Special Issue “Superhydrophobic and Icephobic Coatings as Passive Ice Protection Systems for Aeronautical Applications”
Acknowledgments
Conflicts of Interest
References
- Antonini, C.; Innocenti, M.; Horn, T.; Marengo, M.; Amirfazli, A. Understanding the Effect of Superhydrophobic Coatings on Energy Reduction in Anti-icing System. Cold Reg. Sci. Technol. 2011, 67, 58–67. [Google Scholar] [CrossRef]
- Fortin, G.; Adomou, M.; Perron, J. Experimental Study of Hybrid Anti-Icing Systems Combining Thermoelectric and Hydrophobic Coatings; SAE Technical Paper 2011-38-0003; SAE: Warrendale, PA, USA, 2011. [Google Scholar] [CrossRef]
- Mangini, D.; Antonini, C.; Marengo, M.; Amirfazli, A. Runback Ice Formation Mechanism on Hydrophilic and Superhydrophobic Surfaces. Cold Reg. Sci. Technol. 2015, 109, 53–60. [Google Scholar] [CrossRef]
- Strobl, T.; Storm, S.; Kolb, M.; Haag, J.; Hornung, M. Development of a Hybrid Ice Protection System Based on Nanostructured Hydrophobic Surfaces. In Proceedings of the 29th Congress on International Council of Aeronautical Sciences, St. Petersburg, Russia, 7–12 September 2014. [Google Scholar]
- Piscitelli, F.; Ameduri, S.; Volponi, R.; Pellone, L.; De Nicola, F.; Concilio, A.; Albano, F.; Elia, G.; Notarnicola, L. Effect of Surface Modification on the Hybrid Ice Protection Systems Performances; SAE Technical Paper 2023-01-1452; SAE: Warrendale, PA, USA, 2023. [Google Scholar] [CrossRef]
- Morita, K.; Kimura, S.; Sakaue, H. Hybrid System Combining Ice-Phobic Coating and Electrothermal Heating for Wing Ice Protection. Aerospace 2020, 7, 102. [Google Scholar] [CrossRef]
- Yu, L.; Wu, Y.; Zhao, H.; Zhu, D. A Study on the Sensitivities of an Ice Protection System Combining Thermoelectric and Superhydrophobic Coating to Icing Environment Parameters. Appl. Sci. 2023, 13, 6607. [Google Scholar] [CrossRef]
- Croce, G.; Suzzi, N.; Pretto, M.; Giannattasio, P. Numerical Modelling of Droplets and Beads Behavior over Super-Hydrophobic and Hydrophilic Coatings under in-Flight Icing Conditions. Appl. Sci. 2022, 12, 7654. [Google Scholar] [CrossRef]
- Ferrari, M.; Cirisano, F. Superhydrophobic Coating Solutions for Deicing Control in Aircraft. Appl. Sci. 2023, 13, 11684. [Google Scholar] [CrossRef]
- Song, N.; Benmeddour, A. Erosion Resistant Hydrophobic Coatings for Passive Ice Protection of Aircraft. Appl. Sci. 2022, 12, 9589. [Google Scholar] [CrossRef]
- Piscitelli, F. Characterization in Relevant Icing Conditions of Two Superhydrophobic Coatings. Appl. Sci. 2022, 12, 3705. [Google Scholar] [CrossRef]
- FA Regulation. Airworthiness Standard: Transport Category Airplanes Part 25 Appendix C. Federal Aviation Administration: Atlantic City, NJ, USA, 1982.
- Yang, Q.; Guo, X.; Dong, W.; Wang, A. Ice accretion and aerodynamic effects on a turbofan engine nacelle under takeoff conditions. Aerosp. Sci. Technol. 2022, 126, 107571–107584. [Google Scholar] [CrossRef]
- Piscitelli, F.; Palazzo, S.; De Nicola, F. Icing Wind Tunnel Test Campaign on a Nacelle Lip-Skin to Assess the Effect of a Superhydrophobic Coating on Ice Accretion. Appl. Sci. 2023, 13, 5183. [Google Scholar] [CrossRef]
- Rehfeld, N.; Speckmann, B.; Stenzel, V. Parameter Study for the Ice Adhesion Centrifuge Test. Appl. Sci. 2022, 12, 1583. [Google Scholar] [CrossRef]
- Shamshiri, M.; Jafari, R.; Momen, G. Potential use of smart coatings for icephobic applications: A review. Surf. Coat. Technol. 2021, 424, 127656. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, H.; Zhu, D.; Yuan, L.; Zhang, H.; Fan, P.; Zhong, M. A Review on Ultrafast Laser Enabled Excellent Superhydrophobic Anti-Icing Performances. Appl. Sci. 2023, 13, 5478. [Google Scholar] [CrossRef]
- Brassard, J.-D.; Posteraro, D.; Sobhani, S.; Ruggi, M.; Momen, G. A Multi-Tool Analysis to Assess the Effectiveness of Passive Ice Protection Materials to Assist Rotorcraft Manual De-Icing. Appl. Sci. 2021, 11, 11847. [Google Scholar] [CrossRef]
- Kreder, M.J.; Alvarenga, J.; Kim, P.; Aizenberg, J. Design of anti-icing surfaces: Smooth, textured or slippery? Nat. Rev. Mater. 2016, 1, 15003. [Google Scholar] [CrossRef]
- Ziętkowska, K.; Przybyszewski, B.; Grzęda, D.; Kozera, R.; Boczkowska, A.; Liszewska, M.; Pakuła, D.; Przekop, R.E.; Sztorch, B. Transparent Silicone–Epoxy Coatings with Enhanced Icephobic Properties for Photovoltaic Applications. Appl. Sci. 2023, 13, 7730. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piscitelli, F. Special Issue “Superhydrophobic and Icephobic Coatings as Passive Ice Protection Systems for Aeronautical Applications”. Appl. Sci. 2024, 14, 1288. https://doi.org/10.3390/app14031288
Piscitelli F. Special Issue “Superhydrophobic and Icephobic Coatings as Passive Ice Protection Systems for Aeronautical Applications”. Applied Sciences. 2024; 14(3):1288. https://doi.org/10.3390/app14031288
Chicago/Turabian StylePiscitelli, Filomena. 2024. "Special Issue “Superhydrophobic and Icephobic Coatings as Passive Ice Protection Systems for Aeronautical Applications”" Applied Sciences 14, no. 3: 1288. https://doi.org/10.3390/app14031288
APA StylePiscitelli, F. (2024). Special Issue “Superhydrophobic and Icephobic Coatings as Passive Ice Protection Systems for Aeronautical Applications”. Applied Sciences, 14(3), 1288. https://doi.org/10.3390/app14031288