Progress in Icephobic Coatings for Wind Turbine Protection: Merging Chemical Innovation with Practical Implementation
Abstract
:1. Introduction
2. Silicone-Based Coatings
2.1. Physically Modified PDMS-Based Icephobic and Superhydrophobic Coatings
2.1.1. Superhydrophobic Surfaces (SHS)
2.1.2. Slippery Liquid-Infused Surfaces
2.2. Chemically Modified PDMS-Based Icephobic Coatings
2.2.1. Tailoring the Crosslink Density/Elastic Modulus of Silicone
2.2.2. Surface Modification
2.2.3. Copolymerization and the Grafting of Silicone
3. Fluoropolymer-Based Coatings
4. Polyurethane-Based Coatings
5. Epoxy-Based Coatings
6. Hybrid Approaches for Icephobic Surfaces
6.1. Hybrid Electrothermal De-Icing Systems
6.2. Hybrid Photothermal De-Icing Systems
6.3. Hybrid Magnetothermal De-Icing Systems
6.4. Hybrid Electromechanical De-Icing Systems
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, X.; Tepylo, N.; Pommier-Budinger, V.; Budinger, M.; Bonaccurso, E.; Villedieu, P.; Bennani, L. A survey of icephobic coatings and their potential use in a hybrid coating/active ice protection system for aerospace applications. Prog. Aerosp. Sci. 2019, 105, 74–97. [Google Scholar] [CrossRef]
- Dierer, S.; Oechslin, R.; Cattin, R. Wind turbines in icing conditions: Performance and prediction. Adv. Sci. Res. 2011, 6, 245–250. [Google Scholar] [CrossRef]
- Fortin, G.; Perron, J. Wind turbine icing and de-icing. In Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 5–8 January 2009; p. 274. [Google Scholar]
- Latthe, S.S.; Sutar, R.S.; Bhosale, A.K.; Nagappan, S.; Ha, C.-S.; Sadasivuni, K.K.; Liu, S.; Xing, R. Recent developments in air-trapped superhydrophobic and liquid-infused slippery surfaces for anti-icing application. Prog. Org. Coat. 2019, 137, 105373. [Google Scholar] [CrossRef]
- Han, Y.; Palacios, J.; Schmitz, S. Scaled ice accretion experiments on a rotating wind turbine blade. J. Wind Eng. Ind. Aerodyn. 2012, 109, 55–67. [Google Scholar] [CrossRef]
- Parent, O.; Ilinca, A. Anti-icing and de-icing techniques for wind turbines: Critical review. Cold Reg. Sci. Technol. 2011, 65, 88–96. [Google Scholar] [CrossRef]
- Li, Y.; Sun, C.; Jiang, Y.; Feng, F. Scaling method of the rotating blade of a wind turbine for a rime ice wind tunnel test. Energies 2019, 12, 627. [Google Scholar] [CrossRef]
- Madi, E.; Pope, K.; Huang, W.; Iqbal, T. A review of integrating ice detection and mitigation for wind turbine blades. Renew. Sustain. Energy Rev. 2019, 103, 269–281. [Google Scholar] [CrossRef]
- Susoff, M.; Siegmann, K.; Pfaffenroth, C.; Hirayama, M. Evaluation of icephobic coatings—Screening of different coatings and influence of roughness. Appl. Surf. Sci. 2013, 282, 870–879. [Google Scholar] [CrossRef]
- Laakso, T.; Peltola, E. Review on blade heating technology and future prospects. In Proceedings of the BOREAS VII: Impact of Icing on Wind Energy Production and Other Field of Activities, Saariselkä, Finland, 7–8 March 2005. [Google Scholar]
- Wang, C.; Fuller, T.; Zhang, W.; Wynne, K.J. Thickness dependence of ice removal stress for a polydimethylsiloxane nanocomposite: Sylgard 184. Langmuir 2014, 30, 12819–12826. [Google Scholar] [CrossRef]
- Johnston, I.D.; McCluskey, D.K.; Tan, C.K.; Tracey, M.C. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromechanics Microengineering 2014, 24, 035017. [Google Scholar] [CrossRef]
- Hong, S.; Wang, R.; Huang, X.; Liu, H. Facile one-step fabrication of PHC/PDMS anti-icing coatings with mechanical properties and good durability. Prog. Org. Coat. 2019, 135, 263–269. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, L.; Wang, W.; Kota, A.K.; Hu, H. An experimental study on soft PDMS materials for aircraft icing mitigation. Appl. Surf. Sci. 2018, 447, 599–609. [Google Scholar] [CrossRef]
- Oelker, S.; Ait-Alla, A.; Lütjen, M.; Lewandowski, M.; Freitag, M.; Thoben, K.-D. A simulation study of feeder-based installation concepts for offshore wind farms. In Proceedings of the ISOPE International Ocean and Polar Engineering Conference, Sapporo, Japan, 10–15 June 2018; p. ISOPE–I-18-332. [Google Scholar]
- Wang, Z. Recent progress on ultrasonic de-icing technique used for wind power generation, high-voltage transmission line and aircraft. Energy Build. 2017, 140, 42–49. [Google Scholar] [CrossRef]
- Etemaddar, M.; Hansen, M.O.L.; Moan, T. Wind turbine aerodynamic response under atmospheric icing conditions. Wind Energy 2014, 17, 241–265. [Google Scholar] [CrossRef]
- Habibi, H.; Cheng, L.; Zheng, H.; Kappatos, V.; Selcuk, C.; Gan, T.-H. A dual de-icing system for wind turbine blades combining high-power ultrasonic guided waves and low-frequency forced vibrations. Renew. Energy 2015, 83, 859–870. [Google Scholar] [CrossRef]
- Kreutz, M.; Ait-Alla, A.; Varasteh, K.; Oelker, S.; Greulich, A.; Freitag, M.; Thoben, K.-D. Machine learning-based icing prediction on wind turbines. Procedia Cirp 2019, 81, 423–428. [Google Scholar] [CrossRef]
- Shamshiri, M.; Jafari, R.; Momen, G. Potential use of smart coatings for icephobic applications: A review. Surf. Coat. Technol. 2021, 424, 127656. [Google Scholar] [CrossRef]
- Fakorede, O.; Feger, Z.; Ibrahim, H.; Ilinca, A.; Perron, J.; Masson, C. Ice protection systems for wind turbines in cold climate: Characteristics, comparisons and analysis. Renew. Sustain. Energy Rev. 2016, 65, 662–675. [Google Scholar] [CrossRef]
- Lehtomäki, V.; Krenn, A.; Jordaen, P.; Godreau, C.; Davis, N.; Khadiri-Yazami, Z.; Bredesen, R.E.; Ronsten, G.; Wickman, H.; Bourgeois, S. Available technologies for wind energy in cold climates. In Proceedings of the International Energy Agency Wind Technology Collaboration Programme (IEA Wind TCP), Denmark, Germany, 12 October 2018. [Google Scholar]
- Hejazi, V.; Sobolev, K.; Nosonovsky, M. From superhydrophobicity to icephobicity: Forces and interaction analysis. Sci. Rep. 2013, 3, 2194. [Google Scholar] [CrossRef]
- He, Z.; Xiao, S.; Gao, H.; He, J.; Zhang, Z. Multiscale crack initiator promoted super-low ice adhesion surfaces. Soft Matter 2017, 13, 6562–6568. [Google Scholar] [CrossRef] [PubMed]
- Momen, G.; Jafari, R.; Farzaneh, M. Ice repellency behaviour of superhydrophobic surfaces: Effects of atmospheric icing conditions and surface roughness. Appl. Surf. Sci. 2015, 349, 211–218. [Google Scholar] [CrossRef]
- Golovin, K.; Kobaku, S.P.; Lee, D.H.; DiLoreto, E.T.; Mabry, J.M.; Tuteja, A. Designing durable icephobic surfaces. Sci. Adv. 2016, 2, e1501496. [Google Scholar] [CrossRef]
- Li, T.; Ibáñez-Ibáñez, P.F.; Håkonsen, V.; Wu, J.; Xu, K.; Zhuo, Y.; Luo, S.; He, J.; Zhang, Z. Self-deicing electrolyte hydrogel surfaces with Pa-level ice adhesion and durable antifreezing/antifrost performance. ACS Appl. Mater. Interfaces 2020, 12, 35572–35578. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Y.; Xiao, S.; Håkonsen, V.; He, J.; Zhang, Z. Anti-icing ionogel surfaces: Inhibiting ice nucleation, growth, and adhesion. ACS Mater. Lett. 2020, 2, 616–623. [Google Scholar] [CrossRef]
- Shamshiri, M.; Jafari, R.; Momen, G. Icephobic properties of aqueous self-lubricating coatings containing PEG-PDMS copolymers. Prog. Org. Coat. 2021, 161, 106466. [Google Scholar] [CrossRef]
- Heydarian, S.; Maghsoudi, K.; Jafari, R.; Gauthier, H.; Momen, G. Fabrication of liquid-infused textured surfaces (LITS): The effect of surface textures on anti-icing properties and durability. Mater. Today Commun. 2022, 32, 103935. [Google Scholar] [CrossRef]
- Alsabagh, A.S.Y.; Tiu, W.; Xu, Y.; Virk, M.S. A review of the effects of ice accretion on the structural behavior of wind turbines. Wind Eng. 2013, 37, 59–70. [Google Scholar] [CrossRef]
- Rehfeld, N.; Berton, B.; Morita, K.; Kimura, S. A way forward to design efficient wing ice protection systems. In Proceedings of the Greener Aviation Conference, Brussels, Belgium, 11–13 October 2016. [Google Scholar]
- Muthumani, A.; Fay, L.; Akin, M.; Wang, S.; Gong, J.; Shi, X. Correlating lab and field tests for evaluation of deicing and anti-icing chemicals: A review of potential approaches. Cold Reg. Sci. Technol. 2014, 97, 21–32. [Google Scholar] [CrossRef]
- Nistal, A.; Sierra-Martín, B.; Fernández-Barbero, A. On the Durability of Icephobic Coatings: A Review. Materials 2023, 17, 235. [Google Scholar] [CrossRef]
- ISO/TS 19392-6:2023 (E); Paints and Varnishes—Coating Systems for Wind-Turbine Rotor Blades—Part 6: Determination andEvaluation of Ice Adhesion Using Centrifuge. ISO: Geneva, Switzerland, 2023.
- Wong, T.-S.; Kang, S.H.; Tang, S.K.; Smythe, E.J.; Hatton, B.D.; Grinthal, A.; Aizenberg, J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 2011, 477, 443–447. [Google Scholar] [CrossRef]
- ASTM D2240; Standard Test Method for Rubber Property—Durometer Hardness. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM D4060-19; Standard Test Method for Abrasion Resistance of Organic Coatings by the Taber Abraser. ASTM International: West Conshohocken, PA, USA, 2019.
- ISO/TS19392-5:2023; Paints and Varnishes—Coating Systems for Wind-Turbine Rotor Blades—Part 5: Measurement of Transmittance Properties of UV Protective Coatings. ISO: Geneva, Switzerland, 2023.
- ISO 16-674-3: 2013; Paints and Varnishes—Methods of Exposure to Laboratory Light Sources; Part 3: Fluorescent UV Lamps. ISO: Geneva, Switzerland, 2013.
- ISO 4624:2023; Paints and Varnishes—Pull-Off Test for Adhesion. ISO: Geneva, Switzerland, 2016.
- ISO/TS 19392-3; Paints and Varnishes—Coating Systems for Wind-Turbine Rotor Blades. Part 3: Determination and Evaluation of Resistance to Rain Erosion Using Water Jet. ISO: Geneva, Switzerland, 2018.
- Ma, L.; Zhang, Z.; Gao, L.; Liu, Y.; Hu, H. An exploratory study on using Slippery-Liquid-Infused-Porous-Surface (SLIPS) for wind turbine icing mitigation. Renew. Energy 2020, 162, 2344–2360. [Google Scholar] [CrossRef]
- Piscitelli, F.; Chiariello, A.; Dabkowski, D.; Corraro, G.; Marra, F.; Di Palma, L. Superhydrophobic coatings as anti-icing systems for small aircraft. Aerospace 2020, 7, 2. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y.; Li, Y. Superhydrophobic coating for blade surface ice-phobic properties of wind turbines: A review. Prog. Org. Coat. 2024, 187, 108145. [Google Scholar] [CrossRef]
- Okulov, V.; Kabardin, I.; Mukhin, D.; Stepanov, K.; Okulova, N. Physical de-icing techniques for wind turbine blades. Energies 2021, 14, 6750. [Google Scholar] [CrossRef]
- Gao, L.; Liu, Y.; Ma, L.; Hu, H. A hybrid strategy combining minimized leading-edge electric-heating and superhydro-/ice-phobic surface coating for wind turbine icing mitigation. Renew. Energy 2019, 140, 943–956. [Google Scholar] [CrossRef]
- Colas, A. Silicones: Preparation, properties and performance. In Dow Corning, Life Sciences; Citeseer: University Park, PA, USA, 2005. [Google Scholar]
- Yu, D.; Zhao, Y.; Li, H.; Qi, H.; Li, B.; Yuan, X. Preparation and evaluation of hydrophobic surfaces of polyacrylate-polydimethylsiloxane copolymers for anti-icing. Prog. Org. Coat. 2013, 76, 1435–1444. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Golovin, K.; Tuteja, A. A predictive framework for the design and fabrication of icephobic polymers. Sci. Adv. 2017, 3, e1701617. [Google Scholar] [CrossRef]
- Zhuo, Y.; Xiao, S.; Amirfazli, A.; He, J.; Zhang, Z. Polysiloxane as icephobic materials—The past, present and the future. Chem. Eng. J. 2021, 405, 127088. [Google Scholar] [CrossRef]
- Loughborough, D.L.; Haas, E. Reduction of the adhesion of ice to de-icer surfaces. J. Aeronaut. Sci. 1946, 13, 126–134. [Google Scholar] [CrossRef]
- Liu, M.; Sun, J.; Sun, Y.; Bock, C.; Chen, Q. Thickness-dependent mechanical properties of polydimethylsiloxane membranes. J. Micromechanics Microengineering 2009, 19, 035028. [Google Scholar] [CrossRef]
- Lötters, J.C.; Olthuis, W.; Veltink, P.H.; Bergveld, P. The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J. Micromechanics Microengineering 1997, 7, 145. [Google Scholar] [CrossRef]
- Long, Y.; Yin, X.; Mu, P.; Wang, Q.; Hu, J.; Li, J. Slippery liquid-infused porous surface (SLIPS) with superior liquid repellency, anti-corrosion, anti-icing and intensified durability for protecting substrates. Chem. Eng. J. 2020, 401, 126137. [Google Scholar] [CrossRef]
- Rogers, J.A.; Nuzzo, R.G. Recent progress in soft lithography. Mater. Today 2005, 8, 50–56. [Google Scholar] [CrossRef]
- Wang, W.; Sun, S.; Hu, S.; Yang, B.; He, S.; Wang, R.; Zhang, L. Unprecedented strength polysiloxane-based polyurethane for 3D printing and shape memory. ACS Appl. Mater. Interfaces 2022, 14, 3324–3333. [Google Scholar] [CrossRef]
- Cui, W.; Pakkanen, T.A. Fabrication of transparent icephobic surfaces with self-reparability: Effect of structuring and thickness of the lubricant-elastomer layer. Appl. Surf. Sci. 2020, 504, 144061. [Google Scholar] [CrossRef]
- Zhu, G.; Tian, Y.; Wu, J.; Yang, G.; Hua, Z. Renewable plant oil-based polysiloxane coatings with efficient frost resistance and anti-icing properties. ACS Appl. Polym. Mater. 2022, 4, 7626–7633. [Google Scholar] [CrossRef]
- Zhang, Z.; Xie, Q.; Zhang, G.; Ma, C.; Zhang, G. Surface-Enriched Amphiphilic Polysiloxane Coating with Superior Antifouling Ability and Strong Substrate Adhesion. ACS Appl. Polym. Mater. 2023, 5, 3524–3533. [Google Scholar] [CrossRef]
- Jin, X.; Li, W.; Wang, S.; Li, Y.; Yang, C.; Lu, Z.; Dong, C. Developing flame-retardant, antibacterial cotton fabric by incorporating a linear polysiloxane-based coating. Ind. Crops Prod. 2023, 191, 115934. [Google Scholar] [CrossRef]
- Shamshiri, M.; Jafari, R.; Momen, G. A novel hybrid anti-icing surface combining an aqueous self-lubricating coating and phase-change materials. Prog. Org. Coat. 2023, 177, 107414. [Google Scholar] [CrossRef]
- Rashevskii, A.A.; Deriabin, K.V.; Parshina, E.K.; Islamova, R.M. Self-Healing Redox-Active Coatings Based on Ferrocenyl-Containing Polysiloxanes. Coatings 2023, 13, 1282. [Google Scholar] [CrossRef]
- Sojoudi, H.; Wang, M.; Boscher, N.; McKinley, G.H.; Gleason, K.K. Durable and scalable icephobic surfaces: Similarities and distinctions from superhydrophobic surfaces. Soft Matter 2016, 12, 1938–1963. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, Y.; Ren, L.; Zhu, K.; Zhao, Y.; Yuan, X. Self-crosslinking coatings of fluorinated polysiloxanes with enhanced icephobicity. Thin Solid Film. 2017, 639, 113–122. [Google Scholar] [CrossRef]
- Zhuo, Y.; Xiao, S.; Håkonsen, V.; Li, T.; Wang, F.; He, J.; Zhang, Z. Ultrafast self-healing and highly transparent coating with mechanically durable icephobicity. Appl. Mater. Today 2020, 19, 100542. [Google Scholar] [CrossRef]
- Owen, M. Elastomers: Siloxane. In Encyclopedia of Materials: Science and Technology; ADS: London, UK, 2001; pp. 2480–2482. [Google Scholar]
- Paul, D.R.; Mark, J.E. Fillers for polysiloxane (“silicone”) elastomers. Prog. Polym. Sci. 2010, 35, 893–901. [Google Scholar] [CrossRef]
- Yang, C.; Wang, F.; Li, W.; Ou, J.; Li, C.; Amirfazli, A. Anti-icing properties of superhydrophobic ZnO/PDMS composite coating. Appl. Phys. A 2016, 122, 1–10. [Google Scholar] [CrossRef]
- Liu, B.; Liu, Z.; Li, Y.; Feng, F. A Wind Tunnel Test of the Anti-Icing Properties of MoS2/ZnO Hydrophobic Nano-Coatings for Wind Turbine Blades. Coatings 2023, 13, 686. [Google Scholar] [CrossRef]
- Lei, S.; Wang, F.; Fang, X.; Ou, J.; Li, W. Icing behavior of water droplets impinging on cold superhydrophobic surface. Surf. Coat. Technol. 2019, 363, 362–368. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Mazzola, L.; Memon, H.; Barman, T.; Turnbull, B.; Mingione, G.; Choi, K.-S.; Hou, X. Development and evaluation of poly (dimethylsiloxane) based composite coatings for icephobic applications. Surf. Coat. Technol. 2018, 349, 980–985. [Google Scholar] [CrossRef]
- Zhang, L.-B.; Zhang, H.-X.; Liu, Z.-J.; Jiang, X.-Y.; Agathopoulos, S.; Deng, Z.; Gao, H.-Y.; Zhang, L.; Lu, H.-P.; Deng, L.-J. Nano-silica anti-icing coatings for protecting wind-power turbine fan blades. J. Colloid Interface Sci. 2023, 630, 1–10. [Google Scholar] [PubMed]
- Bao, J.; He, J.; Chen, B.; Yang, H.; Jie, J.; Wang, R.; Zhang, S. Multi-scale superhydrophobic anti-icing coating for wind turbine blades. Energy Eng 2021, 118, 947–959. [Google Scholar] [CrossRef]
- Lv, J.; Song, Y.; Jiang, L.; Wang, J. Bio-inspired strategies for anti-icing. ACS Nano 2014, 8, 3152–3169. [Google Scholar] [CrossRef] [PubMed]
- Howell, C.; Vu, T.L.; Lin, J.J.; Kolle, S.; Juthani, N.; Watson, E.; Weaver, J.C.; Alvarenga, J.; Aizenberg, J. Self-replenishing vascularized fouling-release surfaces. ACS Appl. Mater. Interfaces 2014, 6, 13299–13307. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, D.; Lu, Z. Slippery liquid-infused porous surface bio-inspired by pitcher plant for marine anti-biofouling application. Colloids Surf. B Biointerfaces 2015, 136, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Xue, J.; Wang, Y.; Chen, Q.; Ding, J.; Wang, Q. Ice-phobic coatings based on silicon-oil-infused polydimethylsiloxane. ACS Appl. Mater. Interfaces 2013, 5, 4053–4062. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhuo, Y.; Håkonsen, V.; Rønneberg, S.; He, J.; Zhang, Z. Epidermal gland inspired self-repairing slippery lubricant-infused porous coatings with durable low ice adhesion. Coatings 2019, 9, 602. [Google Scholar] [CrossRef]
- Coady, M.J.; Wood, M.; Wallace, G.Q.; Nielsen, K.E.; Kietzig, A.-M.; Lagugné-Labarthet, F.o.; Ragogna, P.J. Icephobic behavior of UV-cured polymer networks incorporated into slippery lubricant-infused porous surfaces: Improving SLIPS durability. ACS Appl. Mater. Interfaces 2018, 10, 2890–2896. [Google Scholar] [CrossRef] [PubMed]
- Raman, A.; Jayan, J.S.; Deeraj, B.; Saritha, A.; Joseph, K. Electrospun nanofibers as effective superhydrophobic surfaces: A brief review. Surf. Interfaces 2021, 24, 101140. [Google Scholar] [CrossRef]
- He, J.; Wang, M.; Wang, R.; Chen, B.; Yang, K.; Jie, J.; Bao, J.; Luo, J. Durable solid lubricant wind turbine blade anti-icing coating based on saturated chain polyhydrocarbons. J. Adhes. Sci. Technol. 2023, 37, 3485–3500. [Google Scholar] [CrossRef]
- Cao, M.; Guo, D.; Yu, C.; Li, K.; Liu, M.; Jiang, L. Water-repellent properties of superhydrophobic and lubricant-infused “slippery” surfaces: A brief study on the functions and applications. ACS Appl. Mater. Interfaces 2016, 8, 3615–3623. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Xiong, D.; Pan, S.; Wang, K.; Shi, Y.; Deng, Y. Robust superhydrophobic coating and the anti-icing properties of its lubricants-infused-composite surface under condensing condition. New J. Chem. 2017, 41, 1846–1853. [Google Scholar] [CrossRef]
- Barthwal, S.; Lee, B.; Lim, S.-H. Fabrication of robust and durable slippery anti-icing coating on textured superhydrophobic aluminum surfaces with infused silicone oil. Appl. Surf. Sci. 2019, 496, 143677. [Google Scholar] [CrossRef]
- Khammas, R.; Koivuluoto, H. Durable Icephobic Slippery Liquid-Infused Porous Surfaces (SLIPS) Using Flame-and Cold-Spraying. Sustainability 2022, 14, 8422. [Google Scholar] [CrossRef]
- Mahmut, T.; Memon, H.; Xu, F.; Ahmed, I.; Hou, X. Electrospun nanofibre membrane based transparent slippery liquid-infused porous surfaces with icephobic properties. Colloids Surf. A Physicochem. Eng. Asp. 2020, 585, 124177. [Google Scholar]
- Meuler, A.J.; Smith, J.D.; Varanasi, K.K.; Mabry, J.M.; McKinley, G.H.; Cohen, R.E. Relationships between water wettability and ice adhesion. ACS Appl. Mater. Interfaces 2010, 2, 3100–3110. [Google Scholar] [CrossRef] [PubMed]
- Petit, J.; Bonaccurso, E. General frost growth mechanism on solid substrates with different stiffness. Langmuir 2014, 30, 1160–1168. [Google Scholar] [CrossRef]
- Beemer, D.L.; Wang, W.; Kota, A.K. Durable gels with ultra-low adhesion to ice. J. Mater. Chem. A 2016, 4, 18253–18258. [Google Scholar] [CrossRef]
- Urata, C.; Dunderdale, G.J.; England, M.W.; Hozumi, A. Self-lubricating organogels (SLUGs) with exceptional syneresis-induced anti-sticking properties against viscous emulsions and ices. J. Mater. Chem. A 2015, 3, 12626–12630. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, X.; Chen, J.; He, Z.; Liu, J.; Li, Q.; Wang, J.; Jiang, L. Organogel as durable anti-icing coatings. Sci. China Mater. 2015, 58, 559–565. [Google Scholar] [CrossRef]
- Bharathidasan, T.; Kumar, S.V.; Bobji, M.; Chakradhar, R.; Basu, B.J. Effect of wettability and surface roughness on ice-adhesion strength of hydrophilic, hydrophobic and superhydrophobic surfaces. Appl. Surf. Sci. 2014, 314, 241–250. [Google Scholar] [CrossRef]
- He, Z.; Zhuo, Y.; He, J.; Zhang, Z. Design and preparation of sandwich-like polydimethylsiloxane (PDMS) sponges with super-low ice adhesion. Soft Matter 2018, 14, 4846–4851. [Google Scholar] [CrossRef]
- Jalali Kandeloos, A.; Eder, T.; Hetey, D.; Bismarck, A.; Reithofer, M.R.; Cordill, M.J.; Chin, J.M. Expanding Transparent Covalently Attached Liquid-Like Surfaces for Icephobic Coatings with Broad Substrate Compatibility. Adv. Mater. Interfaces 2025, 2400808. [Google Scholar] [CrossRef]
- Khatir, B.; Serles, P.; Wen, T.; Vuong, T.V.; Shayesteh, A.; Au, S.; Sinton, D.; Master, E.R.; Filleter, T.; Golovin, K. Autophobic polydimethylsiloxane nanodroplets enable abrasion-tolerant omniphobic surfaces. Chem. Eng. J. 2024, 502, 157718. [Google Scholar] [CrossRef]
- Chen, L.; Huang, S.; Ras, R.H.; Tian, X. Omniphobic liquid-like surfaces. Nat. Rev. Chem. 2023, 7, 123–137. [Google Scholar] [CrossRef]
- Agapov, A.; Sokolov, A.P. Size of the dynamic bead in polymers. Macromolecules 2010, 43, 9126–9130. [Google Scholar] [CrossRef]
- Cheng, D.F.; Urata, C.; Yagihashi, M.; Hozumi, A. A statically oleophilic but dynamically oleophobic smooth nonperfluorinated surface. Angew. Chem.-Ger. Ed. 2012, 124, 3010. [Google Scholar] [CrossRef]
- Zhao, X.; Khatir, B.; Mirshahidi, K.; Yu, K.; Kizhakkedathu, J.N.; Golovin, K. Macroscopic evidence of the liquidlike nature of nanoscale polydimethylsiloxane brushes. ACS Nano 2021, 15, 13559–13567. [Google Scholar] [CrossRef]
- Fan, Y.; Wu, C.; Yang, J.; Wang, Y.; Zhou, Y.; Zhou, J.; Luo, J.; Zhang, J.; Huang, S.; Tian, X. Reducing the contact time of impacting water drops on superhydrophobic surfaces by liquid-like coatings. Chem. Eng. J. 2022, 448, 137638. [Google Scholar] [CrossRef]
- Yan, Y.; Chan-Park, M.; Yue, C. CF4 plasma treatment of poly (dimethylsiloxane): Effect of fillers and its application to high-aspect-ratio UV embossing. Langmuir 2005, 21, 8905–8912. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Wu, X.; Kumar, D.; Ho, J.W.; Kanhere, P.D.; Srikanth, N.; Liu, E.; Wilson, P.; Chen, Z. Development of sol–gel icephobic coatings: Effect of surface roughness and surface energy. ACS Appl. Mater. Interfaces 2014, 6, 20685–20692. [Google Scholar] [CrossRef]
- Li, K.; Xu, S.; Shi, W.; He, M.; Li, H.; Li, S.; Zhou, X.; Wang, J.; Song, Y. Investigating the effects of solid surfaces on ice nucleation. Langmuir 2012, 28, 10749–10754. [Google Scholar] [CrossRef] [PubMed]
- Yilgör, E.; Yilgör, I. Silicone containing copolymers: Synthesis, properties and applications. Prog. Polym. Sci. 2014, 39, 1165–1195. [Google Scholar] [CrossRef]
- Liu, J.; Yao, Y.; Li, X.; Zhang, Z. Fabrication of advanced polydimethylsiloxane-based functional materials: Bulk modifications and surface functionalizations. Chem. Eng. J. 2021, 408, 127262. [Google Scholar] [CrossRef]
- Yang, S.; Xia, Q.; Zhu, L.; Xue, J.; Wang, Q.; Chen, Q.-m. Research on the icephobic properties of fluoropolymer-based materials. Appl. Surf. Sci. 2011, 257, 4956–4962. [Google Scholar] [CrossRef]
- Menini, R.; Farzaneh, M. Advanced icephobic coatings. J. Adhes. Sci. Technol. 2011, 25, 971–992. [Google Scholar] [CrossRef]
- Murase, H.; Nanishi, K.; Kogure, H.; Fujibayashi, T.; Tamura, K.; Haruta, N. Interactions between heterogeneous surfaces of polymers and water. J. Appl. Polym. Sci. 1994, 54, 2051–2062. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Luo, C.; Zhao, Y.; Yuan, X. Icephobicity of polydimethylsiloxane-b-poly (fluorinated acrylate). Thin Solid Film. 2014, 573, 67–73. [Google Scholar] [CrossRef]
- Niu, M.; He, L.; Liang, J.; Pan, A.; Zhao, X. Effect of side chains and solvents on the film surface of linear fluorosilicone pentablock copolymers. Prog. Org. Coat. 2014, 77, 1603–1612. [Google Scholar] [CrossRef]
- Liang, J.; He, L.; Zhao, X.; Dong, X.; Luo, H.; Li, W. Novel linear fluoro-silicon-containing pentablock copolymers: Synthesis and their properties as coating materials. J. Mater. Chem. 2011, 21, 6934–6943. [Google Scholar] [CrossRef]
- Murase, H.; Fujibayashi, T. Characterization of molecular interfaces in hydrophobic systems. Prog. Org. Coat. 1997, 31, 97–104. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Y.; Li, H.; Yuan, X. Preparation and icephobic properties of polymethyltrifluoropropylsiloxane–polyacrylate block copolymers. Appl. Surf. Sci. 2014, 316, 222–231. [Google Scholar] [CrossRef]
- Li, X.; Zhang, K.; Zhao, Y.; Zhu, K.; Yuan, X. Formation of icephobic film from POSS-containing fluorosilicone multi-block methacrylate copolymers. Prog. Org. Coat. 2015, 89, 150–159. [Google Scholar] [CrossRef]
- Li, Y.; Luo, C.; Li, X.; Zhang, K.; Zhao, Y.; Zhu, K.; Yuan, X. Submicron/nano-structured icephobic surfaces made from fluorinated polymethylsiloxane and octavinyl-POSS. Appl. Surf. Sci. 2016, 360, 113–120. [Google Scholar] [CrossRef]
- Tao, C.; Li, X.; Liu, B.; Zhang, K.; Zhao, Y.; Zhu, K.; Yuan, X. Highly icephobic properties on slippery surfaces formed from polysiloxane and fluorinated POSS. Prog. Org. Coat. 2017, 103, 48–59. [Google Scholar] [CrossRef]
- Peng, J.; Liu, B.; Gao, S.; Zhu, K.; Zhao, Y.; Li, X.; Yuan, X. Enhanced anti-icing properties of branched PDMS coatings with self-regulated surface patterns. Sci. China Technol. Sci. 2020, 63, 960–970. [Google Scholar] [CrossRef]
- Zhang, K.; Li, X.; Zhao, Y.; Zhu, K.; Li, Y.; Tao, C.; Yuan, X. UV-curable POSS-fluorinated methacrylate diblock copolymers for icephobic coatings. Prog. Org. Coat. 2016, 93, 87–96. [Google Scholar] [CrossRef]
- Kim, P.; Wong, T.-S.; Alvarenga, J.; Kreder, M.J.; Adorno-Martinez, W.E.; Aizenberg, J. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS Nano 2012, 6, 6569–6577. [Google Scholar] [CrossRef]
- Kulinich, S.; Farhadi, S.; Nose, K.; Du, X. Superhydrophobic surfaces: Are they really ice-repellent? Langmuir 2011, 27, 25–29. [Google Scholar] [CrossRef]
- Jung, S.; Dorrestijn, M.; Raps, D.; Das, A.; Megaridis, C.M.; Poulikakos, D. Are superhydrophobic surfaces best for icephobicity? Langmuir 2011, 27, 3059–3066. [Google Scholar] [CrossRef]
- Meuler, A.J.; McKinley, G.H.; Cohen, R.E. Exploiting topographical texture to impart icephobicity. ACS Nano 2010, 4, 7048–7052. [Google Scholar] [CrossRef] [PubMed]
- Hussain, H.; Shah, S.M. Recent developments in nanostructured polyhedral oligomeric silsesquioxane-based materials via ‘controlled’radical polymerization. Polym. Int. 2014, 63, 835–847. [Google Scholar] [CrossRef]
- Zhang, W.; Müller, A.H. Architecture, self-assembly and properties of well-defined hybrid polymers based on polyhedral oligomeric silsequioxane (POSS). Prog. Polym. Sci. 2013, 38, 1121–1162. [Google Scholar] [CrossRef]
- Pan, A.; Yang, S.; He, L.; Zhao, X. Star-shaped POSS diblock copolymers and their self-assembled films. RSC Adv. 2014, 4, 27857–27866. [Google Scholar] [CrossRef]
- Wu, J.; Mather, P.T. POSS Polymers: Physical Properties and Biomaterials Applications; Taylor & Francis: Abingdon, UK, 2009. [Google Scholar]
- Amir, N.; Levina, A.; Silverstein, M.S. Nanocomposites through copolymerization of a polyhedral oligomeric silsesquioxane and methyl methacrylate. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 4264–4275. [Google Scholar] [CrossRef]
- Hirai, T.; Leolukman, M.; Jin, S.; Goseki, R.; Ishida, Y.; Kakimoto, M.-a.; Hayakawa, T.; Ree, M.; Gopalan, P. Hierarchical self-assembled structures from POSS-containing block copolymers synthesized by living anionic polymerization. Macromolecules 2009, 42, 8835–8843. [Google Scholar] [CrossRef]
- Ahn, B.; Hirai, T.; Jin, S.; Rho, Y.; Kim, K.-W.; Kakimoto, M.-a.; Gopalan, P.; Hayakawa, T.; Ree, M. Hierarchical structure in nanoscale thin films of a poly (styrene-b-methacrylate grafted with POSS)(PS214-b-PMAPOSS27). Macromolecules 2010, 43, 10568–10581. [Google Scholar] [CrossRef]
- Hussain, H.; Tan, B.; Mya, K.Y.; Liu, Y.; He, C.; Davis, T.P. Synthesis, micelle formation, and bulk properties of poly (ethylene glycol)-b-poly (pentafluorostyrene)-g-polyhedral oligomeric silsesquioxane amphiphilic hybrid copolymers. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 152–163. [Google Scholar] [CrossRef]
- Tan, B.; Hussain, H.; He, C. Tailoring micelle formation and gelation in (PEG− P (MA-POSS)) amphiphilic hybrid block copolymers. Macromolecules 2011, 44, 622–631. [Google Scholar] [CrossRef]
- Pyun, J.; Matyjaszewski, K.; Wu, J.; Kim, G.-M.; Chun, S.B.; Mather, P.T. ABA triblock copolymers containing polyhedral oligomeric silsesquioxane pendant groups: Synthesis and unique properties. Polymer 2003, 44, 2739–2750. [Google Scholar] [CrossRef]
- Pouget, E.; Tonnar, J.; Lucas, P.; Lacroix-Desmazes, P.; Ganachaud, F.; Boutevin, B. Well-architectured poly (dimethylsiloxane)-containing copolymers obtained by radical chemistry. Chem. Rev. 2010, 110, 1233–1277. [Google Scholar] [CrossRef]
- Shinoda, H.; Matyjaszewski, K. Improving the structural control of graft copolymers. Copolymerization of poly (dimethylsiloxane) macromonomer with methyl methacrylate using RAFT polymerization. Macromol. Rapid Commun. 2001, 22, 1176–1181. [Google Scholar] [CrossRef]
- Kessler, D.; Theato, P. Reactive surface coatings based on polysilsesquioxanes: Defined adjustment of surface wettability. Langmuir 2009, 25, 14200–14206. [Google Scholar] [CrossRef] [PubMed]
- Mya, K.Y.; Lin, E.M.; Gudipati, C.S.; Shen, L.; He, C. Time-dependent polymerization kinetic study and the properties of hybrid polymers with functional silsesquioxanes. J. Phys. Chem. B 2010, 114, 9119–9127. [Google Scholar] [CrossRef]
- Zhang, W.; Fang, B.; Walther, A.; Müller, A.H. Synthesis via RAFT polymerization of tadpole-shaped organic/inorganic hybrid poly (acrylic acid) containing polyhedral oligomeric silsesquioxane (POSS) and their self-assembly in water. Macromolecules 2009, 42, 2563–2569. [Google Scholar] [CrossRef]
- Ramirez, S.M.; Diaz, Y.J.; Sahagun, C.M.; Duff, M.W.; Lawal, O.B.; Iacono, S.T.; Mabry, J.M. Reversible addition–fragmentation chain transfer (RAFT) copolymerization of fluoroalkyl polyhedral oligomeric silsesquioxane (F-POSS) macromers. Polym. Chem. 2013, 4, 2230–2234. [Google Scholar] [CrossRef]
- Liao, W.; Zou, L.; Zheng, S.; Zhao, L.; Huang, X.; Ye, L.; Zhong, G. Effects of colloidal silica on the properties of POSS-containing fluorinated poly (styrene–acrylate)/SiO2 composite materials. J. Coat. Technol. Res. 2021, 18, 107–116. [Google Scholar] [CrossRef]
- Moad, G.; Rizzardo, E.; Thang, S.H. Radical addition–fragmentation chemistry in polymer synthesis. Polymer 2008, 49, 1079–1131. [Google Scholar] [CrossRef]
- Li, B.; Li, X.; Zhang, K.; Li, H.; Zhao, Y.; Ren, L.; Yuan, X. Synthesis of POSS-containing fluorosilicone block copolymers via RAFT polymerization for application as non-wetting coating materials. Prog. Org. Coat. 2015, 78, 188–199. [Google Scholar] [CrossRef]
- Deng, Y.; Bernard, J.; Alcouffe, P.; Galy, J.; Dai, L.; Gérard, J.F. Nanostructured hybrid polymer networks from in situ self-assembly of RAFT-synthesized POSS-based block copolymers. J. Polym. Sci. Part A Polym. Chem. 2011, 49, 4343–4352. [Google Scholar] [CrossRef]
- Yang, C.; Deng, Y.; Zeng, B.; Yuan, C.; Chen, M.; Luo, W.; Liu, J.; Xu, Y.; Dai, L. Hybrid amphiphilic block copolymers containing polyhedral oligomeric silsesquioxane: Synthesis, characterization, and self-assembly in solutions. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 4300–4310. [Google Scholar] [CrossRef]
- Jalali Kandeloos, A.; Bastani, S.; Mashayekhan, S. Architecting oxidized alginate methacrylate hydrogels with tunable characteristics by altering the sequence of the cross-linking steps, methacrylation reaction time, and polymer concentration. J. Biomater. Appl. 2023, 38, 25–38. [Google Scholar] [CrossRef]
- Kandeloos, A.J.; Jalili, M.; Ghahari, M. Upconversion Particles’ Role in Composite Materials: From Light Absorption to Energy Conversion. Res. Dev. Mater. Sci. 2022, 16, 2576–8840. [Google Scholar]
- Kandeloos, A.J.; Bastani, S.; Jalili, M.; Ghahhari, M.; Ghahrizjani, R.T.; Mohajerani, E. Employing NaYF4: Yb, Tm upconversion particles (UCPs) in combination with rGO and PANI nanomaterials for the fabrication of radiation-curable anticorrosion composites/coatings. Prog. Org. Coat. 2023, 180, 107547. [Google Scholar] [CrossRef]
- Bastani, S.; Jalali Kandeloos, A.; Jalili, M.; Ghahari, M. Nanocomposites Based on Upconversion Nanoparticles. In Upconversion Nanoparticles (UCNPs) for Functional Applications; Springer: Berlin/Heidelberg, Germany, 2023; pp. 127–163. [Google Scholar]
- Xue, L.; Zhang, Y.; Zuo, Y.; Diao, S.; Zhang, J.; Feng, S. Preparation and characterization of novel UV-curing silicone rubber via thiol-ene reaction. Mater. Lett. 2013, 106, 425–427. [Google Scholar] [CrossRef]
- Yang, Z.; Bai, Y.; Wei, B.; Cui, Y.; Huang, J.; Li, Y.; Meng, L.; Wang, Y. A facile preparation method of UV rapid curing fluorosilicone coatings with good hydrophobicity and excellent corrosion resistance based on thiol-ene click reaction. Prog. Org. Coat. 2023, 174, 107248. [Google Scholar] [CrossRef]
- Li, X.; Zhang, K.; Zhao, Y.; Zhu, K.; Yuan, X. Enhancement of icephobic properties based on UV-curable fluorosilicone copolymer films. RSC Adv. 2015, 5, 90578–90587. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, J.; Cheng, Y.; Yang, H.; Chen, Z.; Lai, Y. Bioinspired surfaces with superwettability for anti-icing and ice-phobic application: Concept, mechanism, and design. Small 2017, 13, 1701867. [Google Scholar] [CrossRef]
- Kandeloos, A.J.; Attar, M. The diffusion and adhesion relationship between free films and epoxy coated mild steel. Prog. Org. Coat. 2023, 179, 107561. [Google Scholar] [CrossRef]
- Kausar, A. Role of thermosetting polymer in structural composite. Am. J. Polym. Sci. Eng 2017, 5, 1–12. [Google Scholar]
- Tzetzis, D.; Tsongas, K.; Mansour, G. Determination of the mechanical properties of epoxy silica nanocomposites through FEA-supported evaluation of ball indentation test results. Mater. Res. 2017, 20, 1571–1578. [Google Scholar] [CrossRef]
- Bellido-Aguilar, D.A.; Zheng, S.; Huang, Y.; Zeng, X.; Zhang, Q.; Chen, Z. Solvent-free synthesis and hydrophobization of biobased epoxy coatings for anti-icing and anticorrosion applications. ACS Sustain. Chem. Eng. 2019, 7, 19131–19141. [Google Scholar] [CrossRef]
- Marczak, J.; Kargol, M.; Psarski, M.; Celichowski, G. Modification of epoxy resin, silicon and glass surfaces with alkyl-or fluoroalkylsilanes for hydrophobic properties. Appl. Surf. Sci. 2016, 380, 91–100. [Google Scholar] [CrossRef]
- Adja, A.A.S.; Sobhani, S.; Momen, G.; Fofana, I.; Carrière, J. Step by step progress to achieve an icephobic silicone-epoxy hybrid coating: Tailoring matrix composition and additives. J. Appl. Polym. Sci. 2023, 140, e54262. [Google Scholar] [CrossRef]
- Verma, S.; Das, S.; Mohanty, S.; Nayak, S.K. A facile preparation of epoxy-polydimethylsiloxane (EP-PDMS) polymer coatings for marine applications. J. Mater. Res. 2019, 34, 2881–2894. [Google Scholar] [CrossRef]
- Sobhani, S.; Jannesari, A.; Bastani, S. Effect of molecular weight and content of PDMS on morphology and properties of silicone-modified epoxy resin. J. Appl. Polym. Sci. 2012, 123, 162–178. [Google Scholar] [CrossRef]
- Bajpai, P.; Bajpai, M. Development of a high performance hybrid epoxy silicone resin for coatings. Pigment Resin Technol. 2010, 39, 96–100. [Google Scholar] [CrossRef]
- Noè, C.; Hakkarainen, M.; Sangermano, M. Cationic UV-curing of epoxidized biobased resins. Polymers 2020, 13, 89. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Hao, T.; Wang, C.; Kang, Z.; Shi, Z.; Zhang, J. The mechanical mechanism and influencing factors of ice adhesion strength on ice-phobic coating. J. Mar. Sci. Eng. 2021, 9, 315. [Google Scholar] [CrossRef]
- Ziętkowska, K.; Przybyszewski, B.; Grzęda, D.; Kozera, R.; Boczkowska, A.; Liszewska, M.; Pakuła, D.; Przekop, R.E.; Sztorch, B. Transparent Silicone–Epoxy Coatings with Enhanced Icephobic Properties for Photovoltaic Applications. Appl. Sci. 2023, 13, 7730. [Google Scholar] [CrossRef]
- Smith, S.; DeSimone, J.; Huang, H.; York, G.; Dwight, D.; Wilkes, G.; McGrath, J. Synthesis and characterization of poly (methyl methacrylate)-g-poly (dimethylsiloxane) copolymers. I. Bulk and surface characterization. Macromolecules 1992, 25, 2575–2581. [Google Scholar] [CrossRef]
- Meraa, A.E.; Goodwin, M.; Pike, J.K.; Wynne, K.J. Synthesis, characterization and surface analysis using dynamic contact angle measurements of graft copolymers: Poly (methyl methacrylate)-g-poly (dimethylsiloxane) and poly (methyl methacrylate)-g-poly (trifluoropropylmethylsiloxane). Polymer 1999, 40, 419–427. [Google Scholar] [CrossRef]
- Jellinek, H.H.G.; Kachi, H.; Kittaka, S.; Lee, M.; Yokota, R. Ice releasing block-copolymer coatings. Colloid Polym. Sci. 1978, 256, 544–551. [Google Scholar] [CrossRef]
- Kozera, R.; Przybyszewski, B.; Żołyńska, K.; Boczkowska, A.; Sztorch, B.; Przekop, R.E. Hybrid modification of unsaturated polyester resins to obtain hydro-and icephobic properties. Processes 2020, 8, 1635. [Google Scholar] [CrossRef]
- Chen, Y.; Kushner, A.M.; Williams, G.A.; Guan, Z. Multiphase design of autonomic self-healing thermoplastic elastomers. Nat. Chem. 2012, 4, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-H.; Wang, C.; Keplinger, C.; Zuo, J.-L.; Jin, L.; Sun, Y.; Zheng, P.; Cao, Y.; Lissel, F.; Linder, C. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 2016, 8, 618–624. [Google Scholar] [CrossRef]
- Rekondo, A.; Martin, R.; de Luzuriaga, A.R.; Cabañero, G.; Grande, H.J.; Odriozola, I. Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Mater. Horiz. 2014, 1, 237–240. [Google Scholar] [CrossRef]
- Wu, J.; Cai, L.H.; Weitz, D.A. Tough self-healing elastomers by molecular enforced integration of covalent and reversible networks. Adv. Mater. 2017, 29, 1702616. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Liu, Z.; Zhang, Q.; Lopez, J.; Wang, H.; Wu, H.-C.; Niu, S.; Yan, H.; Wang, S.; Lei, T. Quadruple H-bonding cross-linked supramolecular polymeric materials as substrates for stretchable, antitearing, and self-healable thin film electrodes. J. Am. Chem. Soc. 2018, 140, 5280–5289. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Shi, C.-Y.; Qu, D.-H.; Long, Y.-T.; Feringa, B.L.; Tian, H. Exploring a naturally tailored small molecule for stretchable, self-healing, and adhesive supramolecular polymers. Sci. Adv. 2018, 4, eaat8192. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.M.; Jeon, H.; Shin, S.H.; Park, S.A.; Jegal, J.; Hwang, S.Y.; Oh, D.X.; Park, J. Superior toughness and fast self-healing at room temperature engineered by transparent elastomers. Adv. Mater. 2018, 30, 1705145. [Google Scholar] [CrossRef]
- Karthikeyan, N.; Anand, R.; Suthakar, T.; Barhate, S. Materials, innovations and future research opportunities on wind turbine blades—Insight review. Environ. Prog. Sustain. Energy 2019, 38, e13046. [Google Scholar] [CrossRef]
- Belov, E.; Nadaraia, K.; Mashtalar, D.; Sinebryukhov, S.; Gnedenkov, S. Anti-icing composite fluoropolymer coatings on titanium. Научнo-технические ведoмoсти Санкт-Петербургскoгo гoсударственнoгo пoлитехническoгo университета. Физикo-математические науки 2022, 15, 204–209. [Google Scholar]
- Zeng, Z.; He, J.; Jie, J.; Zhou, C.; Chen, B.; Bao, J.; Yang, K.; Luo, J. Effect of perfluoropolyether and the micro nano structure of ZnO on anti icing performance of fluorinated organic superhydrophobicity coatings on wind turbine blade surface. Mater. Res. Express 2021, 8, 115008. [Google Scholar] [CrossRef]
- Lu, Y.; Sathasivam, S.; Song, J.; Crick, C.R.; Carmalt, C.J.; Parkin, I.P. Robust self-cleaning surfaces that function when exposed to either air or oil. Science 2015, 347, 1132–1135. [Google Scholar] [CrossRef] [PubMed]
- Son, S.M.; Kim, M.; Yoo, J.J.; Kim, M.S.; Kim, B.-S.; Seong, D.G. Fabrication of carbon fiber/polyamide 6 composites with water resistance and anti-icing performance using a superhydrophobic fluorinated-polydopamine coating. Compos. Sci. Technol. 2023, 238, 110048. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, F.; Yu, Q.; Ni, C.; Gu, X.; Li, Y.; You, J. Fabrication of PLLA with high ductility and transparence by blending with tiny amount of PVDF and compatibilizers. Macromol. Mater. Eng. 2019, 304, 1900316. [Google Scholar] [CrossRef]
- Kar, E.; Bose, N.; Dutta, B.; Mukherjee, N.; Mukherjee, S. Ultraviolet-and microwave-protecting, self-cleaning e-skin for efficient energy harvesting and tactile mechanosensing. ACS Appl. Mater. Interfaces 2019, 11, 17501–17512. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Zhu, Y.; Xu, F.; Zhang, M.; Liu, Y.; Wang, H. A β-phase crystal poly (vinylidene fluoride) incorporated epoxy-based composite coating with excellent oxygen barrier and anti-corrosion. Compos. Commun. 2023, 37, 101458. [Google Scholar] [CrossRef]
- Peng, C.; Xing, S.; Yuan, Z.; Xiao, J.; Wang, C.; Zeng, J. Preparation and anti-icing of superhydrophobic PVDF coating on a wind turbine blade. Appl. Surf. Sci. 2012, 259, 764–768. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, P.; Gu, X.; Zhang, X.; Huo, M. Preparation of PVDF-PDMS-SiO2 multi-stage rough superhydrophobic coating with excellent anti-corrosion and drag reduction performance via one-step cold spraying. Surf. Coat. Technol. 2023, 471, 129882. [Google Scholar] [CrossRef]
- Huang, S.; Fang, Z.; Chen, D.; Yu, Z.; Sun, Z.; Zhang, Y. Fabrication of mechanochemically robust superhydrophobic coating based on MPVDF/epoxy resins composites. Prog. Org. Coat. 2022, 163, 106651. [Google Scholar] [CrossRef]
- Ashrafizadeh, H.; Mertiny, P.; McDonald, A. Evaluation of the effect of temperature on mechanical properties and wear resistance of polyurethane elastomers. Wear 2016, 368, 26–38. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, H.; Tian, X.; Xue, M.; Ding, X.; Ye, X.; Cui, Z. Surface and mechanical properties of hydrophobic silica contained hybrid films of waterborne polyurethane and fluorinated polymethacrylate. Polymer 2014, 55, 187–194. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, W.; Han, Y. A composite polymer film with both superhydrophobicity and superoleophilicity. Macromol. Rapid Commun. 2006, 27, 804–808. [Google Scholar] [CrossRef]
- Chauhan, N.P.S.; Jabgid, N.; Punjabi, P.B. Polyurethanes: Silicone-polyurethane copolymers and. Polyurethane 2015, 13, 6712–6723. [Google Scholar]
- Roshan, S.; Jafari, R.; Momen, G. Multifunctional Polyurethane-based Coating with Corrosion Resistance and Anti-icing Performance for AA2024-T3 Alloy Protection. Colloids Surf. A Physicochem. Eng. Asp. 2024, 698, 134581. [Google Scholar] [CrossRef]
- Wong, W.S.; Stachurski, Z.H.; Nisbet, D.R.; Tricoli, A. Ultra-durable and transparent self-cleaning surfaces by large-scale self-assembly of hierarchical interpenetrated polymer networks. ACS Appl. Mater. Interfaces 2016, 8, 13615–13623. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Wang, H.; Wu, X.; Yang, K.; Yu, Y.; Cui, H.; Gao, F.; Qian, K.; Yao, H.; Li, J. Flexible nanocomposite electrothermal films based on carbon nanotubes and waterborne polyurethane with high reliability, stretchability and low-temperature performance for wind turbine blade deicing. Compos. Part A Appl. Sci. Manuf. 2022, 158, 106979. [Google Scholar] [CrossRef]
- Pathak, S.M.; Kumar, V.P.; Bonu, V.; Mishnaevsky, L., Jr.; Lakshmi, R.; Bera, P.; Barshilia, H.C. Development of Cellulose-Reinforced Polyurethane Coatings: A Novel Eco-Friendly Approach for Wind Turbine Blade Protection. Energies 2023, 16, 1730. [Google Scholar] [CrossRef]
- Lv, L.; Liu, H.; Zhang, W.; Chen, J.; Liu, Z. Facile UV-curable fabrication of robust, anti-icing superhydrophobic coatings based on polyurethane. Mater. Lett. 2020, 258, 126653. [Google Scholar] [CrossRef]
- Qiao, X.; Chen, R.; Zhang, H.; Liu, J.; Liu, Q.; Yu, J.; Liu, P.; Wang, J. Outstanding cavitation erosion resistance of hydrophobic polydimethylsiloxane-based polyurethane coatings. J. Appl. Polym. Sci. 2019, 136, 47668. [Google Scholar] [CrossRef]
- Liu, H.; Li, X.; Lv, L.; Liu, Z.; Chen, J. Fast fabrication of silicone-modified polyurethane/SiO2 composite superhydrophobic coating with excellent anti-icing and self-cleaning behaviour. Mater. Res. Express 2020, 7, 116403. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Y.; Li, B.; Hu, T.; Yang, Y.; Li, L.; Zhang, J. Environmentally benign and durable superhydrophobic coatings based on SiO2 nanoparticles and silanes. J. Colloid Interface Sci. 2019, 542, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.H.; El-Tayeb, N. Effect of nano-silica/alumina hybrid coating on erosion resistance of glass fibre-reinforced polymer for the application of wind turbine blades. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2022, 236, 2013–2031. [Google Scholar] [CrossRef]
- Carreño, F.; Gude, M.; Calvo, S.; de la Fuente, O.R.; Carmona, N. Design and development of icephobic coatings based on sol-gel/modified polyurethane paints. Mater. Today Commun. 2020, 25, 101616. [Google Scholar] [CrossRef]
- Golovin, K.; Boban, M.; Mabry, J.M.; Tuteja, A. Designing self-healing superhydrophobic surfaces with exceptional mechanical durability. ACS Appl. Mater. Interfaces 2017, 9, 11212–11223. [Google Scholar] [CrossRef]
- Pathak, S.M.; Kumar, V.P.; Bonu, V.; Latha, S.; Mishnaevsky, L., Jr.; Lakshmi, R.; Bera, P.; Barshilia, H.C. Solid particle erosion studies of ceramic oxides reinforced water-based PU nanocomposite coatings for wind turbine blade protection. Ceram. Int. 2022, 48, 35788–35798. [Google Scholar] [CrossRef]
- May, C. Epoxy Resins: Chemistry and Technology; Routledge: London, UK, 2018. [Google Scholar]
- Lv, J.; Zhu, C.; Qiu, H.; Zhang, J.; Gu, C.; Feng, J. Robust icephobic epoxy coating using maleic anhydride as a crosslinking agent. Prog. Org. Coat. 2020, 142, 105561. [Google Scholar] [CrossRef]
- Zheng, S.; Bellido-Aguilar, D.A.; Wu, X.; Zhan, X.; Huang, Y.; Zeng, X.; Zhang, Q.; Chen, Z. Durable waterborne hydrophobic bio-epoxy coating with improved anti-icing and self-cleaning performance. ACS Sustain. Chem. Eng. 2018, 7, 641–649. [Google Scholar] [CrossRef]
- Yancheshme, A.A.; Allahdini, A.; Maghsoudi, K.; Jafari, R.; Momen, G. Potential anti-icing applications of encapsulated phase change material–embedded coatings; a review. J. Energy Storage 2020, 31, 101638. [Google Scholar] [CrossRef]
- Koochaki, M.S.; Momen, G.; Lavoie, S.; Jafari, R. Enhancing Icephobic Coatings: Exploring the Potential of Dopamine-Modified Epoxy Resin Inspired by Mussel Catechol Groups. Biomimetics 2024, 9, 349. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Chen, R.; Liu, Q.; Liu, J.; Yu, J.; Wang, C.; Zhang, M.; Liu, P.; Wang, J. Fabrication of ZnO/epoxy resin superhydrophobic coating on AZ31 magnesium alloy. Chem. Eng. J. 2019, 368, 261–272. [Google Scholar] [CrossRef]
- Pan, L.; Xue, P.; Wang, M.; Wang, F.; Guo, H.; Yuan, X.; Zhong, L.; Yu, J. Novel superhydrophobic carbon fiber/epoxy composites with anti-icing properties. J. Mater. Res. 2021, 36, 1695–1704. [Google Scholar] [CrossRef]
- Fan, J.; Long, Z.; Wu, J.; Gao, P.; Wu, Y.; Si, P.; Zhang, D. Electrothermal superhydrophobic epoxy nanocomposite coating for anti-icing/deicing. J. Coat. Technol. Res. 2023, 20, 1557–1568. [Google Scholar] [CrossRef]
- Cattin, R. Icing of wind turbines: Vindforsk projects, a survey of the development and research needs. Elforsk Rep. 2013, 12, 13. [Google Scholar]
- Zhang, X.; Si, Y.; Mo, J.; Guo, Z. Robust micro-nanoscale flowerlike ZnO/epoxy resin superhydrophobic coating with rapid healing ability. Chem. Eng. J. 2017, 313, 1152–1159. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, H.; Zhu, Y.; Liu, X.; Wang, Z.; Chen, J. A robust superhydrophobic anti-icing/de-icing composite coating with electrothermal and auxiliary photothermal performances. Compos. Sci. Technol. 2022, 227, 109578. [Google Scholar] [CrossRef]
- Nistal, A.; Ruiz-González, A.; Choy, K.-L. Robust icephobic nanocomposite coatings with superior abrasion resistance. Appl. Mater. Today 2022, 27, 101480. [Google Scholar] [CrossRef]
- Atta, A.M.; Ezzat, A.O.; El-Saeed, A.M.; Wahby, M.H.; Abdallah, M.M. Superhydrophobic organic and inorganic clay nanocomposites for epoxy steel coatings. Prog. Org. Coat. 2020, 140, 105502. [Google Scholar] [CrossRef]
- Qin, C.C.; Mulroney, A.T.; Gupta, M.C. Anti-icing epoxy resin surface modified by spray coating of PTFE Teflon particles for wind turbine blades. Mater. Today Commun. 2020, 22, 100770. [Google Scholar] [CrossRef]
- Kozera, R.; Ziętkowska, K.; Przybyszewski, B.; Boczkowska, A.; Sztorch, B.; Pakuła, D.; Przekop, R.E.; Trzciński, J.; Borras, A. Spherosilicate-modified epoxy coatings with enhanced icephobic properties for wind turbines applications. Colloids Surf. A Physicochem. Eng. Asp. 2023, 679, 132475. [Google Scholar] [CrossRef]
- He, Z.; Jamil, M.I.; Li, T.; Zhang, Q. Enhanced surface icephobicity on an elastic substrate. Langmuir 2021, 38, 18–35. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Liu, Y.; Hu, H. An experimental investigation of dynamic ice accretion process on a wind turbine airfoil model considering various icing conditions. Int. J. Heat Mass Transf. 2019, 133, 930–939. [Google Scholar] [CrossRef]
- He, Z.; Xie, H.; Jamil, M.I.; Li, T.; Zhang, Q. Electro-/Photo-Thermal Promoted Anti-Icing Materials: A New Strategy Combined with Passive Anti-Icing and Active De-Icing. Adv. Mater. Interfaces 2022, 9, 2200275. [Google Scholar] [CrossRef]
- Su, X.; Li, H.; Lai, X.; Yang, Z.; Chen, Z.; Wu, W.; Zeng, X. Vacuum-assisted layer-by-layer superhydrophobic carbon nanotube films with electrothermal and photothermal effects for deicing and controllable manipulation. J. Mater. Chem. A 2018, 6, 16910–16919. [Google Scholar] [CrossRef]
- Rodert, L.A. A Preliminary Study of the Prevention of Ice on Aircraft by the Use of Engine-Exhaust Heat; NTRS—NASA Technical Reports Server: Washington, DC, USA, 1939. [Google Scholar]
- Alemour, B.; Badran, O.; Hassan, M.R. A review of using conductive composite materials in solving lightening strike and ice accumulation problems in aviation. J. Aerosp. Technol. Manag. 2019, 11, e1919. [Google Scholar] [CrossRef]
- Tönbül, B.; Can, H.A.; Öztürk, T.; Akyıldız, H. Solution processed aluminum-doped ZnO thin films for transparent heater applications. Mater. Sci. Semicond. Process. 2021, 127, 105735. [Google Scholar] [CrossRef]
- Vertuccio, L.; De Santis, F.; Pantani, R.; Lafdi, K.; Guadagno, L. Effective de-icing skin using graphene-based flexible heater. Compos. Part B Eng. 2019, 162, 600–610. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Sui, X.; Liang, W.; He, L.; Wang, F.; Yang, B. Biomimetic multiwalled carbon nanotube/polydimethylsiloxane nanocomposites with temperature-controlled, hydrophobic, and icephobic properties. ACS Appl. Nano Mater. 2021, 4, 10852–10863. [Google Scholar] [CrossRef]
- Abbas, S.; Park, C.W. Frosting and defrosting assessment of carbon fiber reinforced polymer composite with surface wettability and resistive heating characteristics. Int. J. Heat Mass Transf. 2021, 169, 120883. [Google Scholar] [CrossRef]
- Idris, M.K.; Qiu, J.; Melenka, G.W.; Grau, G. Printing electronics directly onto carbon fiber composites: Unmanned aerial vehicle (UAV) wings with integrated heater for de-icing. Eng. Res. Express 2020, 2, 025022. [Google Scholar] [CrossRef]
- Raji, A.-R.O.; Varadhachary, T.; Nan, K.; Wang, T.; Lin, J.; Ji, Y.; Genorio, B.; Zhu, Y.; Kittrell, C.; Tour, J.M. Composites of graphene nanoribbon stacks and epoxy for joule heating and deicing of surfaces. ACS Appl. Mater. Interfaces 2016, 8, 3551–3556. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, Y.; Kempers, R.; Amirfazli, A. 3D printed electro-thermal anti-or de-icing system for composite panels. Cold Reg. Sci. Technol. 2019, 166, 102844. [Google Scholar] [CrossRef]
- Yao, X.; Hawkins, S.C.; Falzon, B.G. An advanced anti-icing/de-icing system utilizing highly aligned carbon nanotube webs. Carbon 2018, 136, 130–138. [Google Scholar] [CrossRef]
- Chavan, D.S.; Yadav, R.; Sankpal, J.; Mishra, S.K.; Singh, A. Ice extraction from wind turbine using flow of hot air through blade. In Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India, 1–2 August 2017; pp. 2707–2711. [Google Scholar]
- Wang, L.; Luo, J.; Chen, Y.; Lin, L.; Huang, X.; Xue, H.; Gao, J. Fluorine-free superhydrophobic and conductive rubber composite with outstanding deicing performance for highly sensitive and stretchable strain sensors. ACS Appl. Mater. Interfaces 2019, 11, 17774–17783. [Google Scholar] [CrossRef] [PubMed]
- Bustillos, J.; Zhang, C.; Boesl, B.; Agarwal, A. Three-dimensional graphene foam–polymer composite with superior deicing efficiency and strength. ACS Appl. Mater. Interfaces 2018, 10, 5022–5029. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, H.; Liu, G.; Su, Z.; Wu, J.; Liu, J.; Zhang, X.; Chen, Y.; Zhou, W. Light-weight, flexible, low-voltage electro-thermal film using graphite nanoplatelets for wearable/smart electronics and deicing devices. J. Alloys Compd. 2017, 699, 1049–1056. [Google Scholar] [CrossRef]
- Lordan, D.; Burke, M.; Manning, M.; Martin, A.; Amann, A.; O’Connell, D.; Murphy, R.; Lyons, C.; Quinn, A.J. Asymmetric pentagonal metal meshes for flexible transparent electrodes and heaters. ACS Appl. Mater. Interfaces 2017, 9, 4932–4940. [Google Scholar] [CrossRef]
- Rahimi, A.; Hojjati, M.; Dolatabadi, A.; Moreau, C. Thermal spray coating on polymeric composite for de-icing and anti-icing applications. J. Manuf. Sci. Eng. 2021, 143, 101008. [Google Scholar] [CrossRef]
- Kiruthika, S.; Gupta, R.; Kulkarni, G.U. Large area defrosting windows based on electrothermal heating of highly conducting and transmitting Ag wire mesh. Rsc Adv. 2014, 4, 49745–49751. [Google Scholar] [CrossRef]
- Antonini, C.; Innocenti, M.; Horn, T.; Marengo, M.; Amirfazli, A. Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems. Cold Reg. Sci. Technol. 2011, 67, 58–67. [Google Scholar] [CrossRef]
- Kraj, A.G.; Bibeau, E.L. Measurement method and results of ice adhesion force on the curved surface of a wind turbine blade. Renew. Energy 2010, 35, 741–746. [Google Scholar] [CrossRef]
- Fortin, G.; Adomou, M.; Perron, J. Experimental Study of Hybrid Anti-Icing Systems Combining Thermoelectric and Hydrophobic Coatings; 0148-7191; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2011. [Google Scholar]
- Wang, T.; Zheng, Y.; Raji, A.R.O.; Li, Y.; Sikkema, W.K.; Tour, J.M. Passive Anti-Icing and Active Deicing Films. ACS Appl. Mater. Interfaces 2016, 8, 14169–14173. [Google Scholar] [CrossRef] [PubMed]
- Karim, N.; Zhang, M.; Afroj, S.; Koncherry, V.; Potluri, P.; Novoselov, K.S. Graphene-based surface heater for de-icing applications. RSC Adv. 2018, 8, 16815–16823. [Google Scholar] [CrossRef] [PubMed]
- Mangini, D.; Antonini, C.; Marengo, M.; Amirfazli, A. Runback ice formation mechanism on hydrophilic and superhydrophobic surfaces. Cold Reg. Sci. Technol. 2015, 109, 53–60. [Google Scholar] [CrossRef]
- Golovin, K.; Dhyani, A.; Thouless, M.; Tuteja, A. Low–interfacial toughness materials for effective large-scale deicing. Science 2019, 364, 371–375. [Google Scholar] [CrossRef]
- Mohseni, M.; Recla, L.; Mora, J.; Gallego, P.G.; Aguero, A.; Golovin, K. Quasicrystalline coatings exhibit durable low interfacial toughness with ice. ACS Appl. Mater. Interfaces 2021, 13, 36517–36526. [Google Scholar] [CrossRef] [PubMed]
- Azimi Dijvejin, Z.; Jain, M.C.; Kozak, R.; Zarifi, M.H.; Golovin, K. Smart low interfacial toughness coatings for on-demand de-icing without melting. Nat. Commun. 2022, 13, 5119. [Google Scholar] [CrossRef] [PubMed]
- Farzaneh, M.; Volat, C.; Leblond, A. Anti-icing and de-icing techniques for overhead lines. In Atmospheric Icing of Power Networks; Springer: Berlin/Heidelberg, Germany, 2008; pp. 229–268. [Google Scholar]
- Jiang, G.; Chen, L.; Zhang, S.; Huang, H. Superhydrophobic SiC/CNTs coatings with photothermal deicing and passive anti-icing properties. ACS Appl. Mater. Interfaces 2018, 10, 36505–36511. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Wang, J.; Zhao, F.; Wu, D.; Huang, Y.; Zhang, D.; Zhang, Z.; Fu, W.; Li, X.; Fan, Y. Plasmon-mediated photothermal and superhydrophobic TiN-PTFE film for anti-icing/deicing applications. Compos. Sci. Technol. 2019, 181, 107696. [Google Scholar] [CrossRef]
- Dash, S.; de Ruiter, J.; Varanasi, K.K. Photothermal trap utilizing solar illumination for ice mitigation. Sci. Adv. 2018, 4, eaat0127. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Du, Y.; Alsaid, Y.; Wu, D.; Hua, M.; Yan, Y.; Yao, B.; Ma, Y.; Zhu, X.; He, X. Superhydrophobic photothermal icephobic surfaces based on candle soot. Proc. Natl. Acad. Sci. USA 2020, 117, 11240–11246. [Google Scholar] [CrossRef]
- Wu, B.; Cui, X.; Jiang, H.; Wu, N.; Peng, C.; Hu, Z.; Liang, X.; Yan, Y.; Huang, J.; Li, D. A superhydrophobic coating harvesting mechanical robustness, passive anti-icing and active de-icing performances. J. Colloid Interface Sci. 2021, 590, 301–310. [Google Scholar] [CrossRef]
- Guo, H.; Liu, M.; Xie, C.; Zhu, Y.; Sui, X.; Wen, C.; Li, Q.; Zhao, W.; Yang, J.; Zhang, L. A sunlight-responsive and robust anti-icing/deicing coating based on the amphiphilic materials. Chem. Eng. J. 2020, 402, 126161. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, Q.; Cheng, T.; Zhan, X.; Chen, F. Polyols-infused slippery surfaces based on magnetic Fe3O4-functionalized polymer hybrids for enhanced multifunctional anti-icing and deicing properties. Langmuir 2018, 34, 4052–4058. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Zhang, Y.; Wang, D.; Liu, Z.; Liu, Y.; Pei, X.; Yu, B.; Zhou, F. Integration of self-lubrication and near-infrared photothermogenesis for excellent anti-icing/deicing performance. Adv. Funct. Mater. 2015, 25, 4237–4245. [Google Scholar] [CrossRef]
- Weng, D.; Xu, F.; Li, X.; Li, Y.; Sun, J. Bioinspired photothermal conversion coatings with self-healing superhydrophobicity for efficient solar steam generation. J. Mater. Chem. A 2018, 6, 24441–24451. [Google Scholar] [CrossRef]
- Jamil, M.I.; Wang, Q.; Ali, A.; Hussain, M.; Aziz, T.; Zhan, X.; Zhang, Q. Slippery Photothermal Trap for Outstanding Deicing Surfaces. J. Bionic Eng. 2021, 18, 548–558. [Google Scholar] [CrossRef]
- Wang, J.; Li, P.; Yu, P.; Leydecker, T.; Bayer, I.S.; Losic, D.; Neogi, A.; Wang, Z. Efficient photothermal deicing employing superhydrophobic plasmonic MXene composites. Adv. Compos. Hybrid Mater. 2022, 5, 3035–3044. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, H.; Zhang, C.; Zhao, G. Super photothermal/electrothermal response and anti-icing/deicing capability of superhydrophobic multi-walled carbon nanotubes/epoxy coating. Chem. Eng. J. 2024, 497, 154383. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Z.; Wang, Z.; Liang, Y.; Cui, Z.; Zhao, J.; Li, X.; Ren, L. Multistimuli-responsive microstructured superamphiphobic surfaces with large-range, reversible switchable wettability for oil. ACS Appl. Mater. Interfaces 2019, 11, 28478–28486. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Huang, S.; Tian, X. Magnetoresponsive surfaces for manipulation of nonmagnetic liquids: Design and applications. Adv. Funct. Mater. 2020, 30, 1906507. [Google Scholar] [CrossRef]
- Jeyadevan, B. Present status and prospects of magnetite nanoparticles-based hyperthermia. J. Ceram. Soc. Jpn. 2010, 118, 391–401. [Google Scholar] [CrossRef]
- Fan, X.; Xiao, J.; Wang, W.; Zhang, Y.; Zhang, S.; Tang, B. Novel magnetic-to-thermal conversion and thermal energy management composite phase change material. Polymers 2018, 10, 585. [Google Scholar] [CrossRef]
- Gossuin, Y.; Gillis, P.; Hocq, A.; Vuong, Q.L.; Roch, A. Magnetic resonance relaxation properties of superparamagnetic particles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2009, 1, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Grigoryev, A.; Tokarev, I.; Kornev, K.G.; Luzinov, I.; Minko, S. Superomniphobic magnetic microtextures with remote wetting control. J. Am. Chem. Soc. 2012, 134, 12916–12919. [Google Scholar] [CrossRef]
- Irajizad, P.; Hasnain, M.; Farokhnia, N.; Sajadi, S.M.; Ghasemi, H. Magnetic slippery extreme icephobic surfaces. Nat. Commun. 2016, 7, 13395. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.; He, R.; Zhang, Q.; Zhan, X.; Chen, F. Magnetic particle-based super-hydrophobic coatings with excellent anti-icing and thermoresponsive deicing performance. J. Mater. Chem. A 2015, 3, 21637–21646. [Google Scholar] [CrossRef]
- DiPlacido, N.; Soltis, J.; Palacios, J. Enhancement of ultrasonic de-icing via tone burst excitation. J. Aircr. 2016, 53, 1821–1829. [Google Scholar] [CrossRef]
- Palacios, J.; Smith, E.; Rose, J.; Royer, R. Instantaneous de-icing of freezer ice via ultrasonic actuation. AIAA J. 2011, 49, 1158–1167. [Google Scholar] [CrossRef]
- Zeng, J.; Song, B. Research on experiment and numerical simulation of ultrasonic de-icing for wind turbine blades. Renew. Energy 2017, 113, 706–712. [Google Scholar] [CrossRef]
- Villeneuve, É.; Harvey, D.; Zimcik, D.; Aubert, R.; Perron, J. Piezoelectric deicing system for rotorcraft. J. Am. Helicopter Soc. 2015, 60, 1–12. [Google Scholar] [CrossRef]
- Gastaldo, G.; Palanque, V.; Budinger, M.; Pommier-Budinger, V. Stress and Energy Release Rate Influence on Ice Shedding with Resonant Electro-Mechanical De-icing Systems. In Proceedings of the ICAS 2022-33rd Congress of the International Council of the Aeronautical Sciences, Stockholm, Sweden, 4–9 September 2022. [Google Scholar]
- Marbœuf, A.; Bennani, L.; Budinger, M.; Pommier-Budinger, V. Electromechanical resonant ice protection systems: Numerical investigation through a phase-field mixed adhesive/brittle fracture model. Eng. Fract. Mech. 2020, 230, 106926. [Google Scholar] [CrossRef]
- Venna, S.V.; Lin, Y.-J.; Botura, G. Piezoelectric transducer actuated leading edge de-icing with simultaneous shear and impulse forces. J. Aircr. 2007, 44, 509–515. [Google Scholar] [CrossRef]
- Tepylo, N.R. A Coupled Icephobic Coating and Piezoelectric Actuator System for Aircraft De-Icing Applications; Carleton University: Ottawa, ON, Canada, 2017. [Google Scholar]
- Wang, Z.; Xu, Y.; Gu, Y. A light lithium niobate transducer design and ultrasonic de-icing research for aircraft wing. Energy 2015, 87, 173–181. [Google Scholar] [CrossRef]
Method | Advantages | Disadvantages |
---|---|---|
Hot air | Proven reliability, simple design, and a long track record of use Modification possibilities for specific blade types | Low efficiency: Heat must travel a long distance from the source to the blade tip, passing through the blade material before reaching the surface. |
Electrothermal | Optimized power consumption: close to blade surface and can have spanwise heat control Established reliability with a long history of use | Requires extra effort to integrate into the blade production process Costly maintenance |
Ultrasonic | Non-thermal and consumes much less power than other systems | This technique remains in the laboratory research stage |
Microwaves | Optimized power consumption Wireless, repair-friendly Minor radio/radar interference | Not yet tested on a large scale Challenging to integrate into the blade design |
Mechanical removal | No upfront investment in de-icing systems is necessary On-demand service providers are available, allowing for purchase as needed | Case examples only Potentially expensive Potential damage to the blade Health and safety issues for workers |
Duration of Icing Delay (s) | ||
---|---|---|
Temperature (°C) | Horizontal Surface | Tilted Surface |
−5 | >1800 | >1800 |
−10 | 1380 ± 30 | >1800 |
−15 | 210 ± 25 | 870 ± 42 |
Matrix | Ice Adhesion Measurement Approach | Ice Adhesion Strength | Icephobic Durability | Mechanical Properties | CA/CAH | Reference |
---|---|---|---|---|---|---|
ZnO/polydimethylsiloxane | N/A | N/A | Icing delay time: at −15° is 210 ± 25 s. After freezing and 20 thawing cycles (FTC), the CA remained >150° | N/A | CA: 159.5° | [70] |
SiO2/silicone rubber coating | Accumulated ice of the samples with higher surface hydrophobicity reduced within 100 s | N/A | N/A | N/A | CA: 165.5° ± 2.7° | [72] |
Fluorinated PDMS (F-PDMS)/silica | Centrifuge method | Below 100 kPa | After erosion, the WCA of F-PDMS/silica coatings decreased from 157° to 151° | N/A | CA: 157° CAH: 2 ± 0.6° | [73] |
ZnO and SiO2 nanoparticles in PDMS | Lab-made device | No ice was created on ZnO/SiO2 coating | After 10 wear cycles, CA decreased from 153° to 141° | N/A | CA: 153° | [75] |
Mixture of SiO2, E51, PDMS, and ethyl acetate | N/A | N/A | The coating exhibited a WCA of 148.82° and 150.02° after 100 icing/de-icing cycles | Interfacial strength of coating/substrate with a tensile machine: 7.68 MPa | CA: 158.1° CAH: 7.2° | [74] |
Coating | WCA/CAH | Temperature (°C) | Ice Adhesion (kPa) | Icing/De-Icing Cycles | Reference |
---|---|---|---|---|---|
PDMS coatings infused with Si oil in the presence of a Pt catalyst | CA: 118° | −10 | 50 | N/A | [79] |
SLIPS coating with gland-like storage | AA/RA 1: 75.1°/15.0° to 80.2°/12.0° | −18 | 46.2 to 18.0 | 40.8 kPa after 20 cycles | [80] |
Silicone resins cured with UV light, combined with silicone oil | CA 100° | −15 | <10 | <50 kPa after 7 cycles | [81] |
Introducing a solid lubricant in an inherently hydrophobic fluorinated silicone rubber | CA: 98° | −20 | 38.5 | 44.1 kPa after 15 cycles | [83] |
SLIPS-coated aluminum surface | CAH: 2 ± 1 | −10, −20 | 15.6 ± 3.6 | N/A | [84] |
Perfluorotripentylamine, kerosene, and silicon oil within the superhydrophobic surface | CA: 162° | −15, −20 | N/A | N/A | [85] |
Superhydrophobic MN-surface modified with PDMS | CA: 104° | −10 | 22 ± 5 | 81 kPa after 15 cycles | [86] |
Coating | Ice Adhesion Measurement Approach | Ice Adhesion Strength (τice) (kPa) | Icephobic Durability | Mechanical Properties | Weathering Resistance | Ref. |
---|---|---|---|---|---|---|
PDMS/interfacial slippage | A custom-built apparatus to test τice | <0.2 | τice after 5000 abrasion cycles (ASTM D4060), acid and base treatment, 100 cycles of icing/de-icing, thermal cycling, accelerated corrosion, and facing Michigan wintery climate more than 4 months: <10 kPa | Elongation at break: >1000% | N/A | [26] |
V-PDMS-h-PDMS/t-PDMS gels | A custom-built apparatus to test τice | 5.2 | Shear modulus: 10–100 kPa | τice following 1000 abrasion cycles using 400-grit sandpaper: <10 kPa | N/A | [91] |
3D porous sandwich-like PDMS sponges | Vertical shear test using an Instron mechanical testing system equipped with a homemade cooling system | 0.9 | τice after 25 icing/de-icing cycles: 1 kPa | Elastic modulus: 0.1–2.5 MPa | N/A | [95] |
PDMS-b-PFA | A universal testing apparatus equipped with a 100 N load cell in a pull-off mode for τice | 17 | N/A | N/A | N/A | [111] |
A custom-built cooling stage in pull and push mode to test τice | 187 | |||||
PMTFPS–b-polyacrylate | A custom-built cooling stage in pull and push mode to test τice | 301 | N/A | N/A | N/A | [115] |
PDMS-b-(PMAPOSS-b-PFMA)2 | A custom-built cooling stage in pull and push mode to test τice | 264 | N/A | N/A | N/A | [116] |
PMHS–xFMA, x = 6, 13, 17 | A custom-built cooling stage in pull and push mode to test τice | 188 | N/A | N/A | N/A | [117] |
F-POSS-SiH | A custom-built cooling stage in pull and push mode to test τice | 3.8 | τice following 15 icing/de-icing cycles: approx. 30 kPa | N/A | N/A | [118] |
PMHS-13FMA-VTES | A custom-built cooling stage in pull and push mode to test τice | 83 | N/A | N/A | N/A | [66] |
Branched PDMS co-crosslinked with F5-POSS-H3 | A custom-built cooling stage in pull and push mode to test τice | 19.7 | τicefollowing 30 icing/de-icing cycles, and after 1600 abrasion cycles (400-grit sandpaper, 200 g weight, 4.9 kPa pressure at −15 °C): <50 kPa | N/A | N/A | [119] |
PDMS-b-(PFMA-SH)2 | A custom-built cooling stage in pull and push mode to test τice | 210 | N/A | N/A | N/A | [152] |
PMAPOSS-b-P17FMA-SH | A custom-built cooling stage in pull and push mode to test τice | 105 | N/A | N/A | N/A | [120] |
SILIKOPON® EF&ED-amino-functional silane-curing agent/flurosilicon additive | Push off test | 94 | N/A | Tensile strength: 2–7 MPa; Elastic modulus: 1–2 GPa; elongation at break: 3.3–3.6% | Gloss index before and after UV exposure: 80.3, 75.8 GU | [159] |
SILIKOPON® ED-dually functionalized polysiloxanes | A universal testing apparatus to test τice | 55 | N/A | N/A | N/A | [165] |
Polyacrylate-b-PDMS or polyacrylate-g-PDMS | A universal testing machine equipped with a 100 N load cell in a pull-off mode for τice | 22–45 | N/A | N/A | N/A | [49] |
PDMS-MPI | Vertical shear test using an Instron mechanical testing system equipped with a homemade cooling system | 37 | τice after 30 icing/de-icing cycles: approx. 52.2 kPa | Young’s modulus: 0.28–20.71 MPa Elongation at break: over 200%; rapid self-healing capacity with more than 80% within 45 min at RT | N/A | [67] |
Coating | Ice Adhesion Measurement Approach | Ice Adhesion Strength | Hydrophobicity Durability | Mechanical Properties | CA/HCA | Reference |
---|---|---|---|---|---|---|
Fluorocarbon complemented by TiO2, SiO2, and micro/nanocomposite particles | 76 kPa | 107–157 kPa | Freezing delay of 1601.4 s | Erosion resistance | CA: > 150° | [180] |
Perfluoropolyether/ZnO | Shear force de-icing test | 0.6–1.36 N | delays icing time reached 107.1 s | N/A | CA: 158° | [179] |
Fluorinated polydopamine (f-PDA) | Anti-icing test | No ice accumulated on the surface | Remained intact after 200 cycles at −30 to 210 °C | Flexural strength: 823.1 MPa | CA: 93.2° | [181] |
Porous superhydrophobic PVDF | Climatic chamber (spraying supercooled water droplets) | The water droplets rapidly slide off the surface | N/A | N/A | CA: 156 ± 1.9 | [185] |
PVDF-PDMS-SiO2 | N/A | N/A | Air weathering for 15 days; WCA: 162.7–158.1° | N/A | CA: 162.7° | [186] |
PVDF (MPVDF)/epoxy resin composites (SMECC) | N/A | N/A | Exposure to UV light for several days while maintaining superhydrophobicity: WCA > 158° | N/A | CA: approx. 158° | [187] |
Coating | Ice Adhesion Measurement Approach | Ice Adhesion Strength | Hydrophobicity Durability | Mechanical Properties | CA/HCA | Reference |
---|---|---|---|---|---|---|
PU-PMMA | N/A | N/A | It can be superhydrophobicity after 200 friction cycles | N/A | N/A | [193] |
CNT/WPU | N/A | N/A | The electrothermal film can start working at −35 °C and heated to 35 °C for 5 min | Endures 100,000 bending cycles (at 240°) with a resistance variation of 3.17% and withstands repeated stretching of 2.0% strain along the length direction. | N/A | [194] |
Cellulose-reinforced Polyurethane | N/A | N/A | N/A | Erosion rate: 20 (×10−3 mm3·g−1) | N/A | [195] |
F-PU/SiO2 | N/A | N/A | Can maintain superhydrophobicity after 750 friction cycles: WCA > 145° | N/A | CA: 165° | [196] |
PDMS-silane and PU coatings featuring varying crosslinking densities | N/A | τice as low as 0.2 kPa | after 5000 abrasion and 100 icing/de-icing cycles, τice was 9 ± 2 kPa | N/A | N/A | [202] |
Coating | Ice Adhesion Measurement Approach | Ice Adhesion Strength (kPa) | Hydrophobicity Durability | Mechanical Properties | CA/HCA | Reference |
---|---|---|---|---|---|---|
Epoxy/ZnO | N/A | N/A | Polish with 2000# sandpaper. By increasing friction distance, the contact angle is reduced to 132° | The friction coefficient of the EZZ surface is >the ZZ surface | CA: 163° | [209] |
Carbon fiber/epoxy resin | Push off | 52–75 | Increasing abrasion length leads to an enhanced CA from 145° to 152° | N/A | CA: 155° | [210] |
A hybrid of Epoxy/SiO2/HDTMS/kaolin nanocomposite and electro-thermal layer (epoxy/Ag-Cu/MWCNTs) | Pull-off | Adhesion strength < on glass (0.01 MPa for coatings with 0.2 mL HDTMS) | its superhydrophobicity for 240 wear test cycles (CA: 135.3°) | N/A | CA: 156.3° | [211] |
Epoxy/ZnO | N/A | N/A | The 2400× abrasion removed the rough surface; minimum effect on the ZnO/ER coating | N/A | CA: 155 ± 2° | [213] |
Fluorinated epoxy resin/carbon/PTFE particles | Dynamic anti-icing tests | 2× higher than the neat sample | CA is still above 150° after 100 cycles of tape peeling and abrasion | N/A | CA: ˃155° | [214] |
Epoxy resin/GNP/3 different silane coupling agents | Pull-off | 9 ± 3 kPa | 1000 cycle abrasion times with 1 kg load, mass loss: 39 ± 5, mg and WCA would be increased | N/A | HCA: 25–32° | [215] |
Modified epoxr resin using polytetrafluoroethylene (PTFE) nanoparticles | Custom-built goniometer | 30 kPa | The ice detachment strength remained within a range of 27.5 kPa (mean value) and 11.4 kPa (deviation) over 10 cycles. | N/A | CA: 154° | [217] |
Epoxy/OSS | Universal tensile testing machine Zwick/Roel Z050 | 186–265 kPa | 100 icing/de-icing cycles, decrease 5–10% in WCA | N/A | CA: 89 ± 1 to 103 ± 0° | [218] |
Hybrid Approach | Advantages | Limitations | Performance Metrics |
---|---|---|---|
Electrothermal |
|
|
|
Photothermal |
|
|
|
Magnetothermal |
|
|
|
Electromechanical |
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minoofar, G.; Kandeloos, A.J.; Koochaki, M.S.; Momen, G. Progress in Icephobic Coatings for Wind Turbine Protection: Merging Chemical Innovation with Practical Implementation. Crystals 2025, 15, 139. https://doi.org/10.3390/cryst15020139
Minoofar G, Kandeloos AJ, Koochaki MS, Momen G. Progress in Icephobic Coatings for Wind Turbine Protection: Merging Chemical Innovation with Practical Implementation. Crystals. 2025; 15(2):139. https://doi.org/10.3390/cryst15020139
Chicago/Turabian StyleMinoofar, Ghazal, Amirhossein Jalali Kandeloos, Mohammad Sadegh Koochaki, and Gelareh Momen. 2025. "Progress in Icephobic Coatings for Wind Turbine Protection: Merging Chemical Innovation with Practical Implementation" Crystals 15, no. 2: 139. https://doi.org/10.3390/cryst15020139
APA StyleMinoofar, G., Kandeloos, A. J., Koochaki, M. S., & Momen, G. (2025). Progress in Icephobic Coatings for Wind Turbine Protection: Merging Chemical Innovation with Practical Implementation. Crystals, 15(2), 139. https://doi.org/10.3390/cryst15020139