Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = icephobic coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3703 KiB  
Article
A Study on the Hydrophobicity and Icephobicity of Modified Cement-Based Composite Coatings for Anti-/De-Icing of Guardrail Concrete
by Jianping Gao, Pan Zhou, Xianlong Shi, Kang Gu, Hongji Chen, Qian Yang and Zhengwu Jiang
Buildings 2025, 15(13), 2263; https://doi.org/10.3390/buildings15132263 - 27 Jun 2025
Viewed by 299
Abstract
Guardrail concrete in cold regions frequently suffers from corrosion due to icing and solutions, significantly shortening the service life of the guardrail. This paper proposed a cement-based composite coating for concrete protection. The hydrophobic agent was synthesized using nano-silica, tetraethyl orthosilicate and perfluorodecyltrimethoxysilane [...] Read more.
Guardrail concrete in cold regions frequently suffers from corrosion due to icing and solutions, significantly shortening the service life of the guardrail. This paper proposed a cement-based composite coating for concrete protection. The hydrophobic agent was synthesized using nano-silica, tetraethyl orthosilicate and perfluorodecyltrimethoxysilane and used for coating modification as an additive or by impregnation. Also, a commercial hydrophobic agent was used for comparison. The modified coating was characterized by wettability, mechanical properties, chemical stability and icephobicity tests. The results showed that the coating prepared with the synthetic hydrophobic agent presented a higher contact angle than that prepared with the commercial one during the above tests. Moreover, it featured excellent icephobicity by effectively delaying the time of icing on concrete and reducing the icing mass and ice adhesion strength. In addition, the hydrophobic agent used by impregnation was a better choice for concrete surface protection. Chemical composition and morphology analysis of the coating showed that hydrophobicity and icephobicity were mainly attributed to F-containing functional groups and rough structure with low surface energy. This study provided an application potential of modified cement-based composite coating for anti-/de-icing of guardrail concrete. Full article
Show Figures

Figure 1

16 pages, 2796 KiB  
Article
Icephobic Properties of Superhydrophobic Coatings Developed for Aeronautical Applications
by Filomena Piscitelli, Matteo Fanciullo, Antonella Sarcinella, Mario Costantini and Mariaenrica Frigione
Coatings 2025, 15(6), 621; https://doi.org/10.3390/coatings15060621 - 22 May 2025
Viewed by 487
Abstract
Ice accumulation poses a significant hazard to aviation safety, particularly in cold weather conditions, as it can compromise aerodynamic performance, increase structural weight, and diminish lift, occasionally resulting in severe stall incidents. At present, such risks are managed through the use of energy-demanding [...] Read more.
Ice accumulation poses a significant hazard to aviation safety, particularly in cold weather conditions, as it can compromise aerodynamic performance, increase structural weight, and diminish lift, occasionally resulting in severe stall incidents. At present, such risks are managed through the use of energy-demanding active ice protection systems (IPSs), which operate either by inhibiting ice formation (anti-icing) or by removing existing ice (de-icing). Nonetheless, in the context of future sustainable aviation, there is a pressing need to develop IPSs with lower energy requirements. A promising approach involves hybrid IPSs that integrate conventional active systems with passive superhydrophobic or icephobic surface treatments, which are capable of preventing, delaying, or minimizing ice buildup. These systems offer the potential to substantially decrease the energy consumption and consequently the CO2 emissions. Furthermore, in accordance with FAA regulations, active IPSs are not permitted to operate during takeoff and initial flight stages to prevent any reduction in engine thrust. These two reasons emphasize the critical importance of developing efficient coatings that, on the one hand, promote the mobility of water droplets, hereby preventing ice formation, as achieved by superhydrophobic surfaces, and on the other hand, facilitate ice detachment, as required for icephobic performance. In this context, the primary objective of the present work is to emphasize the icephobic properties of two superhydrophobic coatings. To achieve this, an extensive characterization is first conducted, including wettability, Surface Free Energy (SFE), and surface roughness, to confirm their superhydrophobic nature. This is followed by an assessment of their icephobic performance, specifically in terms of ice adhesion strength, with comparisons made against a commercial aeronautical coating. The results revealed a significant reduction in both the wettability and SFE of the developed coatings compared to the reference, along with a marked decrease in ice adhesion strength, thereby demonstrating their icephobic properties. Future activities will focus on the combination of coatings with active IPS in order to assess the energy efficiency under extensive icing conditions where both superhydrophobic and icephobic properties are required. Full article
Show Figures

Figure 1

37 pages, 12224 KiB  
Review
Research Progress of Photothermal Superhydrophobic Surfaces for Anti-Icing/Deicing
by Hui Gao, Tianjun Yin, Jieyin Ma, Yuqin Zhou, Ke Li and Jiayi Bao
Molecules 2025, 30(9), 1865; https://doi.org/10.3390/molecules30091865 - 22 Apr 2025
Cited by 1 | Viewed by 1613
Abstract
Photothermal superhydrophobic surfaces with micro/nano-structured morphologies have emerged as promising candidates for anti-icing and deicing applications due to their exceptional water repellency and efficient solar-to-thermal conversion. These surfaces synergistically integrate the passive icephobicity of superhydrophobic coatings with the active heating capability of photothermal [...] Read more.
Photothermal superhydrophobic surfaces with micro/nano-structured morphologies have emerged as promising candidates for anti-icing and deicing applications due to their exceptional water repellency and efficient solar-to-thermal conversion. These surfaces synergistically integrate the passive icephobicity of superhydrophobic coatings with the active heating capability of photothermal materials, offering energy-efficient and environmentally friendly solutions for sectors such as aviation, wind energy, and transportation. Hence, they have received widespread attention in recent years. This review provides a comprehensive overview of recent advances in photothermal superhydrophobic coatings, focusing on their anti-icing/deicing mechanisms, surface wettability, and photothermal conversion performance for anti-icing/deicing applications. Special emphasis is placed on material categories, including metals and their compounds, carbon-based materials, and polymers, analyzing their structural features and application effectiveness. Furthermore, the application of anti-icing/deicing in various fields is described. Finally, perspectives on future development are presented, including pursuing fluorine-free, cost-effective, and multifunctional coatings to meet the growing demand for innovative, sustainable anti-icing/deicing technologies. Full article
(This article belongs to the Special Issue Micro/Nano-Materials for Anti-Icing and/or De-Icing Applications)
Show Figures

Figure 1

53 pages, 13954 KiB  
Review
Progress in Icephobic Coatings for Wind Turbine Protection: Merging Chemical Innovation with Practical Implementation
by Ghazal Minoofar, Amirhossein Jalali Kandeloos, Mohammad Sadegh Koochaki and Gelareh Momen
Crystals 2025, 15(2), 139; https://doi.org/10.3390/cryst15020139 - 27 Jan 2025
Cited by 2 | Viewed by 5141
Abstract
Ice accumulation on wind turbine blades poses a significant challenge to turbine performance and safety, and these issues have led to extensive research on developing effective anti-icing methods. Polymer-based icephobic coatings have emerged as promising solutions, given their passive nature and low energy [...] Read more.
Ice accumulation on wind turbine blades poses a significant challenge to turbine performance and safety, and these issues have led to extensive research on developing effective anti-icing methods. Polymer-based icephobic coatings have emerged as promising solutions, given their passive nature and low energy requirements. However, developing effective icephobic coatings is a complex task. In addition to anti-icing properties, factors such as mechanical strength, durability, and resistance to UV, weathering, and rain erosion must be carefully considered to ensure these coatings withstand the harsh conditions faced by wind turbines. The main challenge in coating engineering is mastering the chemistry behind these coatings, as it determines their performance. This review provides a comprehensive analysis of the suitability of current icephobic coatings for wind turbine applications, emphasizing their alignment with present industrial standards and the underlying coating chemistry. Unlike previous works, which primarily focus on the mechanical aspects of icephobicity, this review highlights the critical yet underexplored role of chemical composition and explores recent advancements in polymer-based icephobic coatings. Additionally, earlier studies largely neglect the specific standards required for industrial applications on wind turbines. By demonstrating that no existing coating fully meets all necessary criteria, this work underscores both the urgency of developing icephobic coatings with improved durability and the pressing need to establish robust, application-specific standards for wind turbines. The review also combines insights from cutting-edge research on icephobic coatings that are coupled with active de-icing methods, known as the hybrid approach. By organizing and summarizing these innovations, the review aims to accelerate the development of reliable and efficient wind energy systems to pave the way for a cleaner and more sustainable future. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Figure 1

15 pages, 5042 KiB  
Article
Efficient Corona Suppression Coatings and Their Behavior in Corrosive and Icy Environments
by Kirill A. Emelyanenko, Maria A. Teplonogova, Alexandre M. Emelyanenko and Ludmila B. Boinovich
Materials 2025, 18(2), 254; https://doi.org/10.3390/ma18020254 - 9 Jan 2025
Viewed by 760
Abstract
High-voltage transmission lines face significant challenges due to environmental exposure, including corona discharge, ice accretion, and corrosion, which impact their durability and operational efficiency. This study investigates the performance of hydrophilic and superhydrophilic organosilane coatings applied to high-voltage wires to address these issues. [...] Read more.
High-voltage transmission lines face significant challenges due to environmental exposure, including corona discharge, ice accretion, and corrosion, which impact their durability and operational efficiency. This study investigates the performance of hydrophilic and superhydrophilic organosilane coatings applied to high-voltage wires to address these issues. Using a combination of experimental setups simulating real-world conditions, we evaluated corona discharge losses, ice adhesion, and corrosion resistance on coated and uncoated wires. The results reveal that hydrophilic and superhydrophilic organosilane coatings offer a substantial reduction in corona discharge power losses, with a 25–60% decrease compared to bare wires. Additionally, the proposed hydrophilic coating exhibits ice adhesion characteristics similar to bare wires, in contrast to the higher ice adhesion observed for superhydrophilic samples. Corrosion tests further highlight the performance of the hydrophilic coating, which reduces corrosion currents by approximately threefold compared to bare wires, demonstrating enhanced protection and long-term stability. While superhydrophilic coatings offer some advantages in corona discharge reduction, their increased ice adhesion and higher corrosion rates limit their applicability. The hydrophilic organosilane coating thus emerges as the optimal tradeoff, balancing effective corona discharge mitigation, moderating ice adhesion, and enhancing corrosion resistance, making it a promising solution for improving the performance and longevity of high-voltage transmission lines. Full article
Show Figures

Graphical abstract

12 pages, 3203 KiB  
Article
Comparative Study of Electrospun Polydimethylsiloxane Fibers as a Substitute for Fluorine-Based Polymeric Coatings for Hydrophobic and Icephobic Applications
by Adrián Vicente, Pedro J. Rivero, Cleis Santos, Nadine Rehfeld and Rafael Rodríguez
Polymers 2024, 16(23), 3386; https://doi.org/10.3390/polym16233386 - 30 Nov 2024
Cited by 2 | Viewed by 1481
Abstract
The development of superhydrophobic, waterproof, and breathable membranes, as well as icephobic surfaces, has attracted growing interest. Fluorinated polymers like PTFE or PVDF are highly effective, and previous research by the authors has shown that combining these polymers with electrospinning-induced roughness enhances their [...] Read more.
The development of superhydrophobic, waterproof, and breathable membranes, as well as icephobic surfaces, has attracted growing interest. Fluorinated polymers like PTFE or PVDF are highly effective, and previous research by the authors has shown that combining these polymers with electrospinning-induced roughness enhances their hydro- and ice-phobicity. The infusion of these electrospun mats with lubricant oil further improves their icephobic properties, achieving a slippery liquid-infused porous surface (SLIPS). However, their environmental impact has motivated the search for fluorine-free alternatives. This study explores polydimethylsiloxane (PDMS) as an ideal candidate because of its intrinsic properties, such as low surface energy and high flexibility, even at very low temperatures. While some published results have considered this polymer for icephobic applications, in this work, the electrospinning technique has been used for the first time for the fabrication of 95% pure PDMS fibers to obtain hydrophobic porous coatings as well as breathable and waterproof membranes. Moreover, the properties of PDMS made it difficult to process, but these limitations were overcome by adding a very small amount of polyethylene oxide (PEO) followed by a heat treatment process that provides a mat of uniform fibers. The experimental results for the PDMS porous coating confirm a hydrophobic behavior with a water contact angle (WCA) ≈ 118° and roll-off angle (αroll-off) ≈ 55°. In addition, the permeability properties of the fibrous PDMS membrane show a high transmission rate (WVD) ≈ 51.58 g∙m−2∙d−1, providing breathability and waterproofing. Finally, an ice adhesion centrifuge test showed a low ice adhesion value of 46 kPa. These results highlight the potential of PDMS for effective icephobic and waterproof applications. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

16 pages, 5195 KiB  
Article
Polyurethane Nanocomposite Coatings Coupled with Titanium-Based Conversion Layers for Enhanced Anticorrosion, Icephobic Properties, and Surface Protection
by Shamim Roshan, Reza Jafari and Gelareh Momen
Molecules 2024, 29(16), 3901; https://doi.org/10.3390/molecules29163901 - 17 Aug 2024
Cited by 4 | Viewed by 1492
Abstract
This study examines the efficacy of icephobic polyurethane nanocomposite coatings in mitigating corrosion on an aluminum substrate. A titanium-based conversion coating is applied to modify the substrate, and the research focuses on optimizing the dual functionalities of icephobicity and anticorrosion within the polyurethane [...] Read more.
This study examines the efficacy of icephobic polyurethane nanocomposite coatings in mitigating corrosion on an aluminum substrate. A titanium-based conversion coating is applied to modify the substrate, and the research focuses on optimizing the dual functionalities of icephobicity and anticorrosion within the polyurethane coatings while ensuring strong substrate adhesion. The coatings are formulated using fluoropolyol, isocyanate, and silica nanoparticles treated with polydimethylsiloxane. Surface properties are analyzed using contact angles, contact angle hysteresis measurements, and atomic force microscopy, and the coatings’ icephobicity is evaluated through differential scanning calorimetry, freezing time delay, ice adhesion under impact and non-impact conditions, and ice accretion tests. The corrosion resistance and adhesive strength of the coatings are assessed using electrochemical impedance spectroscopy and cross-cut tests, respectively. Increasing the concentration of silica nanoparticles to 10 wt.% increases contact angles to 167°, although the 4 wt.% coating produces the lowest contact angle hysteresis (3° ± 0.5°) and ice nucleation temperature (−23 °C). The latter coating is then applied to a substrate pretreated with a titanium/cerium-based conversion coating. This prepared surface maintains an ice adhesion of about 15 kPa after 15 icing/de-icing cycles and provides approximately 90 days of surface protection (|Z|lf = 1.6 × 109 Ω·cm2). Notably, the impedance value exceeds that of untreated substrates, underscoring the effectiveness of the titanium/cerium-based conversion coating in enhancing both corrosion resistance and coating adhesion to the substrate. Full article
Show Figures

Figure 1

12 pages, 3243 KiB  
Article
Effects of Precursors Ratio and Curing Treatment on the Icephobicity of Polydimethylsiloxane
by Marcella Balordi, Alessandro Casali, Paolo Gadia, Paolo Pelagatti, Francesco Pini and Giorgio Santucci de Magistris
Coatings 2024, 14(7), 901; https://doi.org/10.3390/coatings14070901 - 18 Jul 2024
Viewed by 1504
Abstract
Elastomers are intriguing materials for many applications, one of these being icephobic coatings. Elastic modulus and work of adhesion are the key parameters coming into play in ice detachment mechanisms, and can be related to hardness and wettability. Polydimethylsiloxane (PDMS) is widely used [...] Read more.
Elastomers are intriguing materials for many applications, one of these being icephobic coatings. Elastic modulus and work of adhesion are the key parameters coming into play in ice detachment mechanisms, and can be related to hardness and wettability. Polydimethylsiloxane (PDMS) is widely used for anti-ice applications; however, not many works deal with the correlation between cross-linking grade, curing treatments, and icephobicity. This study focuses on PDMS (Sylgard184®) coatings, encompassing four different pre-polymer to cross-linking agent (A:B) ratios ranging from 5:1 to 30:1, and nine curing treatments. The results indicate that increasing the A:B ratio enhances hydrophobicity, softness, and icephobicity, assessed through shear stress measurements. Curing treatments primarily affect hardness and icephobicity, with longer heat treatments resulting in higher hardness and ice adhesion. All samples exhibit promising performances in lowering shear stress values, up to seven times in respect to the uncoated reference for 30:1 ratio. Additionally, a durability assessment is conducted on samples exposed to stress tests in the climatic chamber. A slight deterioration in hydrophobicity across all samples is observed and, notably, a significant hardness increase, around 13%, is experienced for the 5:1 ratio only. The samples also demonstrate an overall robust icephobicity after stress tests, and, for the 30:1 ratio, an average shear stress value four times lower than the reference is maintained. In this work, we highlight the importance of the fine-tuning of the precursors ratio and thermal treatments on the PDMS properties and durability. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

14 pages, 6797 KiB  
Article
Study on Durability and Dynamic Deicing Performance of Elastomeric Coatings on Wind Turbine Blades
by Ke Li, Zhiliang Xue, Danqing Jiang, Zhichun Chen, Qi Si, Jixin Liu and Yonggang Zhou
Coatings 2024, 14(7), 870; https://doi.org/10.3390/coatings14070870 - 11 Jul 2024
Cited by 1 | Viewed by 1200
Abstract
Durable elastomeric deicing coatings were developed for the anti-icing and deicing of wind turbine blades in this study. Our developed deicing coatings demonstrated extremely low ice adhesion strength (~15 kPa). Silica was added to enhance the icephobic surfaces’ durability. The life of the [...] Read more.
Durable elastomeric deicing coatings were developed for the anti-icing and deicing of wind turbine blades in this study. Our developed deicing coatings demonstrated extremely low ice adhesion strength (~15 kPa). Silica was added to enhance the icephobic surfaces’ durability. The life of the deicing coating with silica was extended by 1.2 times. After 168 h of xenon lamp irradiation, there were no significant changes in the chemical composition of the coatings. Due to the increasing roughness and the decreasing tensile modulus, the contact angle of the aged coatings decreased by 14°. Further outdoor research was carried out on a wind farm for two months to investigate the influence of natural insolation and wind erosion on the elastic deicing coatings. The aged coating still maintained a high hydrophobicity and low ice adhesion strength. The contact angle stabilized at 107°, and the ice adhesion strength was 75% lower than that of the uncoated wind turbine blade. The elastomeric deicing coatings had three advantages: a lagging freezing time, low ice accumulation, and a short icing/deicing cycle. The results of field experiments on the naturally aged coatings showed that the freezing time of the coated blade was delayed by 20 min, and the ice on the coated blade was 29% thinner than that on the uncoated blade. Full article
Show Figures

Figure 1

23 pages, 14384 KiB  
Article
Enhancing Icephobic Coatings: Exploring the Potential of Dopamine-Modified Epoxy Resin Inspired by Mussel Catechol Groups
by Mohammad Sadegh Koochaki, Gelareh Momen, Serge Lavoie and Reza Jafari
Biomimetics 2024, 9(6), 349; https://doi.org/10.3390/biomimetics9060349 - 8 Jun 2024
Cited by 2 | Viewed by 1616
Abstract
A nature-inspired approach was employed through the development of dopamine-modified epoxy coating for anti-icing applications. The strong affinity of dopamine’s catechol groups for hydrogen bonding with water molecules at the ice/coating interface was utilized to induce an aqueous quasi-liquid layer (QLL) on the [...] Read more.
A nature-inspired approach was employed through the development of dopamine-modified epoxy coating for anti-icing applications. The strong affinity of dopamine’s catechol groups for hydrogen bonding with water molecules at the ice/coating interface was utilized to induce an aqueous quasi-liquid layer (QLL) on the surface of the icephobic coatings, thereby reducing their ice adhesion strength. Epoxy resin modification was studied by attenuated total reflectance infrared spectroscopy (ATR-FTIR) and nuclear magnetic resonance spectroscopy (NMR). The surface and mechanical properties of the prepared coatings were studied by different characterization techniques. Low-temperature ATR-FTIR was employed to study the presence of QLL on the coating’s surface. Moreover, the freezing delay time and temperature of water droplets on the coatings were evaluated along with push-off and centrifuge ice adhesion strength to evaluate their icephobic properties. The surface of dopamine-modified epoxy coating presented enhanced hydrophilicity and QLL formation, addressed as the main reason for its remarkable icephobicity. The results demonstrated the potential of dopamine-modified epoxy resin as an effective binder for icephobic coatings, offering notable ice nucleation delay time (1316 s) and temperature (−19.7 °C), reduced ice adhesion strength (less than 40 kPa), and an ice adhesion reduction factor of 7.2 compared to the unmodified coating. Full article
(This article belongs to the Special Issue Bionic Engineering for Boosting Multidisciplinary Integration)
Show Figures

Graphical abstract

16 pages, 10906 KiB  
Article
Icephobic Coating Based on Novel SLIPS Made of Infused PTFE Fibers for Aerospace Application
by Adrián Vicente, Pedro J. Rivero, Nadine Rehfeld, Andreas Stake, Paloma García, Francisco Carreño, Julio Mora and Rafael Rodríguez
Polymers 2024, 16(5), 571; https://doi.org/10.3390/polym16050571 - 20 Feb 2024
Cited by 5 | Viewed by 2194
Abstract
The development of slippery surfaces has been widely investigated due to their excellent icephobic properties. A distinct kind of an ice-repellent structure known as a slippery liquid-infused porous surface (SLIPS) has recently drawn attention due to its simplicity and efficacy as a passive [...] Read more.
The development of slippery surfaces has been widely investigated due to their excellent icephobic properties. A distinct kind of an ice-repellent structure known as a slippery liquid-infused porous surface (SLIPS) has recently drawn attention due to its simplicity and efficacy as a passive ice-protection method. These surfaces are well known for exhibiting very low ice adhesion values (τice < 20 kPa). In this study, pure Polytetrafluoroethylene (PTFE) fibers were fabricated using the electrospinning process to produce superhydrophobic (SHS) porous coatings on samples of the aeronautical alloy AA6061-T6. Due to the high fluorine–carbon bond strength, PTFE shows high resistance and chemical inertness to almost all corrosive reagents as well as extreme hydrophobicity and high thermal stability. However, these unique properties make PTFE difficult to process. For this reason, to develop PTFE fibers, the electrospinning technique has been used by an PTFE nanoparticles (nP PTFE) dispersion with addition of a very small amount of polyethylene oxide (PEO) followed with a sintering process (380 °C for 10 min) to melt the nP PTFE together and form uniform fibers. Once the porous matrix of PTFE fibers is attached, lubricating oil is added into the micro/nanoscale structure in the SHS in place of air to create a SLIPS. The experimental results show a high-water contact angle (WCA) ≈ 150° and low roll-off angle (αroll-off) ≈ 22° for SHS porous coating and a decrease in the WCA ≈ 100° and a very low αroll-off ≈ 15° for SLIPS coating. On one hand, ice adhesion centrifuge tests were conducted for two types of icing conditions (glaze and rime) accreted in an ice wind tunnel (IWT), as well as static ice at different ice adhesion centrifuge test facilities in order to compare the results for SHS, SLIPs and reference materials. This is considered a preliminary step in standardization efforts where similar performance are obtained. On the other hand, the ice adhesion results show 65 kPa in the case of SHS and 4.2 kPa of SLIPS for static ice and <10 kPa for rime and glace ice. These results imply a significant improvement in this type of coatings due to the combined effect of fibers PTFE and silicon oil lubricant. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

3 pages, 162 KiB  
Editorial
Special Issue “Superhydrophobic and Icephobic Coatings as Passive Ice Protection Systems for Aeronautical Applications”
by Filomena Piscitelli
Appl. Sci. 2024, 14(3), 1288; https://doi.org/10.3390/app14031288 - 4 Feb 2024
Cited by 3 | Viewed by 1650
Abstract
The formation of ice can be very dangerous to flight safety, especially in cold climates, since ice accumulated on the surfaces of the aircraft can alter the aerodynamics, increase the weight, and reduce lift, leading to catastrophic stall situations in some cases [...] [...] Read more.
The formation of ice can be very dangerous to flight safety, especially in cold climates, since ice accumulated on the surfaces of the aircraft can alter the aerodynamics, increase the weight, and reduce lift, leading to catastrophic stall situations in some cases [...] Full article
26 pages, 11701 KiB  
Article
Round-Robin Study for Ice Adhesion Tests
by Nadine Rehfeld, Jean-Denis Brassard, Masafumi Yamazaki, Hirotaka Sakaue, Marcella Balordi, Heli Koivuluoto, Julio Mora, Jianying He, Marie-Laure Pervier, Ali Dolatabadi, Emily Asenath-Smith, Mikael Järn, Xianghui Hou and Volkmar Stenzel
Aerospace 2024, 11(2), 106; https://doi.org/10.3390/aerospace11020106 - 24 Jan 2024
Cited by 12 | Viewed by 2892
Abstract
Ice adhesion tests are widely used to assess the performance of potential icephobic surfaces and coatings. A great variety of test designs have been developed and used over the past decades due to the lack of formal standards for these types of tests. [...] Read more.
Ice adhesion tests are widely used to assess the performance of potential icephobic surfaces and coatings. A great variety of test designs have been developed and used over the past decades due to the lack of formal standards for these types of tests. In many cases, the aim of the research was not only to determine ice adhesion values, but also to understand the key surface properties correlated to low ice adhesion surfaces. Data from different measurement techniques had low correspondence between the results: Values varied by orders of magnitude and showed different relative relationships to one another. This study sought to provide a broad comparison of ice adhesion testing approaches by conducting different ice adhesion tests with identical test surfaces. A total of 15 test facilities participated in this round-robin study, and the results of 13 partners are summarized in this paper. For the test series, ice types (impact and static) as well as test parameters were harmonized to minimize the deviations between the test setups. Our findings are presented in this paper, and the ice- and test-specific results are discussed. This study can improve our understanding of test results and support the standardization process for ice adhesion strength measurements. Full article
(This article belongs to the Special Issue Deicing and Anti-Icing of Aircraft (Volume III))
Show Figures

Figure 1

14 pages, 11084 KiB  
Article
Icephobic Coating Based on Epoxy/Polydimethylsiloxane Interpenetrating Polymer Network Gel
by Lin Zhao, Tianhui Hao, Qiang Xie, Yuan Tian, Jifeng Zhang and Haotian Guo
Coatings 2024, 14(1), 76; https://doi.org/10.3390/coatings14010076 - 5 Jan 2024
Cited by 1 | Viewed by 2353
Abstract
Ice accretion endangers the safety and reliability of equipment operation in frigid regions. Silicone polymer icephobic coatings present themselves as an effective strategy. However, they face durability challenges, which is a crucial foundation for expanding their application. In this work, a durable icephobic [...] Read more.
Ice accretion endangers the safety and reliability of equipment operation in frigid regions. Silicone polymer icephobic coatings present themselves as an effective strategy. However, they face durability challenges, which is a crucial foundation for expanding their application. In this work, a durable icephobic coating was prepared based on an epoxy/polydimethylsiloxane (PDMS) interpenetrating polymer network (IPN) gel. In the process, epoxy was used to improve mechanical performance. IPN technology was used to integrate PDMS and epoxy. Low-molecular-weight silicone oil was used to adjust the elastic modulus of the coating by reducing crosslinking. The mechanical properties, icephobicity and durability of the coatings were characterized through elastic modulus measurements, ice adhesion strength tests, and icing/deicing cycle tests, respectively. Results shows the ice adhesion strength of the epoxy/PDMS IPN gel coating was approximately 8 kPa when the elastic modulus was 0.18 MPa. Additionally, the epoxy/PDMS IPN gel has good durability, weather resistance, and substrate adhesion. After 25 icing/deicing cycle tests, the coating remained undamaged, and the ice adhesion strength was stable in the range of 3–14 kPa. Within the range of −5 to −30 °C, the ice adhesion strength of the coating was stable and less than 20 kPa. After 168 h of salt spray aging test, the ice adhesion strength of the coating was maintained at 48.72 ± 5.27 kPa. This can provide a reference for an icephobic coating design. Full article
(This article belongs to the Special Issue Smart Coatings)
Show Figures

Figure 1

47 pages, 7700 KiB  
Review
On the Durability of Icephobic Coatings: A Review
by Andrés Nistal, Benjamín Sierra-Martín and Antonio Fernández-Barbero
Materials 2024, 17(1), 235; https://doi.org/10.3390/ma17010235 - 31 Dec 2023
Cited by 12 | Viewed by 4269
Abstract
Ice formation and accumulation on surfaces has a negative impact in many different sectors and can even represent a potential danger. In this review, the latest advances and trends in icephobic coatings focusing on the importance of their durability are discussed, in an [...] Read more.
Ice formation and accumulation on surfaces has a negative impact in many different sectors and can even represent a potential danger. In this review, the latest advances and trends in icephobic coatings focusing on the importance of their durability are discussed, in an attempt to pave the roadmap from the lab to engineering applications. An icephobic material is expected to lower the ice adhesion strength, delay freezing time or temperature, promote the bouncing of a supercooled drop at subzero temperatures and/or reduce the ice accretion rate. To better understand what is more important for specific icing conditions, the different types of ice that can be formed in nature are summarized. Similarly, the alternative methods to evaluate the durability are reviewed, as this is key to properly selecting the method and parameters to ensure the coating is durable enough for a given application. Finally, the different types of icephobic surfaces available to date are considered, highlighting the strategies to enhance their durability, as this is the factor limiting the commercial applicability of icephobic coatings. Full article
Show Figures

Graphical abstract

Back to TopTop