Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (119)

Search Parameters:
Keywords = hyperthermia heating systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8258 KB  
Article
Biomedical Applications of Chitosan-Coated Gallium Iron Oxide Nanoparticles GaxFe(3−x)O4 with 0 ≤ x ≤ 1 for Magnetic Hyperthermia
by Marta Orzechowska, Urszula Klekotka, Magdalena Czerniecka, Adam Tylicki, Dmytro Soloviov, Arkadiusz Miaskowski and Katarzyna Rećko
Molecules 2026, 31(1), 177; https://doi.org/10.3390/molecules31010177 - 2 Jan 2026
Viewed by 383
Abstract
Nanoparticles based on gallium ferrite are explored as potential agents for magnetic fluid hyperthermia due to their magnetic performance and biocompatibility. In this study, GaxFe3−xO4 systems (0 ≤ x ≤ 1) were synthesized by co-precipitation of iron chlorides, [...] Read more.
Nanoparticles based on gallium ferrite are explored as potential agents for magnetic fluid hyperthermia due to their magnetic performance and biocompatibility. In this study, GaxFe3−xO4 systems (0 ≤ x ≤ 1) were synthesized by co-precipitation of iron chlorides, with part of the series modified by a chitosan shell. Structural analysis confirmed single-phase formation across the studied range, while microscopy revealed irregular morphology, broad size distribution, and aggregation into mass-fractal-like assemblies. Chitosan was observed to coat groups of particles rather than single crystallites. Under an alternating magnetic field, all samples exhibited efficient heating, with specific absorption rate values generally increasing with gallium content. The composition Ga0.73Fe2.27O4 showed the highest SAR—83.4 ± 2.2 W/g at 2.8 mg/mL, 532 kHz, 15.3 kA/m, and SAR values rose with decreasing concentration. Cytotoxicity assays without magnetic activation indicated no harmful effect, while chitosan-coated nanoparticles enhanced fibroblast viability and lowered metabolic activity of HeLa cells. Higher Ga content (x = 0.66) combined with chitosan modification was identified as optimal for hyperthermia. The results demonstrate the biomedical potential of these nanoparticles, while emphasizing the need to reduce shape heterogeneity, aggregation, and sedimentation for improved performance. Full article
Show Figures

Figure 1

33 pages, 3044 KB  
Systematic Review
Temperature-Dependent Effects of Induced Hyperthermia, Including Whole-Body Hyperthermia, on the Hallmarks of Cancer: A Systematic Review
by Ivana Gorbaslieva, Tom Quisenaerts, Johannes J. P. M. Bogers, Marc Peeters, Vera Saldien and Dirk Ysebaert
Cancers 2025, 17(23), 3824; https://doi.org/10.3390/cancers17233824 - 28 Nov 2025
Viewed by 1224
Abstract
Background/Objectives: Cancer’s complexity can be rationalized through the “hallmarks of cancer,” which define the key biological capabilities driving malignancy. Induced hyperthermia—an adjunctive therapy that elevates body temperature above the normal setpoint for a defined period—has been explored for its modulatory effects on [...] Read more.
Background/Objectives: Cancer’s complexity can be rationalized through the “hallmarks of cancer,” which define the key biological capabilities driving malignancy. Induced hyperthermia—an adjunctive therapy that elevates body temperature above the normal setpoint for a defined period—has been explored for its modulatory effects on these hallmarks. This systematic review aims to evaluate the effects and mechanisms of induced hyperthermia on tumor cells through the established hallmarks of cancer framework. Methods: A systematic search following the Cochrane guidelines and PRISMA assessment tool was conducted in PubMed and Cochrane Library (2000–2025) to identify reviews on the effects of induced hyperthermia on cancer hallmarks. Studies’ predefined inclusion criteria were independently evaluated by two external teams and graded using PRISMA standards. Results: From the 2015 records screened, 103 studies met the inclusion criteria. Evidence indicates that induced hyperthermia modulates seven of the ten cancer hallmarks. The most well-supported mechanisms of action include (1) the immune system activation (39–41 °C)—enhancing antigen presentation, activating innate/adaptive immune cells, promoting tumor infiltration—and (2) genome instability and mutation (41 °C)—impairing DNA repair pathways and increasing tumor vulnerability. Both hallmarks provide evidence clarifying the mechanistic pathways through which induced hyperthermia exerts its effects. Conclusions: Induced hyperthermia exerts multifaceted, temperature-dependent effects on cancer biology, predominantly through immune activation and genomic destabilization. While it enhances the therapeutic sensitivity of other treatment modalities (e.g., chemotherapy, radiotherapy) and antitumor responses, excessive heating may induce immune suppression and thermotolerance. Optimizing temperature parameters and identifying biomarkers are essential for integrating hyperthermia into targeted and multimodal cancer therapies. Full article
(This article belongs to the Collection Hyperthermia in Cancer Therapy)
Show Figures

Figure 1

30 pages, 2551 KB  
Article
Magnetohydrodynamic Flow and Transport Behaviors of Blood-Based Ternary Nanofluids in Stenosed Arteries with Axial Symmetry: Effects of Thermal Radiation and Caputo Fractional Derivatives
by Ji-Huan He, Magaji Yunbunga Adamu, Isah Abdullahi, Nuo Xu and Chun-Hui He
Symmetry 2025, 17(12), 2024; https://doi.org/10.3390/sym17122024 - 25 Nov 2025
Cited by 1 | Viewed by 398
Abstract
The present study investigates the magnetohydrodynamic (MHD) flow characteristics of a blood-based ternary nanofluid (Au/Cu/Al2O3-blood) in stenosed arteries, with a focus on symmetry-inspired modeling rooted in the axial symmetry of arterial geometry and the symmetric distribution of external physical [...] Read more.
The present study investigates the magnetohydrodynamic (MHD) flow characteristics of a blood-based ternary nanofluid (Au/Cu/Al2O3-blood) in stenosed arteries, with a focus on symmetry-inspired modeling rooted in the axial symmetry of arterial geometry and the symmetric distribution of external physical fields (magnetic field, thermal radiation). The findings offer significant insights into the realm of hyperthermia therapy and targeted drug delivery within the domain of biomedical engineering. A mathematical model is established under a cylindrical coordinate system (consistent with arterial axial symmetry), integrating key physical effects (thermal radiation, chemical reactions, viscous dissipation, body acceleration) and fractional-order dynamics via Caputo derivatives—while ensuring the symmetry of governing equations in time and space. The numerical solutions for velocity and temperature profiles are obtained using the Laplace transform and Concentrated Matrix-Exponential (CME) method, a technique that preserves symmetric properties during the solution process. The results of the study indicate the following: The Hartmann number, which is increased, has been shown to reduce axial velocity due to the Lorentz force, thereby maintaining radial symmetry. Furthermore, thermal radiation has been demonstrated to raise fluid temperature, a critical factor in heat-based therapies, with the temperature field evolving symmetrically. In addition, it has been observed that ternary nanoparticles outperform single and binary systems in heat and mass transfer via symmetric dispersion. This work contributes to the existing body of knowledge by integrating symmetry principles into the study of fractional dynamics, electromagnetic fields, and body acceleration modeling. It establishes a comprehensive biomedical flow framework. It is imperative that future research explore pulsatile flow under symmetric boundaries and validate the model through experimental means. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

32 pages, 2523 KB  
Article
Hybrid Nanofluid Flow and Heat Transfer in Inclined Porous Cylinders: A Coupled ANN and Numerical Investigation of MHD and Radiation Effects
by Muhammad Fawad Malik, Reem Abdullah Aljethi, Syed Asif Ali Shah and Sidra Yasmeen
Symmetry 2025, 17(11), 1998; https://doi.org/10.3390/sym17111998 - 18 Nov 2025
Viewed by 595
Abstract
This study investigates the thermal characteristics of two hybrid nanofluids, single-walled carbon nanotubes with titanium dioxide (SWCNTTiO2) and multi-walled carbon nanotubes with copper (MWCNTCu [...] Read more.
This study investigates the thermal characteristics of two hybrid nanofluids, single-walled carbon nanotubes with titanium dioxide (SWCNTTiO2) and multi-walled carbon nanotubes with copper (MWCNTCu), as they flow over an inclined, porous, and longitudinally stretched cylindrical surface with kerosene as the base fluid. The model takes into consideration all of the consequences of magnetohydrodynamic (MHD) effects, thermal radiation, and Arrhenius-like energy of activation. The outcomes of this investigation hold practical significance for energy storage systems, nuclear reactor heat exchangers, electronic cooling devices, biomedical hyperthermia treatments, oil and gas transport processes, and aerospace thermal protection technologies. The proposed hybrid ANN–numerical framework provides an effective strategy for optimizing the thermal performance of hybrid nanofluids in advanced thermal management and energy systems. A set of coupled ordinary differential equations is created by applying similarity transformations to the governing nonlinear partial differential equations that reflect conservation of mass, momentum, energy, and species concentration. The boundary value problem solver bvp4c, which is based in MATLAB (R2020b), is used to solve these equations numerically. The findings demonstrate that, in comparison to the MWCNTCu/kerosene nanofluid, the SWCNTTiO2/kerosene hybrid nanofluid improves the heat transfer rate (Nusselt number) by up to 23.6%. When a magnetic field is applied, velocity magnitudes are reduced by almost 15%, and the temperature field is enhanced by around 12% when thermal radiation is applied. The impact of important dimensionless variables, such as the cylindrical surface’s inclination angle, the medium’s porosity, the magnetic field’s strength, the thermal radiation parameter, the curvature ratio, the activation energy, and the volume fraction of nanoparticles, is investigated in detail using a parametric study. According to the comparison findings, at the same flow and thermal boundary conditions, the SWCNTTiO2/kerosene hybrid nanofluid performs better thermally than its MWCNTCu/kerosene counterpart. These results offer important new information for maximizing heat transfer in engineering systems with hybrid nanofluids and inclined porous geometries under intricate physical conditions. With its high degree of agreement with numerical results, the ANN model provides a computationally effective stand-in for real-time thermal system optimization. Full article
(This article belongs to the Special Issue Integral/Differential Equations and Symmetry)
Show Figures

Figure 1

32 pages, 5875 KB  
Systematic Review
Thermally Conductive Biopolymers in Regenerative Medicine and Oncology: A Systematic Review
by Ivett Poma-Paredes, Oscar Vivanco-Galván, Darwin Castillo-Malla and Yuliana Jiménez-Gaona
Pharmaceuticals 2025, 18(11), 1708; https://doi.org/10.3390/ph18111708 - 11 Nov 2025
Viewed by 661
Abstract
Background: Minimally invasive hyperthermia and regenerative therapies require materials that deliver precise, localized heat without compromising biocompatibility. Most conventional polymers are thermally insulating and challenging to control in vivo, motivating this review. Objectives: We aimed to (i) examine the use of thermally enhanced [...] Read more.
Background: Minimally invasive hyperthermia and regenerative therapies require materials that deliver precise, localized heat without compromising biocompatibility. Most conventional polymers are thermally insulating and challenging to control in vivo, motivating this review. Objectives: We aimed to (i) examine the use of thermally enhanced biopolymers in hyperthermia-based therapies, (ii) appraise evidence from clinical and preclinical studies, (iii) identify and classify principal applications in regenerative medicine. Methods: A PRISMA-guided systematic review (2020–2025) with predefined inclusion/exclusion criteria was conducted and complemented by a bibliometric analysis using VOSviewer for mapping and visualization. Results: Modifying biopolymers—via functionalization with photothermal or magnetic nanoagents (Au; Fe2O3/Fe3O4/CoFe2O4; CuS; Ag; MXenes, e.g., Nb2C), crosslinking strategies, and hybrid formulations—significantly increased thermal conductivity, enabling localized hyperthermia and controlled drug release. In vitro and in vivo studies showed that europium-doped iron oxide nanoparticles embedded in chitosan generated heat efficiently while sparing healthy tissues, underscoring the need to balance biocompatibility and thermal performance. Hydrogel systems enriched with carbon nanomaterials (graphene, carbon nanotubes) and matrices such as GelMA, PNIPAM, hyaluronic acid, and PLA/PLGA demonstrated tissue compatibility and effective thermal behavior; graphene was compatible with neural tissue without inducing inflammation. Conclusions: Thermally conductive biopolymers show growing potential for oncology and regenerative medicine. The evidence supports further academic and interdisciplinary research to optimize safety, performance, and translational pathways. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

45 pages, 2323 KB  
Review
Magnetic Hyperthermia with Iron Oxide Nanoparticles: From Toxicity Challenges to Cancer Applications
by Ioana Baldea, Cristian Iacoviță, Raul Andrei Gurgu, Alin Stefan Vizitiu, Vlad Râzniceanu and Daniela Rodica Mitrea
Nanomaterials 2025, 15(19), 1519; https://doi.org/10.3390/nano15191519 - 4 Oct 2025
Cited by 1 | Viewed by 5348
Abstract
Iron oxide nanoparticles (IONPs) have emerged as key materials in magnetic hyperthermia (MH), a minimally invasive cancer therapy capable of selectively inducing apoptosis, ferroptosis, and other cell death pathways while sparing surrounding healthy tissue. This review synthesizes advances in the design, functionalization, and [...] Read more.
Iron oxide nanoparticles (IONPs) have emerged as key materials in magnetic hyperthermia (MH), a minimally invasive cancer therapy capable of selectively inducing apoptosis, ferroptosis, and other cell death pathways while sparing surrounding healthy tissue. This review synthesizes advances in the design, functionalization, and biomedical application of magnetic nanoparticles (MNPs) for MH, highlighting strategies to optimize heating efficiency, biocompatibility, and tumor targeting. Key developments include tailoring particle size, shape, and composition; doping with metallic ions; engineering multicore nanostructures; and employing diverse surface coatings to improve colloidal stability, immune evasion, and multifunctionality. We discuss preclinical and clinical evidence for MH, its integration with chemotherapy, radiotherapy, and immunotherapy, and emerging theranostic applications enabling simultaneous imaging and therapy. Special attention is given to the role of MNPs in immunogenic cell death induction and metastasis prevention, as well as novel concepts for circulating tumor cell capture. Despite promising results in vitro and in vivo, clinical translation remains limited by insufficient tumor accumulation after systemic delivery, safety concerns, and a lack of standardized treatment protocols. Future progress will require interdisciplinary innovations in nanomaterial engineering, active targeting technologies, and real-time treatment monitoring to fully integrate MH into multimodal cancer therapy and improve patient outcomes. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

19 pages, 2374 KB  
Article
Magnetothermal Energy Conversion of Polydopamine-Coated Iron Oxide Ferrogels Under High-Frequency Rotating Magnetic Fields
by Jakub Musiał, Artur Jędrzak, Rafał Bielas and Andrzej Skumiel
Energies 2025, 18(16), 4291; https://doi.org/10.3390/en18164291 - 12 Aug 2025
Viewed by 746
Abstract
This study provides a comparison between magnetic-to-thermal energy conversion efficiency in liquid and gel phases under high-frequency magnetic fields. Magnetite cores (11 ± 2 nm) were tested as water-based ferrofluids and as 5 wt% agar ferrogels, both with and without a biocompatible polydopamine [...] Read more.
This study provides a comparison between magnetic-to-thermal energy conversion efficiency in liquid and gel phases under high-frequency magnetic fields. Magnetite cores (11 ± 2 nm) were tested as water-based ferrofluids and as 5 wt% agar ferrogels, both with and without a biocompatible polydopamine (PDA) shell. A custom two-phase coil switched between rotating (RMF) and alternating (AMF) modes, enabling phase- and coating-dependent effects to be measured at identical field strengths and frequencies (100–300 kHz, 1–4 kA/m). Across all conditions, RMF generated 1.7–2.1 times more specific loss power (SLP) than AMF, and moving from the liquid to the gel phase reduced SLP by 5–8%, indicating that heating is controlled by Néel relaxation with negligible Brownian contribution. SLP rose with magnetic-field amplitude according to a power law, while hysteretic losses remained minimal. PDA improved colloidal stability and biocompatibility without harming the heating performance, lowering SLP by <17%. Within Brezovich limits, the system still exceeded therapeutic hyperthermia thresholds. Thus, in this iron-oxide/PDA system, neither medium viscosity nor the PDA shell’s non-magnetic mass significantly affects thermal energy output, an important finding for translating laboratory calorimetry data into reliable, application-oriented modelling for magnetic hyperthermia. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

18 pages, 4279 KB  
Article
Chemophotothermal Combined Therapy with 5-Fluorouracil and Branched Gold Nanoshell Hyperthermia Induced a Reduction in Tumor Size in a Xenograft Colon Cancer Model
by Sarah Eliuth Ochoa-Hugo, Karla Valdivia-Aviña, Yanet Karina Gutiérrez-Mercado, Alejandro Arturo Canales-Aguirre, Verónica Chaparro-Huerta, Adriana Aguilar-Lemarroy, Luis Felipe Jave-Suárez, Mario Eduardo Cano-González, Antonio Topete, Andrea Molina-Pineda and Rodolfo Hernández-Gutiérrez
Pharmaceutics 2025, 17(8), 988; https://doi.org/10.3390/pharmaceutics17080988 - 30 Jul 2025
Cited by 2 | Viewed by 1579
Abstract
Background/Objectives: The heterogeneity of cancer disease and the frequent ineffectiveness and resistance observed with currently available treatments highlight the importance of developing new antitumor therapies. The properties of gold nanoparticles, such as their photon-energy heating, are attractive for oncology therapy; this can [...] Read more.
Background/Objectives: The heterogeneity of cancer disease and the frequent ineffectiveness and resistance observed with currently available treatments highlight the importance of developing new antitumor therapies. The properties of gold nanoparticles, such as their photon-energy heating, are attractive for oncology therapy; this can be effective and localized. The combination of chemotherapy and hyperthermia is promising. Our aim was to evaluate the combination therapy of photon hyperthermia with 5-fluorouracil (5-FU) both in vitro and in vivo. Methods: This study evaluated the antitumor efficacy of a combined chemo-photothermal therapy using 5-fluorouracil (5-FU) and branched gold nanoshells (BGNSs) in a colorectal cancer model. BGNSs were synthesized via a seed-mediated method and characterized by electron microscopy and UV–vis spectroscopy, revealing an average diameter of 126.3 nm and a plasmon resonance peak at 800 nm, suitable for near-infrared (NIR) photothermal applications. In vitro assays using SW620-GFP colon cancer cells demonstrated a ≥90% reduction in cell viability after 24 h of combined treatment with 5-FU and BGNS under NIR irradiation. In vivo, xenograft-bearing nude mice received weekly intratumoral administrations of the combined therapy for four weeks. The group treated with 5-FU + BGNS + NIR exhibited a final tumor volume of 0.4 mm3 on day 28, compared to 1010 mm3 in the control group, corresponding to a tumor growth inhibition (TGI) of 100.74% (p < 0.001), which indicates not only complete inhibition of tumor growth but also regression below the initial tumor volume. Thermographic imaging confirmed that localized hyperthermia reached 45 ± 0.5 °C at the tumor site. Results: These findings suggest that the combination of 5-FU and BGNS-mediated hyperthermia may offer a promising strategy for enhancing therapeutic outcomes in patients with colorectal cancer while potentially minimizing systemic toxicity. Conclusions: This study highlights the potential of integrating nanotechnology with conventional chemotherapy for more effective and targeted cancer treatment. Full article
(This article belongs to the Special Issue Advanced Nanotechnology for Combination Therapy and Diagnosis)
Show Figures

Graphical abstract

19 pages, 3731 KB  
Article
Electric Field Measurement in Radiative Hyperthermia Applications
by Marco Di Cristofano, Luca Lalli, Giorgia Paglialunga and Marta Cavagnaro
Sensors 2025, 25(14), 4392; https://doi.org/10.3390/s25144392 - 14 Jul 2025
Viewed by 1126
Abstract
Oncological hyperthermia (HT) is a medical technique aimed at heating a specific region of the human body containing a tumour. The heat makes the tumour cells more sensitive to the cytotoxic effects of radiotherapy and chemotherapy. Electromagnetic (EM) HT devices radiate a single-frequency [...] Read more.
Oncological hyperthermia (HT) is a medical technique aimed at heating a specific region of the human body containing a tumour. The heat makes the tumour cells more sensitive to the cytotoxic effects of radiotherapy and chemotherapy. Electromagnetic (EM) HT devices radiate a single-frequency EM field that induces a temperature increase in the treated region of the body. The typical radiative HT frequencies are between 60 and 150 MHz for deep HT applications, while 434 MHz and 915 MHz are used for superficial HT. The input EM power can reach up to 2000 W in deep HT and 250 W in superficial applications, and the E-field should be linearly polarized. This study proposes the development and use of E-field sensors to measure the distribution and evaluate the polarization of the E-field radiated by HT devices inside equivalent phantoms. This information is fundamental for the validation and assessment of HT systems. The sensor is constituted by three mutually orthogonal probes. Each probe is composed of a dipole, a diode, and a high-impedance transmission line. The fundamental difference in the operability of this sensor with respect to the standard E-field square-law detectors lies in the high-power values of the considered EM sources. Numerical analyses were performed to optimize the design of the E-field sensor in the whole radiative HT frequency range and to characterize the sensor behaviour at the power levels of HT. Then the sensor was realized, and measurements were carried out to evaluate the E-field radiated by commercial HT systems. The results show the suitability of the developed sensor to measure the E-field radiated by HT applicators. Additionally, in the measured devices, the linear polarization is evidenced. Accordingly, the work shows that in these devices, a single probe can be used to completely characterize the field distribution. Full article
(This article belongs to the Special Issue Microwaves for Biomedical Applications and Sensing)
Show Figures

Figure 1

16 pages, 6482 KB  
Article
Passive Heat Stimuli as a Systemic Training in Elite Endurance Athletes: A New Strategy to Promote Greater Metabolic Flexibility
by Sergi Cinca-Morros, Martin Burtscher, Fernando Benito-Lopez and Jesús Álvarez-Herms
J. Funct. Morphol. Kinesiol. 2025, 10(2), 220; https://doi.org/10.3390/jfmk10020220 - 7 Jun 2025
Viewed by 3632
Abstract
Objectives: The ability to efficiently regulate body temperature is crucial during endurance activities such as trail running, especially during competitive events in hot conditions. Over the past decade, passive hyperthermia exposure has grown significantly in popularity as a means of improving acclimatization and [...] Read more.
Objectives: The ability to efficiently regulate body temperature is crucial during endurance activities such as trail running, especially during competitive events in hot conditions. Over the past decade, passive hyperthermia exposure has grown significantly in popularity as a means of improving acclimatization and performance in hot environments. The present study aims to compare the physiological changes that occur in a group of professional athletes due to passive sauna exposure (80–90 °C) and their own response to maximal aerobic performance. Methods: Twelve professional trail runners (eight men and four women) were tested in three conditions: (i) baseline; (ii) before; and (iii) after (a) passive dry sauna exposure and (b) a maximal endurance test. In both cases, physiological parameters such as heart rate, tympanic temperature, arterial and muscle oxygen saturation, and blood concentrations of glucose, total cholesterol, high-density lipoprotein (HDL) and hemoglobin were measured. Results: Sauna exposure produced similar trends in cardiovascular and metabolic responses to those occurring during exercise, but at a much lower physiological level. Glucose and HDL levels were both significantly elevated (or tended to be so) after sauna and exercise (p < 0.03 and p < 0.01, respectively). Athletes who mobilized the sum of substrates (glucose and HDL) performed the exercise test faster (r = −0.76; p < 0.004). The response of arterial oxygen saturation (decreased) was similar during sauna and exercise, but opposite at the muscular level (increased during sauna and decreased during exercise). Additionally, inter-individual variability in responses was noted for most of the other parameters, suggesting the existence of ‘responders’ and ‘non-responders’ to thermal stimuli. Conclusions: The physiological responses of trained endurance athletes are moderately impacted by passive sauna use. However, individual changes could be correlated with endurance performance and optimizing individualization. Heat stimuli promote different physiological responses in terms of cardiac function, oxygen kinetics and substrate mobilization, albeit to a lesser extent than exercise. Greater substrate mobilization during maximal endurance exercise was found to be correlated with better performance. Further studies are needed to explore the concepts of metabolic flexibility, as described here, and how heat exposure may improve systemic health and performance. Full article
Show Figures

Figure 1

16 pages, 2512 KB  
Article
Simulation-Based Design and Machine Learning Optimization of a Novel Liquid Cooling System for Radio Frequency Coils in Magnetic Hyperthermia
by Serhat Ilgaz Yöner and Alpay Özcan
Bioengineering 2025, 12(5), 490; https://doi.org/10.3390/bioengineering12050490 - 4 May 2025
Viewed by 1217
Abstract
Magnetic hyperthermia is a promising cancer treatment technique that relies on Néel and Brownian relaxation mechanisms to heat superparamagnetic nanoparticles injected into tumor sites. Under low-frequency magnetic fields, nanoparticles generate localized heat, inducing controlled thermal damage to cancer cells. However, radio frequency coils [...] Read more.
Magnetic hyperthermia is a promising cancer treatment technique that relies on Néel and Brownian relaxation mechanisms to heat superparamagnetic nanoparticles injected into tumor sites. Under low-frequency magnetic fields, nanoparticles generate localized heat, inducing controlled thermal damage to cancer cells. However, radio frequency coils used to generate alternating magnetic fields may suffer from excessive heating, leading to efficiency losses and unintended thermal effects on surrounding healthy tissues. This study proposes novel liquid cooling systems, leveraging the skin effect phenomenon, to improve thermal management and reduce coil size. Finite element method-based simulation studies evaluated coil electrical current and temperature distributions under varying applied frequencies, water flow rates, and cooling microchannel dimensions. A dataset of 300 simulation cases was generated to train a Gaussian Process Regression-based machine learning model. The performance index was also developed and modeled using Gaussian Process Regression, enabling rapid performance prediction without requiring extensive numerical studies. Sensitivity analysis and the ReliefF algorithm were applied for a thorough analysis. Simulation results indicate that the proposed novel liquid cooling system demonstrates higher performance compared to conventional systems that utilize direct liquid cooling, offering a computationally efficient method for pre-manufacturing design optimization of radio frequency coil cooling systems in magnetic hyperthermia applications. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Graphical abstract

29 pages, 3266 KB  
Review
Pitfalls and Challenges in Specific Absorption Rate Evaluation for Functionalized and Coated Magnetic Nanoparticles Used in Magnetic Fluid Hyperthermia
by Nicusor Iacob
Coatings 2025, 15(3), 345; https://doi.org/10.3390/coatings15030345 - 17 Mar 2025
Cited by 2 | Viewed by 2728
Abstract
In recent decades, magnetic hyperthermia (MH) has gained considerable scientific interest in cancer treatment due to its ability to heat tumor tissues deeply localized inside the body. Functionalizing magnetic nanoparticles (MNPs) with vector molecules via specific organic molecules that coat the particle surface [...] Read more.
In recent decades, magnetic hyperthermia (MH) has gained considerable scientific interest in cancer treatment due to its ability to heat tumor tissues deeply localized inside the body. Functionalizing magnetic nanoparticles (MNPs) with vector molecules via specific organic molecules that coat the particle surface has enabled targeting particular tissues, thereby increasing the specificity of MH. MH relies on applying radiofrequency (RF) magnetic fields to a magnetic nanoparticle distribution injected in a tumor tissue. The RF field energy is converted into thermal energy through specific relaxation mechanisms and magnetic hysteresis-driven processes. This increases the tumor tissue temperature over the physiological threshold, triggering a series of cellular apoptosis processes. Additionally, the mechanical effects of low-frequency AC fields on anisotropic MNPs have been shown to be highly effective in disrupting the functional cellular components. From the macroscopic perspective, a crucial parameter measuring the efficiency of magnetic nanoparticle systems in MH is the specific absorption rate (SAR). This parameter is experimentally evaluated by different calorimetric and magnetic techniques and methodologies, which have specific drawbacks and may induce significant errors. From a microscopic perspective, MH relies on localized thermal and kinetic effects in the nanoparticle proximity environment. Studying MH at the cellular level has become a focused research topic in the last decade. In the context of these two perspectives, inevitable questions arise: could the thermal and kinetic effects exhibited at the cellular scale be linked by the macroscopic SAR parameter, or should we find new formulas for quantifying them? The present work offers a general perspective of MH, highlighting the experimental pitfalls encountered in SAR evaluation and motivating the necessity of standardizing the devices and protocols involved. It also discusses the challenges that arise in MH performance evaluation at the cellular level. Full article
(This article belongs to the Special Issue Advances of Nanoparticles and Thin Films)
Show Figures

Figure 1

15 pages, 5697 KB  
Article
The Lumped-Parameter Calorimetric Model of an AC Magnetometer Designed to Measure the Heating of Magnetic Nanoparticles
by Mateusz Midura, Waldemar T. Smolik, Przemysław Wróblewski, Damian Wanta, Grzegorz Domański, Xiaohan Hou, Xiaoheng Yan and Mikhail Ivanenko
Appl. Sci. 2025, 15(6), 3199; https://doi.org/10.3390/app15063199 - 14 Mar 2025
Viewed by 1473
Abstract
The assessment of superparamagnetic nanoparticle heating is crucial for effective hyperthermia. AC magnetometry can be used to determine the specific absorption rate (SAR) of nanoparticles, assuming proper calorimetric calibration. We show that an AC magnetometer developed in our laboratory can be used simultaneously [...] Read more.
The assessment of superparamagnetic nanoparticle heating is crucial for effective hyperthermia. AC magnetometry can be used to determine the specific absorption rate (SAR) of nanoparticles, assuming proper calorimetric calibration. We show that an AC magnetometer developed in our laboratory can be used simultaneously as a calorimeter for calibrating measurements. An electrical circuit with lumped parameters that are equivalent to the non-adiabatic calorimeter and that incorporates the effects of heat flow from the excitation coil, the surrounding environment, and the sample is presented. Quantitative thermal system identification was performed using global optimization, which fitted the temperature measured by the three fiber-optic probes to the simulated temperature transient curves. The identified model was used to estimate the thermal power generated in the measurement sample using a resistor with a controlled current value. The results demonstrate significant error reduction, particularly at lower heating powers, where external heat transfer becomes more influential. At low heating power values (around 25 mW), the error was reduced from 16.09% to 2.36%, with less pronounced improvements at higher power levels. The model achieved an overall accuracy of less than 2.5% across the 20–200 mW calibration range, a substantial improvement over the corrected-slope method. The value of the true thermal power of nanoparticles can be obtained using the calibrated calorimeter. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

17 pages, 2209 KB  
Review
Heatstroke-Induced Inflammatory Response and Therapeutic Biomarkers
by Piyush Baindara, Aritra Jana, Roy Dinata and Santi M. Mandal
Biomedicines 2025, 13(2), 261; https://doi.org/10.3390/biomedicines13020261 - 21 Jan 2025
Cited by 3 | Viewed by 5664
Abstract
In recent years, heatstroke has become one of the most dangerous illnesses associated with hyperthermia. Hyperthermia is described as an increased body temperature, where there is more heat accrual than dissipation, which happens during environmental heat stress conditions or exhaustive exercise and subsequently [...] Read more.
In recent years, heatstroke has become one of the most dangerous illnesses associated with hyperthermia. Hyperthermia is described as an increased body temperature, where there is more heat accrual than dissipation, which happens during environmental heat stress conditions or exhaustive exercise and subsequently leads to heatstroke. Heatstroke is characterized as a dysfunction of the central nervous system (CNS), associated with neuroinflammation, including utmost hyperthermia, which eventually leads to multiorgan failure. Heatstroke-related fatalities have rapidly increased in the recent past; however, there is still a gap in the understanding of heatstroke and associated outcomes during heatstroke. Especially of note, early diagnosis of heatstroke-related complications is one of the important aspects that need to be addressed. This article reviewed current knowledge about heatstroke and associated inflammatory responses, including neuroinflammation and other clinical complications. Using molecular dynamics simulation analysis of triose phosphate isomerase (a housekeeping enzyme) at different temperatures, we demonstrated how protein structures, and thus their functions, can be varied with temperature increases. Additionally, we discussed therapeutically relevant biomarkers of heatstroke which might be helpful in the early detection of heatstroke possibilities and candidate drug targets to control or minimize heatstroke events. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

41 pages, 3593 KB  
Review
Nanocomposites Based on Iron Oxide and Carbonaceous Nanoparticles: From Synthesis to Their Biomedical Applications
by Mirela Văduva, Andreea Nila, Adelina Udrescu, Oana Cramariuc and Mihaela Baibarac
Materials 2024, 17(24), 6127; https://doi.org/10.3390/ma17246127 - 14 Dec 2024
Cited by 9 | Viewed by 2548
Abstract
Nanocomposites based on Fe3O4 and carbonaceous nanoparticles (CNPs), including carbon nanotubes (CNTs) and graphene derivatives (graphene oxide (GO) and reduced graphene oxide (RGO)), such as Fe3O4@GO, Fe3O4@RGO, and Fe3O4 [...] Read more.
Nanocomposites based on Fe3O4 and carbonaceous nanoparticles (CNPs), including carbon nanotubes (CNTs) and graphene derivatives (graphene oxide (GO) and reduced graphene oxide (RGO)), such as Fe3O4@GO, Fe3O4@RGO, and Fe3O4@CNT, have demonstrated considerable potential in a number of health applications, including tissue regeneration and innovative cancer treatments such as hyperthermia (HT). This is due to their ability to transport drugs and generate localized heat under the influence of an alternating magnetic field on Fe3O4. Despite the promising potential of CNTs and graphene derivatives as drug delivery systems, their use in biological applications is hindered by challenges related to dispersion in physiological media and particle agglomeration. Hence, a solid foundation has been established for the integration of various synthesis techniques for these nanocomposites, with the wet co-precipitation method being the most prevalent. Moreover, the dimensions and morphology of the composite nanoparticles are directly correlated with the value of magnetic saturation, thus influencing the efficiency of the composite in drug delivery and other significant biomedical applications. The current demand for this type of material is related to the loading of a larger quantity of drugs within the hybrid structure of the carrier, with the objective of releasing this amount into the tumor cells. A second demand refers to the biocompatibility of the drug carrier and its capacity to permeate cell membranes, as well as the processes occurring within the drug carriers. The main objective of this paper is to review the synthesis methods used to prepare hybrids based on Fe3O4 and CNPs, such as GO, RGO, and CNTs, and to examinate their role in the formation of hybrid nanoparticles and the correlation between their morphology, the dimensions, and optical/magnetic properties. Full article
(This article belongs to the Special Issue Featured Reviews on Carbon Materials)
Show Figures

Graphical abstract

Back to TopTop