Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,528)

Search Parameters:
Keywords = imagery area

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2576 KiB  
Article
Modeling and Spatiotemporal Analysis of Actual Evapotranspiration in a Desert Steppe Based on SEBS
by Yanlin Feng, Lixia Wang, Chunwei Liu, Baozhong Zhang, Jun Wang, Pei Zhang and Ranghui Wang
Hydrology 2025, 12(8), 205; https://doi.org/10.3390/hydrology12080205 - 6 Aug 2025
Abstract
Accurate estimation of actual evapotranspiration (ET) is critical for understanding hydrothermal cycles and ecosystem functioning in arid regions, where water scarcity governs ecological resilience. To address persistent gaps in ET quantification, this study integrates multi-source remote sensing data, energy balance modeling, and ground-based [...] Read more.
Accurate estimation of actual evapotranspiration (ET) is critical for understanding hydrothermal cycles and ecosystem functioning in arid regions, where water scarcity governs ecological resilience. To address persistent gaps in ET quantification, this study integrates multi-source remote sensing data, energy balance modeling, and ground-based validation that significantly enhances spatiotemporal ET accuracy in the vulnerable desert steppe ecosystems. The study utilized meteorological data from several national stations and Landsat-8 imagery to process monthly remote sensing images in 2019. The Surface Energy Balance System (SEBS) model, chosen for its ability to estimate ET over large areas, was applied to derive modeled daily ET values, which were validated by a large-weighted lysimeter. It was shown that ET varied seasonally, peaking in July at 6.40 mm/day, and reaching a minimum value in winter with 1.83 mm/day in December. ET was significantly higher in southern regions compared to central and northern areas. SEBS-derived ET showed strong agreement with lysimeter measurements, with a mean relative error of 4.30%, which also consistently outperformed MOD16A2 ET products in accuracy. This spatial heterogeneity was driven by greater vegetation coverage and enhanced precipitation in the southeast. The steppe ET showed a strong positive correlation with surface temperatures and vegetation density. Moreover, the precipitation gradients and land use were primary controllers of spatial ET patterns. The process-based SEBS frameworks demonstrate dual functionality as resource-optimized computational platforms while enabling multi-scale quantification of ET spatiotemporal heterogeneity; it was therefore a reliable tool for ecohydrological assessments in an arid steppe, providing critical insights for water resource management and drought monitoring. Full article
(This article belongs to the Section Hydrological and Hydrodynamic Processes and Modelling)
Show Figures

Figure 1

24 pages, 62899 KiB  
Essay
Monitoring and Historical Spatio-Temporal Analysis of Arable Land Non-Agriculturalization in Dachang County, Eastern China Based on Time-Series Remote Sensing Imagery
by Boyuan Li, Na Lin, Xian Zhang, Chun Wang, Kai Yang, Kai Ding and Bin Wang
Earth 2025, 6(3), 91; https://doi.org/10.3390/earth6030091 (registering DOI) - 6 Aug 2025
Abstract
The phenomenon of arable land non-agriculturalization has become increasingly severe, posing significant threats to the security of arable land resources and ecological sustainability. This study focuses on Dachang Hui Autonomous County in Langfang City, Hebei Province, a region located at the edge of [...] Read more.
The phenomenon of arable land non-agriculturalization has become increasingly severe, posing significant threats to the security of arable land resources and ecological sustainability. This study focuses on Dachang Hui Autonomous County in Langfang City, Hebei Province, a region located at the edge of the Beijing–Tianjin–Hebei metropolitan cluster. In recent years, the area has undergone accelerated urbanization and industrial transfer, resulting in drastic land use changes and a pronounced contradiction between arable land protection and the expansion of construction land. The study period is 2016–2023, which covers the key period of the Beijing–Tianjin–Hebei synergistic development strategy and the strengthening of the national arable land protection policy, and is able to comprehensively reflect the dynamic changes of arable land non-agriculturalization under the policy and urbanization process. Multi-temporal Sentinel-2 imagery was utilized to construct a multi-dimensional feature set, and machine learning classifiers were applied to identify arable land non-agriculturalization with optimized performance. GIS-based analysis and the geographic detector model were employed to reveal the spatio-temporal dynamics and driving mechanisms. The results demonstrate that the XGBoost model, optimized using Bayesian parameter tuning, achieved the highest classification accuracy (overall accuracy = 0.94) among the four classifiers, indicating its superior suitability for identifying arable land non-agriculturalization using multi-temporal remote sensing imagery. Spatio-temporal analysis revealed that non-agriculturalization expanded rapidly between 2016 and 2020, followed by a deceleration after 2020, exhibiting a pattern of “rapid growth–slowing down–partial regression”. Further analysis using the geographic detector revealed that socioeconomic factors are the primary drivers of arable land non-agriculturalization in Dachang Hui Autonomous County, while natural factors exerted relatively weaker effects. These findings provide technical support and scientific evidence for dynamic monitoring and policy formulation regarding arable land under urbanization, offering significant theoretical and practical implications. Full article
Show Figures

Figure 1

27 pages, 14923 KiB  
Article
Multi-Sensor Flood Mapping in Urban and Agricultural Landscapes of the Netherlands Using SAR and Optical Data with Random Forest Classifier
by Omer Gokberk Narin, Aliihsan Sekertekin, Caglar Bayik, Filiz Bektas Balcik, Mahmut Arıkan, Fusun Balik Sanli and Saygin Abdikan
Remote Sens. 2025, 17(15), 2712; https://doi.org/10.3390/rs17152712 - 5 Aug 2025
Abstract
Floods stand as one of the most harmful natural disasters, which have become more dangerous because of climate change effects on urban structures and agricultural fields. This research presents a comprehensive flood mapping approach that combines multi-sensor satellite data with a machine learning [...] Read more.
Floods stand as one of the most harmful natural disasters, which have become more dangerous because of climate change effects on urban structures and agricultural fields. This research presents a comprehensive flood mapping approach that combines multi-sensor satellite data with a machine learning method to evaluate the July 2021 flood in the Netherlands. The research developed 25 different feature scenarios through the combination of Sentinel-1, Landsat-8, and Radarsat-2 imagery data by using backscattering coefficients together with optical Normalized Difference Water Index (NDWI) and Hue, Saturation, and Value (HSV) images and Synthetic Aperture Radar (SAR)-derived Grey Level Co-occurrence Matrix (GLCM) texture features. The Random Forest (RF) classifier was optimized before its application based on two different flood-prone regions, which included Zutphen’s urban area and Heijen’s agricultural land. Results demonstrated that the multi-sensor fusion scenarios (S18, S20, and S25) achieved the highest classification performance, with overall accuracy reaching 96.4% (Kappa = 0.906–0.949) in Zutphen and 87.5% (Kappa = 0.754–0.833) in Heijen. For the flood class F1 scores of all scenarios, they varied from 0.742 to 0.969 in Zutphen and from 0.626 to 0.969 in Heijen. Eventually, the addition of SAR texture metrics enhanced flood boundary identification throughout both urban and agricultural settings. Radarsat-2 provided limited benefits to the overall results, since Sentinel-1 and Landsat-8 data proved more effective despite being freely available. This study demonstrates that using SAR and optical features together with texture information creates a powerful and expandable flood mapping system, and RF classification performs well in diverse landscape settings. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Flood Forecasting and Monitoring)
Show Figures

Figure 1

26 pages, 2459 KiB  
Article
Urban Agriculture for Post-Disaster Food Security: Quantifying the Contributions of Community Gardens
by Yanxin Liu, Victoria Chanse and Fabricio Chicca
Urban Sci. 2025, 9(8), 305; https://doi.org/10.3390/urbansci9080305 - 5 Aug 2025
Abstract
Wellington, New Zealand, is highly vulnerable to disaster-induced food security crises due to its geography and geological characteristics, which can disrupt transportation and isolate the city following disasters. Urban agriculture (UA) has been proposed as a potential alternative food source for post-disaster scenarios. [...] Read more.
Wellington, New Zealand, is highly vulnerable to disaster-induced food security crises due to its geography and geological characteristics, which can disrupt transportation and isolate the city following disasters. Urban agriculture (UA) has been proposed as a potential alternative food source for post-disaster scenarios. This study examined the potential of urban agriculture for enhancing post-disaster food security by calculating vegetable self-sufficiency rates. Specifically, it evaluated the capacity of current Wellington’s community gardens to meet post-disaster vegetable demand in terms of both weight and nutrient content. Data collection employed mixed methods with questionnaires, on-site observations and mapping, and collecting high-resolution aerial imagery. Garden yields were estimated using self-reported data supported by literature benchmarks, while cultivated areas were quantified through on-site mapping and aerial imagery analysis. Six post-disaster food demand scenarios were used based on different target populations to develop an understanding of the range of potential produce yields. Weight-based results show that community gardens currently supply only 0.42% of the vegetable demand for residents living within a five-minute walk. This rate increased to 2.07% when specifically targeting only vulnerable populations, and up to 10.41% when focusing on gardeners’ own households. However, at the city-wide level, the current capacity of community gardens to provide enough produce to feed people remained limited. Nutrient-based self-sufficiency was lower than weight-based results; however, nutrient intake is particularly critical for vulnerable populations after disasters, underscoring the greater challenge of ensuring adequate nutrition through current urban food production. Beyond self-sufficiency, this study also addressed the role of UA in promoting food diversity and acceptability, as well as its social and psychological benefits based on the questionnaires and on-site observations. The findings indicate that community gardens contribute meaningfully to post-disaster food security for gardeners and nearby residents, particularly for vulnerable groups with elevated nutritional needs. Despite the current limited capacity of community gardens to provide enough produce to feed residents, findings suggest that Wellington could enhance post-disaster food self-reliance by diversifying UA types and optimizing land-use to increase food production during and after a disaster. Realizing this potential will require strategic interventions, including supportive policies, a conducive social environment, and diversification—such as the including private yards—all aimed at improving food access, availability, and nutritional quality during crises. The primary limitation of this study is the lack of comprehensive data on urban agriculture in Wellington and the wider New Zealand context. Addressing this data gap should be a key focus for future research to enable more robust assessments and evidence-based planning. Full article
Show Figures

Figure 1

24 pages, 4294 KiB  
Article
Post Hoc Event-Related Potential Analysis of Kinesthetic Motor Imagery-Based Brain-Computer Interface Control of Anthropomorphic Robotic Arms
by Miltiadis Spanos, Theodora Gazea, Vasileios Triantafyllidis, Konstantinos Mitsopoulos, Aristidis Vrahatis, Maria Hadjinicolaou, Panagiotis D. Bamidis and Alkinoos Athanasiou
Electronics 2025, 14(15), 3106; https://doi.org/10.3390/electronics14153106 - 4 Aug 2025
Abstract
Kinesthetic motor imagery (KMI), the mental rehearsal of a motor task without its actual performance, constitutes one of the most common techniques used for brain–computer interface (BCI) control for movement-related tasks. The effect of neural injury on motor cortical activity during execution and [...] Read more.
Kinesthetic motor imagery (KMI), the mental rehearsal of a motor task without its actual performance, constitutes one of the most common techniques used for brain–computer interface (BCI) control for movement-related tasks. The effect of neural injury on motor cortical activity during execution and imagery remains under investigation in terms of activations, processing of motor onset, and BCI control. The current work aims to conduct a post hoc investigation of the event-related potential (ERP)-based processing of KMI during BCI control of anthropomorphic robotic arms by spinal cord injury (SCI) patients and healthy control participants in a completed clinical trial. For this purpose, we analyzed 14-channel electroencephalography (EEG) data from 10 patients with cervical SCI and 8 healthy individuals, recorded through Emotiv EPOC BCI, as the participants attempted to move anthropomorphic robotic arms using KMI. EEG data were pre-processed by band-pass filtering (8–30 Hz) and independent component analysis (ICA). ERPs were calculated at the sensor space, and analysis of variance (ANOVA) was used to determine potential differences between groups. Our results showed no statistically significant differences between SCI patients and healthy control groups regarding mean amplitude and latency (p < 0.05) across the recorded channels at various time points during stimulus presentation. Notably, no significant differences were observed in ERP components, except for the P200 component at the T8 channel. These findings suggest that brain circuits associated with motor planning and sensorimotor processes are not disrupted due to anatomical damage following SCI. The temporal dynamics of motor-related areas—particularly in channels like F3, FC5, and F7—indicate that essential motor imagery (MI) circuits remain functional. Limitations include the relatively small sample size that may hamper the generalization of our findings, the sensor-space analysis that restricts anatomical specificity and neurophysiological interpretations, and the use of a low-density EEG headset, lacking coverage over key motor regions. Non-invasive EEG-based BCI systems for motor rehabilitation in SCI patients could effectively leverage intact neural circuits to promote neuroplasticity and facilitate motor recovery. Future work should include validation against larger, longitudinal, high-density, source-space EEG datasets. Full article
(This article belongs to the Special Issue EEG Analysis and Brain–Computer Interface (BCI) Technology)
Show Figures

Figure 1

19 pages, 4452 KiB  
Article
Artificial Surface Water Construction Aggregated Water Loss Through Evaporation in the North China Plain
by Ziang Wang, Yan Zhou, Wenge Zhang, Shimin Tian, Yaoping Cui, Haifeng Tian, Xiaoyan Liu and Bing Han
Remote Sens. 2025, 17(15), 2698; https://doi.org/10.3390/rs17152698 - 4 Aug 2025
Abstract
As a typical grain base with a dense population and high-level urbanization, the North China Plain (NCP) faces a serious threat to its sustainable development due to water shortage. Surface water area (SWA) is a key indicator for continuously measuring the trends of [...] Read more.
As a typical grain base with a dense population and high-level urbanization, the North China Plain (NCP) faces a serious threat to its sustainable development due to water shortage. Surface water area (SWA) is a key indicator for continuously measuring the trends of regional water resources and assessing their current status. Therefore, a deep understanding of its changing patterns and driving forces is essential for achieving the sustainable management of water resources. In this study, we examined the interannual variability and trends of SWA in the NCP from 1990 to 2023 using annual 30 m water body maps generated from all available Landsat imagery, a robust water mapping algorithm, and the cloud computing platform Google Earth Engine (GEE). The results showed that the SWA in the NCP has significantly increased over the past three decades. The continuous emergence of artificial reservoirs and urban lakes, along with the booming aquaculture industry, are the main factors driving the growth of SWA. Consequently, the expansion of artificial water bodies resulted in a significant increase in water evaporation (0.16 km3/yr). Moreover, the proportion of water evaporation to regional evapotranspiration (ET) gradually increased (0–0.7%/yr), indicating that the contribution of water evaporation from artificial water bodies to ET is becoming increasingly prominent. Therefore, it can be concluded that the ever-expanding artificial water bodies have become a new hidden danger affecting the water security of the NCP through evaporative loss and deserve close attention. This study not only provides us with a new perspective for deeply understanding the current status of water resources security in the NCP but also provides a typical case with great reference value for the analysis of water resources changes in other similar regions. Full article
Show Figures

Figure 1

22 pages, 5136 KiB  
Article
Application of UAVs to Support Blast Design for Flyrock Mitigation: A Case Study from a Basalt Quarry
by Józef Pyra and Tomasz Żołądek
Appl. Sci. 2025, 15(15), 8614; https://doi.org/10.3390/app15158614 (registering DOI) - 4 Aug 2025
Viewed by 74
Abstract
Blasting operations in surface mining pose a risk of flyrock, which is a critical safety concern for both personnel and infrastructure. This study presents the use of unmanned aerial vehicles (UAVs) and photogrammetric techniques to improve the accuracy of blast design, particularly in [...] Read more.
Blasting operations in surface mining pose a risk of flyrock, which is a critical safety concern for both personnel and infrastructure. This study presents the use of unmanned aerial vehicles (UAVs) and photogrammetric techniques to improve the accuracy of blast design, particularly in relation to controlling burden values and reducing flyrock. The research was conducted in a basalt quarry in Lower Silesia, where high rock fracturing complicated conventional blast planning. A DJI Mavic 3 Enterprise UAV was used to capture high-resolution aerial imagery, and 3D models were created using Strayos software. These models enabled precise analysis of bench face geometry and burden distribution with centimeter-level accuracy. The results showed a significant improvement in identifying zones with improper burden values and allowed for real-time corrections in blasthole design. Despite a ten-fold reduction in the number of images used, no loss in model quality was observed. UAV-based surveys followed software-recommended flight paths, and the application of this methodology reduced the flyrock range by an average of 42% near sensitive areas. This approach demonstrates the operational benefits and enhanced safety potential of integrating UAV-based photogrammetry into blasting design workflows. Full article
(This article belongs to the Special Issue Advanced Blasting Technology for Mining)
Show Figures

Figure 1

29 pages, 30467 KiB  
Article
Clay-Hosted Lithium Exploration in the Wenshan Region of Southeastern Yunnan Province, China, Using Multi-Source Remote Sensing and Structural Interpretation
by Lunxin Feng, Zhifang Zhao, Haiying Yang, Qi Chen, Changbi Yang, Xiao Zhao, Geng Zhang, Xinle Zhang and Xin Dong
Minerals 2025, 15(8), 826; https://doi.org/10.3390/min15080826 - 2 Aug 2025
Viewed by 241
Abstract
With the rapid increase in global lithium demand, the exploration of newly discovered lithium in the bauxite of the Wenshan area in southeastern Yunnan has become increasingly important. However, the current research on clay-type lithium in the Wenshan area has primarily focused on [...] Read more.
With the rapid increase in global lithium demand, the exploration of newly discovered lithium in the bauxite of the Wenshan area in southeastern Yunnan has become increasingly important. However, the current research on clay-type lithium in the Wenshan area has primarily focused on local exploration, and large-scale predictive metallogenic studies remain limited. To address this, this study utilized multi-source remote sensing data from ZY1-02D and ASTER, combined with ALOS 12.5 m DEM and Sentinel-2 imagery, to carry out remote sensing mineral identification, structural interpretation, and prospectivity mapping for clay-type lithium in the Wenshan area. This study indicates that clay-type lithium in the Wenshan area is controlled by NW, EW, and NE linear structures and are mainly distributed in the region from north of the Wenshan–Malipo fault to south of the Guangnan–Funing fault. High-value areas of iron-rich silicates and iron–magnesium minerals revealed by ASTER data indicate lithium enrichment, while montmorillonite and cookeite identification by ZY1-02D have strong indicative significance for lithium. Field verification samples show the highest Li2O content reaching 11,150 μg/g, with six samples meeting the comprehensive utilization criteria for lithium in bauxite (Li2O ≥ 500 μg/g) and also showing an enrichment of rare earth elements (REEs) and gallium (Ga). By integrating stratigraphic, structural, mineral identification, geochemical characteristics, and field verification data, ten mineral exploration target areas were delineated. This study validates the effectiveness of remote sensing technology in the exploration of clay-type lithium and provides an applicable workflow for similar environments worldwide. Full article
Show Figures

Figure 1

27 pages, 39231 KiB  
Article
Study on the Distribution Characteristics of Thermal Melt Geological Hazards in Qinghai Based on Remote Sensing Interpretation Method
by Xing Zhang, Zongren Li, Sailajia Wei, Delin Li, Xiaomin Li, Rongfang Xin, Wanrui Hu, Heng Liu and Peng Guan
Water 2025, 17(15), 2295; https://doi.org/10.3390/w17152295 - 1 Aug 2025
Viewed by 139
Abstract
In recent years, large-scale linear infrastructure developments have been developed across hundreds of kilometers of permafrost regions on the Qinghai–Tibet Plateau. The implementation of major engineering projects, including the Qinghai–Tibet Highway, oil pipelines, communication cables, and the Qinghai–Tibet Railway, has spurred intensified research [...] Read more.
In recent years, large-scale linear infrastructure developments have been developed across hundreds of kilometers of permafrost regions on the Qinghai–Tibet Plateau. The implementation of major engineering projects, including the Qinghai–Tibet Highway, oil pipelines, communication cables, and the Qinghai–Tibet Railway, has spurred intensified research into permafrost dynamics. Climate warming has accelerated permafrost degradation, leading to a range of geological hazards, most notably widespread thermokarst landslides. This study investigates the spatiotemporal distribution patterns and influencing factors of thermokarst landslides in Qinghai Province through an integrated approach combining field surveys, remote sensing interpretation, and statistical analysis. The study utilized multi-source datasets, including Landsat-8 imagery, Google Earth, GF-1, and ZY-3 satellite data, supplemented by meteorological records and geospatial information. The remote sensing interpretation identified 1208 cryogenic hazards in Qinghai’s permafrost regions, comprising 273 coarse-grained soil landslides, 346 fine-grained soil landslides, 146 thermokarst slope failures, 440 gelifluction flows, and 3 frost mounds. Spatial analysis revealed clusters of hazards in Zhiduo, Qilian, and Qumalai counties, with the Yangtze River Basin and Qilian Mountains showing the highest hazard density. Most hazards occur in seasonally frozen ground areas (3500–3900 m and 4300–4900 m elevation ranges), predominantly on north and northwest-facing slopes with gradients of 10–20°. Notably, hazard frequency decreases with increasing permafrost stability. These findings provide critical insights for the sustainable development of cold-region infrastructure, environmental protection, and hazard mitigation strategies in alpine engineering projects. Full article
Show Figures

Figure 1

16 pages, 3217 KiB  
Article
Application of an Orbital Remote Sensing Vegetation Index for Urban Tree Cover Mapping to Support the Tree Census
by Cássio Filipe Vieira Martins, Franciele Caroline Guerra, Anderson Targino da Silva Ferreira and Roger Dias Gonçalves
Earth 2025, 6(3), 87; https://doi.org/10.3390/earth6030087 (registering DOI) - 1 Aug 2025
Viewed by 218
Abstract
Urban vegetation monitoring is essential for sustainable city planning but is often constrained by the high cost and limited frequency of field-based inventories. This study evaluates the use of the Normalized Difference Vegetation Index (NDVI), derived from Sino-Brazilian CBERS-4A satellite imagery, as a [...] Read more.
Urban vegetation monitoring is essential for sustainable city planning but is often constrained by the high cost and limited frequency of field-based inventories. This study evaluates the use of the Normalized Difference Vegetation Index (NDVI), derived from Sino-Brazilian CBERS-4A satellite imagery, as a spatially explicit and low-cost proxy for urban tree census data. CBERS-4A provides medium-resolution multispectral data freely accessible across South America, yet remains underutilized in urban environmental applications. Focusing on Aracaju, a metropolitan region in northeastern Brazil, we compared NDVI-based classification results with official municipal tree census data from 2022. The analysis revealed a strong spatial correlation, supporting the use of NDVI as a reliable indicator of canopy presence at the urban block scale. In addition to mapping vegetation distribution, the NDVI results identified areas with insufficient canopy coverage, directly informing urban greening priorities. By validating remote sensing data against field inventories, this study demonstrates how CBERS-4A imagery and vegetation indices can support municipal tree management and serve as scalable tools for environmental planning and policy. Full article
Show Figures

Graphical abstract

21 pages, 33884 KiB  
Article
Rapid Detection and Segmentation of Landslide Hazards in Loess Tableland Areas Using Deep Learning: A Case Study of the 2023 Jishishan Ms 6.2 Earthquake in Gansu, China
by Zhuoli Bai, Lingyun Ji, Hongtao Tang, Jiangtao Qiu, Shuai Kang, Chuanjin Liu and Zongpan Bian
Remote Sens. 2025, 17(15), 2667; https://doi.org/10.3390/rs17152667 - 1 Aug 2025
Viewed by 216
Abstract
Addressing the technical demands for the rapid, precise detection of earthquake-triggered landslides in loess tablelands, this study proposes and validates an innovative methodology integrating enhanced deep learning architectures with large-tile processing strategies, featuring two core advances: (1) a critical enhancement of YOLOv8’s shallow [...] Read more.
Addressing the technical demands for the rapid, precise detection of earthquake-triggered landslides in loess tablelands, this study proposes and validates an innovative methodology integrating enhanced deep learning architectures with large-tile processing strategies, featuring two core advances: (1) a critical enhancement of YOLOv8’s shallow layers via a higher-resolution P2 detection head to boost small-target capture capabilities, and (2) the development of a large-tile segmentation–tile mosaicking workflow to overcome the technical bottlenecks in large-scale high-resolution image processing, ensuring both timeliness and accuracy in loess landslide detection. This study utilized 20 km2 of high-precision UAV imagery acquired after the 2023 Gansu Jishishan Ms 6.2 earthquake as foundational data, applying our methodology to achieve the rapid detection and precise segmentation of landslides in the study area. Validation was conducted through a comparative analysis of high-accuracy 3D models and field investigations. (1) The model achieved simultaneous convergence of all four loss functions within a 500-epoch progressive training strategy, with mAP50(M) = 0.747 and mAP50-95(M) = 0.46, thus validating the superior detection and segmentation capabilities for the Jishishan earthquake-triggered loess landslides. (2) The enhanced algorithm detected 417 landslides with 94.1% recognition accuracy. Landslide areas ranged from 7 × 10−4 km2 to 0.217 km2 (aggregate area: 1.3 km2), indicating small-scale landslide dominance. (3) Morphological characterization and the spatial distribution analysis revealed near-vertical scarps, diverse morphological configurations, and high spatial density clustering in loess tableland landslides. Full article
Show Figures

Figure 1

16 pages, 3183 KiB  
Case Report
A Multidisciplinary Approach to Crime Scene Investigation: A Cold Case Study and Proposal for Standardized Procedures in Buried Cadaver Searches over Large Areas
by Pier Matteo Barone and Enrico Di Luise
Forensic Sci. 2025, 5(3), 34; https://doi.org/10.3390/forensicsci5030034 - 1 Aug 2025
Viewed by 434
Abstract
This case report presents a multidisciplinary forensic investigation into a cold case involving a missing person in Italy, likely linked to a homicide that occurred in 2008. The investigation applied a standardized protocol integrating satellite imagery analysis, site reconnaissance, vegetation clearance, ground-penetrating radar [...] Read more.
This case report presents a multidisciplinary forensic investigation into a cold case involving a missing person in Italy, likely linked to a homicide that occurred in 2008. The investigation applied a standardized protocol integrating satellite imagery analysis, site reconnaissance, vegetation clearance, ground-penetrating radar (GPR), and cadaver dog (K9) deployment. A dedicated decision tree guided each phase, allowing for efficient allocation of resources and minimizing investigative delays. Although no human remains were recovered, the case demonstrates the practical utility and operational robustness of a structured, evidence-based model that supports decision-making even in the absence of positive findings. The approach highlights the relevance of “negative” results, which, when derived through scientifically validated procedures, offer substantial value by excluding burial scenarios with a high degree of reliability. This case is particularly significant in the Italian forensic context, where the adoption of standardized search protocols remains limited, especially in complex outdoor environments. The integration of geophysical, remote sensing, and canine methodologies—rooted in forensic geoarchaeology—provides a replicable framework that enhances both investigative effectiveness and the evidentiary admissibility of findings in court. The protocol illustrated in this study supports the consistent evaluation of large and morphologically complex areas, reduces the risk of interpretive error, and reinforces the transparency and scientific rigor expected in judicial settings. As such, it offers a model for improving forensic search strategies in both national and international contexts, particularly in long-standing or high-profile missing persons cases. Full article
Show Figures

Figure 1

23 pages, 22378 KiB  
Article
Counter-Cartographies of Extraction: Mapping Socio-Environmental Changes Through Hybrid Geographic Information Technologies
by Mitesh Dixit, Nataša Danilović Hristić and Nebojša Stefanović
Land 2025, 14(8), 1576; https://doi.org/10.3390/land14081576 - 1 Aug 2025
Viewed by 165
Abstract
This paper examines Krivelj, a copper mining village in Serbia, as a critical yet overlooked node within global extractive networks. Despite supplying copper essential for renewable energy and sustainable architecture, Krivelj experiences severe ecological disruption, forced relocations, and socio-spatial destabilization, becoming a “sacrifice [...] Read more.
This paper examines Krivelj, a copper mining village in Serbia, as a critical yet overlooked node within global extractive networks. Despite supplying copper essential for renewable energy and sustainable architecture, Krivelj experiences severe ecological disruption, forced relocations, and socio-spatial destabilization, becoming a “sacrifice zone”—an area deliberately subjected to harm for broader economic interests. Employing a hybrid methodology that combines ethnographic fieldwork with Geographic Information Systems (GISs), this study spatializes narratives of extractive violence collected from residents through walking interviews, field sketches, and annotated aerial imagery. By integrating satellite data, legal documents, environmental sensors, and lived testimonies, it uncovers the concept of “slow violence,” where incremental harm occurs through bureaucratic neglect, ambient pollution, and legal ambiguity. Critiquing the abstraction of Planetary Urbanization theory, this research employs countertopography and forensic spatial analysis to propose a counter-cartographic framework that integrates geospatial analysis with local narratives. It demonstrates how global mining finance manifests locally through tangible experiences, such as respiratory illnesses and disrupted community relationships, emphasizing the potential of counter-cartography as a tool for visualizing and contesting systemic injustice. Full article
Show Figures

Figure 1

17 pages, 2404 KiB  
Article
Geographically Weighted Regression Enhances Spectral Diversity–Biodiversity Relationships in Inner Mongolian Grasslands
by Yu Dai, Huawei Wan, Longhui Lu, Fengming Wan, Haowei Duan, Cui Xiao, Yusha Zhang, Zhiru Zhang, Yongcai Wang, Peirong Shi and Xuwei Sun
Diversity 2025, 17(8), 541; https://doi.org/10.3390/d17080541 - 1 Aug 2025
Viewed by 194
Abstract
The spectral variation hypothesis (SVH) posits that the complexity of spectral information in remote sensing imagery can serve as a proxy for regional biodiversity. However, the relationship between spectral diversity (SD) and biodiversity differs for different environmental conditions. Previous SVH studies often overlooked [...] Read more.
The spectral variation hypothesis (SVH) posits that the complexity of spectral information in remote sensing imagery can serve as a proxy for regional biodiversity. However, the relationship between spectral diversity (SD) and biodiversity differs for different environmental conditions. Previous SVH studies often overlooked these differences. We utilized species data from field surveys in Inner Mongolia and drone-derived multispectral imagery to establish a quantitative relationship between SD and biodiversity. A geographically weighted regression (GWR) model was used to describe the SD–biodiversity relationship and map the biodiversity indices in different experimental areas in Inner Mongolia, China. Spatial autocorrelation analysis revealed that both SD and biodiversity indices exhibited strong and statistically significant spatial autocorrelation in their distribution patterns. Among all spectral diversity indices, the convex hull area exhibited the best model fit with the Margalef richness index (Margalef), the coefficient of variation showed the strongest predictive performance for species richness (Richness), and the convex hull volume provided the highest explanatory power for Shannon diversity (Shannon). Predictions for Shannon achieved the lowest relative root mean square error (RRMSE = 0.17), indicating the highest predictive accuracy, whereas Richness exhibited systematic underestimation with a higher RRMSE (0.23). Compared to the commonly used linear regression model in SVH studies, the GWR model exhibited a 4.7- to 26.5-fold improvement in goodness-of-fit. Despite the relatively low R2 value (≤0.59), the model yields biodiversity predictions that are broadly aligned with field observations. Our approach explicitly considers the spatial heterogeneity of the SD–biodiversity relationship. The GWR model had significantly higher fitting accuracy than the linear regression model, indicating its potential for remote sensing-based biodiversity assessments. Full article
(This article belongs to the Special Issue Ecology and Restoration of Grassland—2nd Edition)
Show Figures

Figure 1

15 pages, 3267 KiB  
Article
Monitoring and Analyzing Aquatic Vegetation Using Sentinel-2 Imagery Time Series: A Case Study in Chimaditida Shallow Lake in Greece
by Maria Kofidou and Vasilios Ampas
Limnol. Rev. 2025, 25(3), 35; https://doi.org/10.3390/limnolrev25030035 - 1 Aug 2025
Viewed by 122
Abstract
Aquatic vegetation plays a crucial role in freshwater ecosystems by providing habitats, regulating water quality, and supporting biodiversity. This study aims to monitor and analyze the dynamics of aquatic vegetation in Chimaditida Shallow Lake, Greece, using Sentinel-2 satellite imagery, with validation from field [...] Read more.
Aquatic vegetation plays a crucial role in freshwater ecosystems by providing habitats, regulating water quality, and supporting biodiversity. This study aims to monitor and analyze the dynamics of aquatic vegetation in Chimaditida Shallow Lake, Greece, using Sentinel-2 satellite imagery, with validation from field measurements. Data processing was performed using Google Earth Engine and QGIS. The study focuses on discriminating and mapping two classes of aquatic surface conditions: areas covered with Floating and Emergent Aquatic Vegetation and open water, covering all seasons from 1 March 2024, to 28 February 2025. Spectral bands such as B04 (red), B08 (near infrared), B03 (green), and B11 (shortwave infrared) were used, along with indices like the Modified Normalized Difference Water Index and Normalized Difference Vegetation Index. The classification was enhanced using Otsu’s thresholding technique to distinguish accurately between Floating and Emergent Aquatic Vegetation and open water. Seasonal fluctuations were observed, with significant peaks in vegetation growth during the summer and autumn months, including a peak coverage of 2.08 km2 on 9 September 2024 and a low of 0.00068 km2 on 28 December 2024. These variations correspond to the seasonal growth patterns of Floating and Emergent Aquatic Vegetation, driven by temperature and nutrient availability. The study achieved a high overall classification accuracy of 89.31%, with producer accuracy for Floating and Emergent Aquatic Vegetation at 97.42% and user accuracy at 95.38%. Validation with Unmanned Aerial Vehicle-based aerial surveys showed a strong correlation (R2 = 0.88) between satellite-derived and field data, underscoring the reliability of Sentinel-2 for aquatic vegetation monitoring. Findings highlight the potential of satellite-based remote sensing to monitor vegetation health and dynamics, offering valuable insights for the management and conservation of freshwater ecosystems. The results are particularly useful for governmental authorities and natural park administrations, enabling near-real-time monitoring to mitigate the impacts of overgrowth on water quality, biodiversity, and ecosystem services. This methodology provides a cost-effective alternative for long-term environmental monitoring, especially in regions where traditional methods are impractical or costly. Full article
Show Figures

Figure 1

Back to TopTop