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Abstract: Ice accretion endangers the safety and reliability of equipment operation in frigid regions.
Silicone polymer icephobic coatings present themselves as an effective strategy. However, they
face durability challenges, which is a crucial foundation for expanding their application. In this
work, a durable icephobic coating was prepared based on an epoxy/polydimethylsiloxane (PDMS)
interpenetrating polymer network (IPN) gel. In the process, epoxy was used to improve mechanical
performance. IPN technology was used to integrate PDMS and epoxy. Low-molecular-weight silicone
oil was used to adjust the elastic modulus of the coating by reducing crosslinking. The mechanical
properties, icephobicity and durability of the coatings were characterized through elastic modulus
measurements, ice adhesion strength tests, and icing/deicing cycle tests, respectively. Results shows
the ice adhesion strength of the epoxy/PDMS IPN gel coating was approximately 8 kPa when
the elastic modulus was 0.18 MPa. Additionally, the epoxy/PDMS IPN gel has good durability,
weather resistance, and substrate adhesion. After 25 icing/deicing cycle tests, the coating remained
undamaged, and the ice adhesion strength was stable in the range of 3–14 kPa. Within the range of
−5 to −30 ◦C, the ice adhesion strength of the coating was stable and less than 20 kPa. After 168 h
of salt spray aging test, the ice adhesion strength of the coating was maintained at 48.72 ± 5.27 kPa.
This can provide a reference for an icephobic coating design.

Keywords: icephobic coating; interpenetrating polymer network; organogel; elastic modulus;
epoxy; polydimethylsiloxane

1. Introduction

Ice accretion has negatively impacted production and life, leading to catastrophic
consequences in road transportation, the power industry, aerospace, wind power, ships,
and ocean platforms [1–3]. While researchers have had many discussions about how to
repel water before it can form ice and have made some progress, only delayed freezing
has been achieved [4,5]. Complete prevention of ice accretion in extreme conditions is still
considered a challenge [6,7]. This emphasizes the importance of easily removing ice [8].
Icephobic coating, defined as having an ice adhesion strength below 100 kPa [9,10], has
received widespread attention from researchers due to its environmental, economic, and
energy-saving potential [11,12].

The design idea for an icephobic coating is to find a material that has long-term
adhesion to a structural surface on one side and excellent icephobic properties on the
other side [13]. For example, the ice adhesion strength of ice on a smooth aluminum alloy
surface is approximately 727 ± 227 kPa [14]. By applying an icephobic coating to the
aluminum alloy surface, the ice adhesion strength is reduced to less than 20 kPa, allowing
ice to be easily removed by natural forces [15]. Silicone polymers and fluoropolymers
exhibit low surface energies [16], making them candidates for icephobic coatings [17].
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Liu et al. [18] prepared a coating with icephobic capability by combining low-surface-
energy fluorosilicone resin with hydrophobic nano-SiO2-poly (methyl-3,3,3-trifluoropropyl
siloxane) particles. The coating surface exhibits an ice adhesion strength of only 34 kPa at
−25 ◦C. After 10 icing/deicing cycles, the ice adhesion strength of the coating stabilized
below 40 kPa. Wang et al. [19] prepared icephobic coatings from tetrahydrofuran (THF),
glycerol triglycidyl ether (GTE) derived from natural glycerin and bis(3-aminopropyl)-
terminated PDMS by a one-pot method. The THF-GTE-PDMS coating (molecular weight of
PDMS is 5000) exhibits an ice adhesion strength of only 16 kPa, and after 20 icing/deicing
cycles, the ice adhesion strength was similar to the initial test. Qi et al. [20] utilized silicone
oil-swollen trimethyl-capped PDMS to create a low-modulus organic gel coating, which
resulted in an ice adhesion strength of 6.5 kPa at −10 ◦C. Apparently, these studies were able
to achieve significantly reduced ice adhesion strength by adjusting the surface properties
of the coating. However, they encountered challenges with coating durability due to the
inferior mechanical properties of silicone polymers and fluoropolymers [17,21].

On the other hand, while it is necessary to obtain durable coatings for wider applicability,
it is also believed that the adjustment of mechanical properties can affect the adhesion strength
of ice. According to interfacial fracture mechanics, M. Nosonovsky, He and Jiang et al. [22–24]
found that the adhesion strength of ice (τice) can be estimated by the following equation:

τice =

√
EG
πaΛ

(1)

where E is the elastic modulus, G is the surface energy, a is the length of the interface crack,
and Λ is a non-dimensional constant determined by the geometric configuration of the
crack. M.K. Chaudhury and Li et al. [25,26] also found that the critical shear stress τice (e.g.,
ice adhesion strength) required to shear a rigid body (e.g., ice) from an elastic thin film is:

τice ∝

√
WE

t
(2)

where W is the work of adhesion, E is the elastic modulus of the film, and t is the thickness
of the film. The above two equations indicate that lowering the surface energy and elastic
modulus of a coating can effectively reduce the ice adhesion strength. Therefore, it is
worth noting that an icephobic coating should not only meet the requirements of easy
removal of ice accretions, but also be durable, weather resistant, and environmentally
friendly [27]. In addition, the effect of changes in mechanical strength on icephobicity
should be clarified [28].

In this paper, we designed an icephobic coating based on an epoxy/PDMS interpene-
trating polymer network (IPN) gel. The role of the epoxy is to enhance the durability of the
coating itself and the bond strength of the coating to the substrate. Low-molecular-weight
silicone oil was added to reduce the modulus by decreasing the crosslink density. Using
IPN technology, we integrated the incompatible epoxy and PDMS together. By combining
IPN and the gelation process, uniform, low-modulus and durable epoxy/PDMS IPN gel
coatings were obtained. The icephobic properties of gel coatings were determined by
testing the adhesion of ice to the surface. This work also attempted to reveal the relation-
ship between roughness, wettability, elastic modulus and icephobicity. In addition, the
durability of the coatings was evaluated after icing/deicing cycle tests, deicing tests at
different temperatures, X-cut coating adhesion tests and neutral salt spray aging tests.

2. Materials and Methods
2.1. Materials

PDMS (α, ω-dihydroxy-PDMS, type 107, viscosity: 5000 cps) was obtained from
Jiangxi Silicon Bo Chemical Co., Ltd., Nanchang, China; Tetraethyl orthosilicate (TEOS),
and cyclohexane was obtained from Tianjin Kemiou Chemical Reagent Co., Ltd., Tianjin,
China; Di-n-butyltin dilaurate (DBTL) and sodium chloride were obtained from Sinopharm
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Chemical Reagent Co., Ltd., Shanghai, China; Bisphenol A epoxy (type E-51, epoxy value:
0.48~0.54 eq/100 g, viscosity: 11,000 cps) was obtained from Wuxi BLUE-STAR Petro-
chemical, Wuxi, China; Polyether amine (PEA, type D230) was obtained from Changzhou
Runxiang Chemical Co., Ltd., Changzhou, China; Silicone oil (PMX-200, 50 cs) was obtained
from Dow Corning, Midland, MI, USA. All reagents were not further purified before use.

2.2. Preparation of the Epoxy/PDMS IPN Gel

Based on the idea of improving the durability and icephobic properties of PDMS
coatings, we plan to design an epoxy-reinforced PDMS icephobic coating and investigate
the effect of the mechanical properties of this coating on the ice adhesion strength. The
specific preparation process is as follows. First, PDMS, cyclohexane (diluent, 500% by
weight of PDMS), TEOS (crosslinking agent, 10% by weight of PDMS), epoxy (0%, 100%,
and 200% by weight of PDMS), and silicone oil (0%, 50%, 100%, 150%, and 200% by weight
of PDMS) were mixed in a beaker and then stirred at 500 rpm for 20 min using a magnetic
rotor stirrer. DBTL (catalyst, 2% by weight of PDMS) and PEA (curing agent, 30% by weight
of epoxy) were then added to the above beaker and stirred at 500 rpm for 2 min with a
magnetic rotor stirrer until the mixture became homogeneous (epoxy/PDMS weight ratio
is 0:1 (PDMS gel), 1:1, and 2:1).

The solution in the beaker was then aspirated into a syringe, and the epoxy/PDMS IPN
gel coatings were prepared by the one-step spraying method using the FS650 ultrasonic
atomization spraying machine as shown in Figure 1. The ultrasonic nozzle was set at
100 mm above the substrate, and the PDMS/epoxy mixture was uniformly sprayed onto
the substrate (5 cm × 4 cm × 0.2 cm aluminum alloy) at a traveling speed of 30 mm/s.
The substrates were ultrasonically cleaned in acetone and dried in an oven before use.
The coated substrate was then placed on a heating platform at 80 ◦C for 3 h. After the
diluent evaporated, the substrate was cured at room temperature for 24 h. Figure 2 shows
a schematic representation of the epoxy/PDMS IPN gel formation. The thickness of all
coatings was consistent as measured with electronic calipers. The thickness of all coatings
was approximately 1 mm.
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Figure 1. (a) Photograph of FS650 ultrasonic atomization spraying machine body and ISPLab Syringe
Pump; (b) internal structure and spraying device of ultrasonic atomization spraying machine.
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3. Characterization and Performance Measurement

The ice adhesion strength (τice) was measured using a refrigerated centrifuge as shown
in Figure 3a. First, a silicone mold with a cuboid cavity (25 mm × 25 mm × 15 mm) was
filled with deionized water. Then, the coated substrate was placed upside down on the
silicone mold and in full contact with the water. Next, they were frozen for 3 h at a desired
temperature. After freezing, the substrate with ice was pulled out from the silicone mold
and bolted to a rotor (radius is 150 mm) inside the refrigerated centrifuge (see Figure 3b).
The inside temperature of the refrigerated centrifuge was set to the desired temperature
for 30 min of heat preservation, and then the rotor was started. When the centrifugal
force overcame τice, the ice detached from the coating and impacted the protective net. At
the same time, the rotation speed (rpm) was recorded. The τice can be calculated by the
centrifugal formulas: τice = F/A and F = mrω2, where τice is the apparent ice adhesion
strength (Pa), F is the centrifugal force (N), A is the iced area (m2), m is the mass of ice (kg),
r is the distance from the ice centroid to the rotor center (m), and ω is the speed of rotation
when the ice detached (rad/s, 1 rpm = π/30 rad/s). The same five samples were prepared
for every coating to obtain the average and standard deviation of τice.
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The surface morphology of the IPN gel coating was obtained using an optical pro-
filometer (Bruker ContourGT, Karlsruhe, Germany). The morphology images were de-
noised by median filtering. Profile roughness parameters (Ra and Rq) and areal roughness
parameters (Sa and Sq) were calculated according to the ISO 25178 standard [29]. The chem-
ical composition of the surface was investigated using an X-ray photoelectron spectroscopy
(XPS) apparatus (Axis Ultra DLD, Kratos Ltd., Manchester, UK). The characterization was
performed using a monochromatic AI X-ray source. The water contact angles (CAs) of
deionized water in a volume of approximately 15 µL were measured using a contact angle
meter to study the wettability of the coatings. Drop images were recorded and analyzed
using the image processing program ImageJ (Version 1.4.3.67), plug-in Dropsnake. The
contour of the drop was then determined using the piecewise polynomial fitting method,
and the CA was then calculated.

The elastic modulus of the coatings was measured using a compression test by a
universal testing machine (INSTRON 4505, Norwood, MA, USA). The test samples were
cylindrical (height: 50 mm, diameter: 30 mm) and made by the casting method. After
curing, the cylindrical samples were mounted on the universal testing machine and tested
with an indenter at a speed of 0.2 mm/min. The elastic modulus data were obtained from
analyzing the displacement–load curve. The same three samples were prepared.

Coating adhesion testing was evaluated using an X-cut adhesion test in accordance
with ASTM D3359 standard [30] (Method A). The methods of operation are as follows: An
X-cut (~40 mm for an incision) is made through the film with a sharp razor blade tool to
the substrate. Pressure-sensitive tape is applied over the cut. The tape is smoothed into
place using a pencil eraser over the area of the incisions. The tape is removed by pulling it
off rapidly back over itself as close to an angle of 180◦ as possible. There are six grades in
the standard: 5A, 4A, 3A, 2A, 1A and 0A. Grade 5A indicates the highest adhesion, and 0A
indicates the poorest adhesion.

The neutral salt spray aging test was performed using a salt spray tester (ASR-90A,
Ledi Instrument Co., Ltd., Ningbo, China). An aqueous solution with a sodium chloride
concentration of 50 g/L is prepared according to ASTM B117 standard [31], and the pH is
controlled between 6.4 and 7.0. The temperature of the salt spray chamber is set at 35 ◦C,
and the salt spray volume is 1–2 mL/80 cm²·H. Four ratios of IPN gel coatings were selected
for the test, and 70 specimens were produced for each ratio, for a total of 280 specimens.
The total test time is 168 h. Every 12 h, five specimens of each ratio are removed from the
salt spray tester, their ice adhesion strength is measured, and the average and standard
deviation are calculated.

4. Results and Discussion
4.1. Icephobic Properties of the Epoxy/PDMS IPN Gel

The primary consideration in verifying the icephobic performance of a coating surface
is its ice adhesion strength (τice) [32]. In Figure 4, the τice of PDMS gel coatings with varying
silicone oil concentrations and epoxy/PDMS IPN gel coatings with different silicone oil
concentrations are depicted at −10 ◦C. Similar to previous measurements, the coating τice
increases with increasing epoxy content when the silicone oil content is constant [21]. The
data also show that τice decreases with increasing silicone oil content for PDMS gel, as
well as for epoxy/PDMS IPN gel (1:1) and epoxy/PDMS IPN gel (2:1). When the silicone
oil content was 200%, the τice of the epoxy/PDMS IPN gel (1:1) was 8.4 ± 3.4 kPa. This
value was similar to that of the pure PDMS gel with 200% silicone oil (6.5 ± 1.4 kPa). For
comparison, the τice of the pure epoxy coating was measured to be 282.1 ± 67.5 kPa. The
above data show that epoxy/PDMS IPN gel (1:1) can be used as an icephobic coating that
can remove ice under the action of natural forces. We are also curious as to what might be
causing the above reduction in τice.
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4.1.1. Surface Chemical Composition and Surface Topography

We want to understand the microstructure of the coating surface and try to answer
the reasons for the above law of ice adhesion strength [22]. The chemical composition
of the PDMS gel (200% content of silicone oil, the same below) and the epoxy/PDMS
IPN gel (weight ratio of epoxy/PDMS = 1:1, 200% content of silicone oil, the same below)
were analyzed with XPS. The wide-scan spectra of the PDMS gel and epoxy/PDMS IPN
gel are shown in Figure 5a. The main chemical elements Si, C, and O were detected at
approximately 98 eV, 280 eV and 528 eV for the two kinds of surfaces. The O, C, and Si
atomic concentrations are approximately 22.57%, 55.53%, and 21.9%, respectively, for the
PDMS gel. The O, C, and Si atomic concentrations are approximately 22.26%, 54.82%, and
22.92% for the epoxy/PDMS IPN gel. Thus, the atomic concentrations of the two kinds
of surfaces are similar. The Si 2p, C 1s, and O 1s high-resolution XPS spectra of the two
coatings are shown in Figure 5b–d, respectively. The peak of one element (Si 2p, C 1s, or
O 1s) in the PDMS gel is similar to that of the epoxy/PDMS IPN gel. The epoxy did not
obviously change the chemical composition of the PDMS gel surface. This may be because
of surface migration in the curing processes: the -CH3 groups of PDMS and silicone oil
moved to the coating surface, thus decreasing the surface energy.
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The surface morphology was obtained using an optical profilometer. Figure 6 shows the
3D morphology images and surface profile of the epoxy/PDMS IPN gel and PDMS gel. Sa
and Sq were 0.776 µm and 0.975 µm for the epoxy/PDMS IPN gel, respectively. Sa and Sq were
0.264 µm and 0.342 µm for the PDMS gel. Sa and Sq parameters show that the epoxy/PDMS
IPN gel has slightly more roughness than that of the PDMS gel surface. The Ra and Rq
parameters also displayed similar characteristics. This is due to the chemical incompatibility
between epoxy and PDMS at a microscopic level. However, it can be seen that the change in
roughness is not the reason for the decrease in τice of the epoxy/PDMS IPN gel.

Coatings 2024, 14, x FOR PEER REVIEW 7 of 15 
 

 

  
(c) (d) 

Figure 5. (a) The wide-scan XPS spectra of the PDMS gel and the epoxy/PDMS IPN gel. Atomic 
concentrations (%) of O, C, and Si are shown in the inset. High-resolution XPS spectra of (b) Si 2p, 
(c) C 1s, and (d) O 1s for the two coatings. 

The surface morphology was obtained using an optical profilometer. Figure 6 shows 
the 3D morphology images and surface profile of the epoxy/PDMS IPN gel and PDMS 
gel. Sa and Sq were 0.776 µm and 0.975 µm for the epoxy/PDMS IPN gel, respectively. Sa 
and Sq were 0.264 µm and 0.342 µm for the PDMS gel. Sa and Sq parameters show that the 
epoxy/PDMS IPN gel has slightly more roughness than that of the PDMS gel surface. The 
Ra and Rq parameters also displayed similar characteristics. This is due to the chemical 
incompatibility between epoxy and PDMS at a microscopic level. However, it can be seen 
that the change in roughness is not the reason for the decrease in τice of the epoxy/PDMS 
IPN gel. 

  
(a) (b) 

  
(c) (d) 

Figure 6. 3D optical profile images of (a) the epoxy/PDMS IPN gel and (b) PDMS gel. Scan size:
0.15 mm × 0.15 mm. Surface profiles of (c) the epoxy/PDMS IPN gel and (d) PDMS gel. The red
arrows are the sampling paths for Ra and Rq.



Coatings 2024, 14, 76 8 of 14

4.1.2. Wettability

It is known that surface wettability can affect the ice adhesion strength [32]. To study the
wettability of different surfaces, we measured the contact angle (CA) of the coating with the
change in silicone oil content. In Figure 7, these samples had CAs ranging from 95◦ to 110◦,
which is similar to the previous measurements [33]. When the level of silicone oil was held
constant, there was a decrease in CA with an increase in the level of epoxy. Additionally, with a
high level of silicone oil, the decrease in the contact angle’s trend slowed. The CA of the three
coatings increased in a monotonic fashion with the increase in silicone oil content, indicating
their hydrophobic nature due to the silicone components (PDMS and silicone oil). The order
of CAs for the coatings is as follows: PDMS gel > epoxy/PDMS IPN gel (1:1) > epoxy/PDMS
IPN gel (2:1). This is attributed to the epoxy component increasing the surface energy of the
system. Overall, the CA of the epoxy/PDMS IPN gel (1:1) remains relatively constant and is not
responsible for the observed decrease in τice.
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4.1.3. Elastic Modulus of the Epoxy/PDMS IPN Gel

To study the effect of changes in the mechanical properties of the coating on the
icephobic properties, we measured the elastic modulus (E) [20]. Figure 8 shows the E of
the epoxy/PDMS IPN gel coatings with various contents of silicone oil. The E value of the
coatings decreased rapidly with increasing silicone oil content. This is because silicone oil
reduces the crosslink density (ρcl) and reduces the stiffness (G = RTρcl, where G is the shear
modulus, T is the temperature in Kelvin, and R is the universal gas constant). Generally, the
E value of pure epoxy is approximately 3–4 GPa [34]. Inversely, the E of the epoxy/PDMS
IPN gel (1:1) with 200% silicone oil was only 0.18 MPa. This shows that the silicone oil
significantly reduced the E value for the epoxy/PDMS IPN gel.

It can be observed from Figures 4 and 8, that τice and E decreased simultaneously and
significantly with increasing silicone oil content. Figure 9 shows the relationship between
E0.5 and τice for (a) PDMS gel and the epoxy/PDMS IPN gel ((b) 1:1 and (c) 2:1). τice shows
a strong linear relationship with E0.5 for the PDMS gel and epoxy/PDMS IPN gel (1:1). For
the epoxy/PDMS IPN gel (2:1), τice also shows a linear relationship with E0.5 when E0.5 is
small (see red boxes in Figure 9c). This result was consistent with Equations (1) and (2) in
Section 1, which showed that τice is proportionate to E0.5. In summary, the reduction in τice
is positively related to the modulus of the coating. The lower the elastic modulus, the lower
the τice. The mechanism of this phenomenon is considered from the perspective of fracture
mechanics. Due to the low elastic modulus of the coating, when the ice cube is subjected to an
external force, the soft coating can store more elastic strain energy, making it possible to detach
the ice–coating interface. This provides a higher strain energy release rate for interface crack
propagation. At the same time, due to the strong deformation ability of the soft coating, when
the ice cube is subjected to external force, the ice–coating interface is more likely to cause local
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debonding at the edge, resulting in a smaller debonding external force (ice adhesion strength).
The research of He and Adja et al. [35,36] also verified this mechanism.
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4.2. Durability Test and Coating Adhesion Test

Durability and mechanical properties are important for icephobic coatings. A low
elastic modulus means that a coating has poor strength [37]. A balance between icephobic
properties and coating strength should be ensured. Therefore, icing/deicing cyclic tests,
coating adhesion tests, and salt spray aging tests for the PDMS gel (200% content of silicone
oil, the same below) and the epoxy/PDMS IPN gel (weight ratio of epoxy/PDMS = 1:1,
200% content of silicone oil, the same below) were carried out. At the same time, the salt
spray aging test was performed on the two coatings without silicone oil as a control group.
Deicing tests at different temperatures for the epoxy/PDMS IPN gel were carried out.

4.2.1. Icing/Deicing Cyclic Test

The icing/deicing cyclic test results are shown in Figure 10. In 25 icing/deicing cyclic
tests, the τice of epoxy/PDMS IPN gel coating was stable (within the range of 3–14 kPa).
There were no visible cracks or flaking after 25 cyclic tests. This indicates that the durability
of the epoxy/PDMS IPN gel is reliable. For the PDMS gel coating, debonding occurred
after approximately seven cyclic tests.
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4.2.2. Deicing Tests at Different Temperatures

Since temperature is known to play an important role in the τice of coatings, the τice of
the epoxy/PDMS IPN gel was tested at temperatures ranging from −5 to −30 ◦C, shown
in Figure 11. The τice only slightly increased as the temperature decreased. When the
temperature was −30 ◦C, the τice of the epoxy/PDMS IPN gel was only 14.3 ± 5.8 kPa.
This may be due to the low melting point of silicone oil (~−30 ◦C, PMX-200, −50 cs). The
silicone oil molecules with low melting points were locked in the IPN network and ensured
molecular flexibility of the coating at a low temperature, thus maintaining a low modulus
and resulting in low τice. The results show the practicality of the epoxy/PDMS IPN gel
icephobic coating over a wide range of temperatures.

4.2.3. X-Cut Coating Adhesion Test

The coating adhesion test for the epoxy/PDMS IPN gel and PDMS gel coating were
performed with an X-cut test (ASTM D3359, method A). There are six grades in the stan-
dard: 5A, 4A, 3A, 2A, 1A, and 0A. Grade 5A indicates the highest adhesion, and 0A
indicates the poorest adhesion. Figure 12 shows the results of the X-cut adhesion test for the
epoxy/PDMS IPN gel coating and PDMS gel coating. In Figure 12, there were many notice-
able jagged cracks and small flakes along the X incision of the PDMS gel coating. Coating
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debonding was also found. Thus, the PDMS gel coating was rated as 2A~3A according
to ASTM D3359. However, for the epoxy/PDMS IPN gel coating and the epoxy/PDMS
IPN gel coating for 25 icing/deicing cyclic tests, there were no noticeable jagged cracks or
small chips along the X incision. It was rated as 5A according to the ASTM D3359. The
epoxy/PDMS IPN gel coating showed better adhesion and mechanical properties than the
PDMS gel coating.
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4.2.4. Salt Spray Aging Test

Four coatings underwent the neutral salt spray aging test to determine the change in
coating τice over 168 h in a salt spray environment. The coatings tested were PDMS gel
(0% and 200% content of silicone oil) and epoxy/PDMS IPN gel (weight ratio of epoxy/
PDMS = 1:1, 0% and 200% content of silicone oil). The results are shown in Figure 13. We
terminated the salt spray test when two types of PDMS gel coatings were slightly debonded
after the test progressed to 168 h. The τice of PDMS gel (0% content of silicone oil) and
PDMS gel (200% content of silicone oil) increased slowly with time. At 144 h, the τice of
the two coatings reached their maximum values, which were 40.46 kPa and 32.13 kPa,
respectively. Compared with their respective starting values, they increased by 18.34 kPa
and 25.63 kPa, respectively, and the corresponding speed of increase was 0.1274 kPa/h and
0.1780 kPa/h. The τice of the two coatings, epoxy/PDMS IPN gel (0% content of silicone oil)
and epoxy/PDMS IPN gel (200% content of silicone oil), increased continuously, especially
between 72 and 120 h, the τice increased at a faster rate. The maximum value of ice-covered
adhesion occurs at 168 h, with values of 186.11 kPa and 48.72 kPa for the two coatings,
respectively, and corresponding growth rates of 0.2114 kPa/h and 0.2398 kPa/h. Based
on the comparison of four coatings, we can note that coatings containing silicone oil show
a faster increase in τice and a greater decrease in icephobic ability during the salt spray
aging test. The silicone oil migrates to the coating surface, making it susceptible to Cl−

corrosion in the salt spray test due to a Cl− and -OH displacement reaction [38]. From
a results standpoint, the epoxy/PDMS IPN gel (200% content of silicone oil) was able to
maintain an effective icephobic ability, with τice at 48.72 ± 5.27 kPa even after 168 h of the
salt spray aging test.
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5. Conclusions

In this paper, we developed a durable icephobic coating utilizing a combination of
epoxy, PDMS, and silicone oil via interpenetrating polymer network and gel techniques.
We conducted tests on the durability and icephobic properties of the coating and arrived at
the following conclusions.

(1) The inclusion of silicone oil enhances the icephobic properties of the coating, address-
ing the previously identified lack of icephobic ability of the epoxy. At a 200% silicone
oil content, the ice adhesion strength of the epoxy/PDMS IPN gel (1:1) measured
8.4 ± 3.4 kPa. Notably, there exists a strong linear relationship between τice and
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E0.5. The roughness and wettability of the coating exhibit a negligible impact on its
icephobic properties.

(2) The epoxy/PDMS IPN gel (1:1) showed increased durability during icing/deicing
cyclic tests and superior adhesion in X-cut coating adhesion tests. The ice adhesion
strength of the epoxy/PDMS IPN gel (1:1) remained stable and below 20.1 kPa at
temperatures ranging from −5 to −30 ◦C. Even after 168 h of the salt spray aging test,
the epoxy/PDMS IPN gel (1:1) maintained an effective icephobic ability, with τice at
48.72 ± 5.27 kPa.

The epoxy/PDMS IPN gel (1:1) shows low ice adhesion strength, high substrate
adhesion, excellent weather resistance, and durability. This research not only provides
guidance for the development of durable icephobic coatings but also inspires the creation
of other protective coatings in road transportation, power industry, aerospace, wind power,
ships, and ocean platforms to achieve high durability.
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