changes. RAS may influence angiogenesis relevant to endometriosis and implantation. | [187] |
Role of Renin-Angiotensin-Aldosterone System and Cortisol in Endometriosis | 2022 | Women with endometriosis vs. healthy controls | Women with endometriosis had significantly lower plasma renin and higher aldosterone-renin ratio (ARR); systolic blood pressure was higher. Suggests altered RAS activity in endometriosis. | [188] |
Physiological and pathological roles of Ang II and Ang-(1–7) in the female reproductive system | 2022 | Review (human and animal studies) | Ang II and its receptors are active in the female reproductive tract, including the endometrium; involved in vascular and inflammatory processes relevant to endometriosis. | [181] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos-Nino, M.E. Non-Hormonal Strategies in Endometriosis: Targets with Future Clinical Potential. J. Clin. Med. 2025, 14, 5091. https://doi.org/10.3390/jcm14145091
Ramos-Nino ME. Non-Hormonal Strategies in Endometriosis: Targets with Future Clinical Potential. Journal of Clinical Medicine. 2025; 14(14):5091. https://doi.org/10.3390/jcm14145091
Chicago/Turabian StyleRamos-Nino, Maria E. 2025. "Non-Hormonal Strategies in Endometriosis: Targets with Future Clinical Potential" Journal of Clinical Medicine 14, no. 14: 5091. https://doi.org/10.3390/jcm14145091
APA StyleRamos-Nino, M. E. (2025). Non-Hormonal Strategies in Endometriosis: Targets with Future Clinical Potential. Journal of Clinical Medicine, 14(14), 5091. https://doi.org/10.3390/jcm14145091