Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = hyperspectral image (HSI) classification (HSIC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 10648 KiB  
Article
Meta-Learning-Integrated Neural Architecture Search for Few-Shot Hyperspectral Image Classification
by Aili Wang, Kang Zhang, Haibin Wu, Haisong Chen and Minhui Wang
Electronics 2025, 14(15), 2952; https://doi.org/10.3390/electronics14152952 - 24 Jul 2025
Viewed by 223
Abstract
In order to address the limitations of the number of label samples in practical accurate classification scenarios and the problems of overfitting and an insufficient generalization ability caused by Few-Shot Learning (FSL) in hyperspectral image classification (HSIC), this paper designs and implements a [...] Read more.
In order to address the limitations of the number of label samples in practical accurate classification scenarios and the problems of overfitting and an insufficient generalization ability caused by Few-Shot Learning (FSL) in hyperspectral image classification (HSIC), this paper designs and implements a neural architecture search (NAS) for a few-shot HSI classification method that combines meta learning. Firstly, a multi-source domain learning framework was constructed to integrate heterogeneous natural images and homogeneous remote sensing images to improve the information breadth of few-sample learning, enabling the final network to enhance its generalization ability under limited labeled samples by learning the similarity between different data sources. Secondly, by constructing precise and robust search spaces and deploying different units at different locations, the classification accuracy and model transfer robustness of the final network can be improved. This method fully utilizes spatial texture information and rich category information of multi-source data and transfers the learned meta knowledge to the optimal architecture for HSIC execution through precise and robust search space design, achieving HSIC tasks with limited samples. Experimental results have shown that our proposed method achieved an overall accuracy (OA) of 98.57%, 78.39%, and 98.74% for classification on the Pavia Center, Indian Pine, and WHU-Hi-LongKou datasets, respectively. It is fully demonstrated that utilizing spatial texture information and rich category information of multi-source data, and through precise and robust search space design, the learned meta knowledge is fully transmitted to the optimal architecture for HSIC, perfectly achieving classification tasks with few-shot samples. Full article
Show Figures

Figure 1

23 pages, 10182 KiB  
Article
HyperSMamba: A Lightweight Mamba for Efficient Hyperspectral Image Classification
by Mengyuan Sun, Liejun Wang, Shaochen Jiang, Shuli Cheng and Lihan Tang
Remote Sens. 2025, 17(12), 2008; https://doi.org/10.3390/rs17122008 - 11 Jun 2025
Viewed by 665
Abstract
Deep learning has recently achieved remarkable progress in hyperspectral image (HSI) classification. Among these advancements, the Transformer-based models have gained considerable attention due to their ability to establish long-range dependencies. However, the quadratic computational complexity of the self-attention mechanism limits its application in [...] Read more.
Deep learning has recently achieved remarkable progress in hyperspectral image (HSI) classification. Among these advancements, the Transformer-based models have gained considerable attention due to their ability to establish long-range dependencies. However, the quadratic computational complexity of the self-attention mechanism limits its application in hyperspectral image classification (HSIC). Recently, the Mamba architecture has shown outstanding performance in 1D sequence modeling tasks owing to its lightweight linear sequence operations and efficient parallel scanning capabilities. Nevertheless, its application in HSI classification still faces challenges. Most existing Mamba-based approaches adopt various selective scanning strategies for HSI serialization, ensuring the adjacency of scanning sequences to enhance spatial continuity. However, these methods lead to substantially increased computational overhead. To overcome these challenges, this study proposes the Hyperspectral Spatial Mamba (HyperSMamba) model for HSIC, aiming to reduce computational complexity while improving classification performance. The suggested framework consists of the following key components: (1) a Multi-Scale Spatial Mamba (MS-Mamba) encoder, which refines the state-space model (SSM) computation by incorporating a Multi-Scale State Fusion Module (MSFM) after the state transition equations of original SSMs. This module aggregates adjacent state representations to reinforce spatial dependencies among local features; (2) our proposed Adaptive Fusion Attention Module (AFAttention) to dynamically fuse bidirectional Mamba outputs for optimizing feature representation. Experiments were performed on three HSI datasets, and the findings demonstrate that HyperSMamba attains overall accuracy of 94.86%, 97.72%, and 97.38% on the Indian Pines, Pavia University, and Salinas datasets, while maintaining low computational complexity. These results confirm the model’s effectiveness and potential for practical application in HSIC tasks. Full article
Show Figures

Figure 1

27 pages, 7948 KiB  
Article
SSUM: Spatial–Spectral Unified Mamba for Hyperspectral Image Classification
by Song Lu, Min Zhang, Yu Huo, Chenhao Wang, Jingwen Wang and Chenyu Gao
Remote Sens. 2024, 16(24), 4653; https://doi.org/10.3390/rs16244653 (registering DOI) - 12 Dec 2024
Cited by 5 | Viewed by 1773
Abstract
How to effectively extract spectral and spatial information and apply it to hyperspectral image classification (HSIC) has been a hot research topic. In recent years, the transformer-based HSIC models have attracted much interest due to their advantages in long-distance modeling of spatial and [...] Read more.
How to effectively extract spectral and spatial information and apply it to hyperspectral image classification (HSIC) has been a hot research topic. In recent years, the transformer-based HSIC models have attracted much interest due to their advantages in long-distance modeling of spatial and spectral features in hyperspectral images (HSIs). However, the transformer-based method suffers from high computational complexity, especially in HSIC tasks that require processing large amounts of data. In addition, the spatial variability inherent in HSIs limits the performance improvement of HSIC. To handle these challenges, a novel Spectral–Spatial Unified Mamba (SSUM) model is proposed, which introduces the State Space Model (SSM) into HSIC tasks to reduce computational complexity and improve model performance. The SSUM model is composed of two branches, i.e., the Spectral Mamba branch and the Spatial Mamba branch, designed to extract the features of HSIs from both spectral and spatial perspectives. Specifically, in the Spectral Mamba branch, a nearest-neighbor spectrum fusion (NSF) strategy is proposed to alleviate the interference caused by the spatial variability (i.e., same object having different spectra). In addition, a novel sub-spectrum scanning (SS) mechanism is proposed, which scans along the sub-spectrum dimension to enhance the model’s perception of subtle spectral details. In the Spatial Mamba branch, a Spatial Mamba (SM) module is designed by combining a 2D Selective Scan Module (SS2D) and Spatial Attention (SA) into a unified network to sufficiently extract the spatial features of HSIs. Finally, the classification results are derived by uniting the output feature of the Spectral Mamba and Spatial Mamba branch, thus improving the comprehensive performance of HSIC. The ablation studies verify the effectiveness of the proposed NSF, SS, and SM. Comparison experiments on four public HSI datasets show the superior of the proposed SSUM. Full article
Show Figures

Graphical abstract

28 pages, 24617 KiB  
Article
Noise-Disruption-Inspired Neural Architecture Search with Spatial–Spectral Attention for Hyperspectral Image Classification
by Aili Wang, Kang Zhang, Haibin Wu, Shiyu Dai, Yuji Iwahori and Xiaoyu Yu
Remote Sens. 2024, 16(17), 3123; https://doi.org/10.3390/rs16173123 - 24 Aug 2024
Cited by 2 | Viewed by 1528
Abstract
In view of the complexity and diversity of hyperspectral images (HSIs), the classification task has been a major challenge in the field of remote sensing image processing. Hyperspectral classification (HSIC) methods based on neural architecture search (NAS) is a current attractive frontier that [...] Read more.
In view of the complexity and diversity of hyperspectral images (HSIs), the classification task has been a major challenge in the field of remote sensing image processing. Hyperspectral classification (HSIC) methods based on neural architecture search (NAS) is a current attractive frontier that not only automatically searches for neural network architectures best suited to the characteristics of HSI data, but also avoids the possible limitations of manual design of neural networks when dealing with new classification tasks. However, the existing NAS-based HSIC methods have the following limitations: (1) the search space lacks efficient convolution operators that can fully extract discriminative spatial–spectral features, and (2) NAS based on traditional differentiable architecture search (DARTS) has performance collapse caused by unfair competition. To overcome these limitations, we proposed a neural architecture search method with receptive field spatial–spectral attention (RFSS-NAS), which is specifically designed to automatically search the optimal architecture for HSIC. Considering the core needs of the model in extracting more discriminative spatial–spectral features, we designed a novel and efficient attention search space. The core component of this innovative space is the receptive field spatial–spectral attention convolution operator, which is capable of precisely focusing on the critical information in the image, thus greatly enhancing the quality of feature extraction. Meanwhile, for the purpose of solving the unfair competition issue in the traditional differentiable architecture search (DARTS) strategy, we skillfully introduce the Noisy-DARTS strategy. The strategy ensures the fairness and efficiency of the search process and effectively avoids the risk of performance crash. In addition, to further improve the robustness of the model and ability to recognize difficult-to-classify samples, we proposed a fusion loss function by combining the advantages of the label smoothing loss and the polynomial expansion perspective loss function, which not only smooths the label distribution and reduces the risk of overfitting, but also effectively handles those difficult-to-classify samples, thus improving the overall classification accuracy. Experiments on three public datasets fully validate the superior performance of RFSS-NAS. Full article
(This article belongs to the Special Issue Recent Advances in the Processing of Hyperspectral Images)
Show Figures

Graphical abstract

23 pages, 40689 KiB  
Article
Multiscale Feature Search-Based Graph Convolutional Network for Hyperspectral Image Classification
by Ke Wu, Yanting Zhan, Ying An and Suyi Li
Remote Sens. 2024, 16(13), 2328; https://doi.org/10.3390/rs16132328 - 26 Jun 2024
Cited by 7 | Viewed by 1757
Abstract
With the development of hyperspectral sensors, the availability of hyperspectral images (HSIs) has increased significantly, prompting advancements in deep learning-based hyperspectral image classification (HSIC) methods. Recently, graph convolutional networks (GCNs) have been proposed to process graph-structured data in non-Euclidean domains, and have been [...] Read more.
With the development of hyperspectral sensors, the availability of hyperspectral images (HSIs) has increased significantly, prompting advancements in deep learning-based hyperspectral image classification (HSIC) methods. Recently, graph convolutional networks (GCNs) have been proposed to process graph-structured data in non-Euclidean domains, and have been used for HSIC. The superpixel segmentation should be implemented first in the GCN-based methods, however, it is difficult to manually select the optimal superpixel segmentation sizes to obtain the useful information for classification. To solve this problem, we constructed a HSIC model based on a multiscale feature search-based graph convolutional network (MFSGCN) in this study. Firstly, pixel-level features of HSIs are extracted sequentially using 3D asymmetric decomposition convolution and 2D convolution. Then, superpixel-level features at different scales are extracted using multilayer GCNs. Finally, the neural architecture search (NAS) method is used to automatically assign different weights to different scales of superpixel features. Thus, a more discriminative feature map is obtained for classification. Compared with other GCN-based networks, the MFSGCN network can automatically capture features and obtain higher classification accuracy. The proposed MFSGCN model was implemented on three commonly used HSI datasets and compared to some state-of-the-art methods. The results confirm that MFSGCN effectively improves accuracy. Full article
(This article belongs to the Special Issue Deep Learning for the Analysis of Multi-/Hyperspectral Images II)
Show Figures

Figure 1

24 pages, 11948 KiB  
Article
Adaptive Learnable Spectral–Spatial Fusion Transformer for Hyperspectral Image Classification
by Minhui Wang, Yaxiu Sun, Jianhong Xiang, Rui Sun and Yu Zhong
Remote Sens. 2024, 16(11), 1912; https://doi.org/10.3390/rs16111912 - 26 May 2024
Cited by 4 | Viewed by 1805
Abstract
In hyperspectral image classification (HSIC), every pixel of the HSI is assigned to a land cover category. While convolutional neural network (CNN)-based methods for HSIC have significantly enhanced performance, they encounter challenges in learning the relevance of deep semantic features and grappling with [...] Read more.
In hyperspectral image classification (HSIC), every pixel of the HSI is assigned to a land cover category. While convolutional neural network (CNN)-based methods for HSIC have significantly enhanced performance, they encounter challenges in learning the relevance of deep semantic features and grappling with escalating computational costs as network depth increases. In contrast, the transformer framework is adept at capturing the relevance of high-level semantic features, presenting an effective solution to address the limitations encountered by CNN-based approaches. This article introduces a novel adaptive learnable spectral–spatial fusion transformer (ALSST) to enhance HSI classification. The model incorporates a dual-branch adaptive spectral–spatial fusion gating mechanism (ASSF), which captures spectral–spatial fusion features effectively from images. The ASSF comprises two key components: the point depthwise attention module (PDWA) for spectral feature extraction and the asymmetric depthwise attention module (ADWA) for spatial feature extraction. The model efficiently obtains spectral–spatial fusion features by multiplying the outputs of these two branches. Furthermore, we integrate the layer scale and DropKey into the traditional transformer encoder and multi-head self-attention (MHSA) to form a new transformer with a layer scale and DropKey (LD-Former). This innovation enhances data dynamics and mitigates performance degradation in deeper encoder layers. The experiments detailed in this article are executed on four renowned datasets: Trento (TR), MUUFL (MU), Augsburg (AU), and the University of Pavia (UP). The findings demonstrate that the ALSST model secures optimal performance, surpassing some existing models. The overall accuracy (OA) is 99.70%, 89.72%, 97.84%, and 99.78% on four famous datasets: Trento (TR), MUUFL (MU), Augsburg (AU), and University of Pavia (UP), respectively. Full article
(This article belongs to the Special Issue Recent Advances in Remote Sensing Image Processing Technology)
Show Figures

Figure 1

22 pages, 8724 KiB  
Article
Hyperspectral Image Classification on Large-Scale Agricultural Crops: The Heilongjiang Benchmark Dataset, Validation Procedure, and Baseline Results
by Hongzhe Zhang, Shou Feng, Di Wu, Chunhui Zhao, Xi Liu, Yuan Zhou, Shengnan Wang, Hongtao Deng and Shuang Zheng
Remote Sens. 2024, 16(3), 478; https://doi.org/10.3390/rs16030478 - 26 Jan 2024
Cited by 11 | Viewed by 4453
Abstract
Over the past few decades, researchers have shown sustained and robust investment in exploring methods for hyperspectral image classification (HSIC). The utilization of hyperspectral imagery (HSI) for crop classification in agricultural areas has been widely demonstrated for its feasibility, flexibility, and cost-effectiveness. However, [...] Read more.
Over the past few decades, researchers have shown sustained and robust investment in exploring methods for hyperspectral image classification (HSIC). The utilization of hyperspectral imagery (HSI) for crop classification in agricultural areas has been widely demonstrated for its feasibility, flexibility, and cost-effectiveness. However, numerous coexisting issues in agricultural scenarios, such as limited annotated samples, uneven distribution of crops, and mixed cropping, could not be explored insightfully in the mainstream datasets. The limitations within these impractical datasets have severely restricted the widespread application of HSIC methods in agricultural scenarios. A benchmark dataset named Heilongjiang (HLJ) for HSIC is introduced in this paper, which is designed for large-scale crop classification. For practical applications, the HLJ dataset covers a wide range of genuine agricultural regions in Heilongjiang Province; it provides rich spectral diversity enriched through two images from diverse time periods and vast geographical areas with intercropped multiple crops. Simultaneously, considering the urgent demand of deep learning models, the two images in the HLJ dataset have 319,685 and 318,942 annotated samples, along with 151 and 149 spectral bands, respectively. To validate the suitability of the HLJ dataset as a baseline dataset for HSIC, we employed eight classical classification models in fundamental experiments on the HLJ dataset. Most of the methods achieved an overall accuracy of more than 80% with 10% of the labeled samples used for training. Furthermore, the advantages of the HLJ dataset and the impact of real-world factors on experimental results are comprehensively elucidated. The comprehensive baseline experimental evaluation and analysis affirm the research potential of the HLJ dataset as a large-scale crop classification dataset. Full article
Show Figures

Figure 1

26 pages, 2291 KiB  
Article
End-to-End Convolutional Network and Spectral-Spatial Transformer Architecture for Hyperspectral Image Classification
by Shiping Li, Lianhui Liang, Shaoquan Zhang, Ying Zhang, Antonio Plaza and Xuehua Wang
Remote Sens. 2024, 16(2), 325; https://doi.org/10.3390/rs16020325 - 12 Jan 2024
Cited by 9 | Viewed by 2574
Abstract
Although convolutional neural networks (CNNs) have proven successful for hyperspectral image classification (HSIC), it is difficult to characterize the global dependencies between HSI pixels at long-distance ranges and spectral bands due to their limited receptive domain. The transformer can compensate well for this [...] Read more.
Although convolutional neural networks (CNNs) have proven successful for hyperspectral image classification (HSIC), it is difficult to characterize the global dependencies between HSI pixels at long-distance ranges and spectral bands due to their limited receptive domain. The transformer can compensate well for this shortcoming, but it suffers from a lack of image-specific inductive biases (i.e., localization and translation equivariance) and contextual position information compared with CNNs. To overcome the aforementioned challenges, we introduce a simply structured, end-to-end convolutional network and spectral–spatial transformer (CNSST) architecture for HSIC. Our CNSST architecture consists of two essential components: a simple 3D-CNN-based hierarchical feature fusion network and a spectral–spatial transformer that introduces inductive bias information. The former employs a 3D-CNN-based hierarchical feature fusion structure to establish the correlation between spectral and spatial (SAS) information while capturing richer inductive bias and more discriminative local spectral-spatial hierarchical feature information, while the latter aims to establish the global dependency among HSI pixels while enhancing the acquisition of local information by introducing inductive bias information. Specifically, the spectral and inductive bias information is incorporated into the transformer’s multi-head self-attention mechanism (MHSA), thus making the attention spectrally aware and location-aware. Furthermore, a Lion optimizer is exploited to boost the classification performance of our newly developed CNSST. Substantial experiments conducted on three publicly accessible hyperspectral datasets unequivocally showcase that our proposed CNSST outperforms other state-of-the-art approaches. Full article
(This article belongs to the Special Issue Recent Advances in Remote Sensing Image Processing Technology)
Show Figures

Graphical abstract

25 pages, 31641 KiB  
Article
A Cross-Channel Dense Connection and Multi-Scale Dual Aggregated Attention Network for Hyperspectral Image Classification
by Haiyang Wu, Cuiping Shi, Liguo Wang and Zhan Jin
Remote Sens. 2023, 15(9), 2367; https://doi.org/10.3390/rs15092367 - 29 Apr 2023
Cited by 19 | Viewed by 2867
Abstract
Hyperspectral image classification (HSIC) is one of the most important research topics in the field of remote sensing. However, it is difficult to label hyperspectral data, which limits the improvement of classification performance of hyperspectral images in the case of small samples. To [...] Read more.
Hyperspectral image classification (HSIC) is one of the most important research topics in the field of remote sensing. However, it is difficult to label hyperspectral data, which limits the improvement of classification performance of hyperspectral images in the case of small samples. To alleviate this problem, in this paper, a dual-branch network which combines cross-channel dense connection and multi-scale dual aggregated attention (CDC_MDAA) is proposed. On the spatial branch, a cross-channel dense connections (CDC) module is designed. The CDC can effectively combine cross-channel convolution with dense connections to extract the deep spatial features of HSIs. Then, a spatial multi-scale dual aggregated attention module (SPA_MDAA) is constructed. The SPA_MDAA adopts dual autocorrelation for attention modeling to strengthen the differences between features and enhance the ability to pay attention to important features. On the spectral branch, a spectral multi-scale dual aggregated attention module (SPE_MDAA) is designed to capture important spectral features. Finally, the spatial spectral features are fused, and the classification results are obtained. The experimental results show that the classification performance of the proposed method is superior to some state-of-the-art methods in small samples and has good generalization. Full article
(This article belongs to the Special Issue Deep Learning for Hyperspectral Image Classification)
Show Figures

Figure 1

27 pages, 1846 KiB  
Article
Nearest Neighboring Self-Supervised Learning for Hyperspectral Image Classification
by Yao Qin, Yuanxin Ye, Yue Zhao, Junzheng Wu, Han Zhang, Kenan Cheng and Kun Li
Remote Sens. 2023, 15(6), 1713; https://doi.org/10.3390/rs15061713 - 22 Mar 2023
Cited by 15 | Viewed by 3231
Abstract
Recently, state-of-the-art classification performance of natural images has been obtained by self-supervised learning (S2L) as it can generate latent features through learning between different views of the same images. However, the latent semantic information of similar images has hardly been exploited by these [...] Read more.
Recently, state-of-the-art classification performance of natural images has been obtained by self-supervised learning (S2L) as it can generate latent features through learning between different views of the same images. However, the latent semantic information of similar images has hardly been exploited by these S2L-based methods. Consequently, to explore the potential of S2L between similar samples in hyperspectral image classification (HSIC), we propose the nearest neighboring self-supervised learning (N2SSL) method, by interacting between different augmentations of reliable nearest neighboring pairs (RN2Ps) of HSI samples in the framework of bootstrap your own latent (BYOL). Specifically, there are four main steps: pretraining of spectral spatial residual network (SSRN)-based BYOL, generation of nearest neighboring pairs (N2Ps), training of BYOL based on RN2P, final classification. Experimental results of three benchmark HSIs validated that S2L on similar samples can facilitate subsequent classification. Moreover, we found that BYOL trained on an un-related HSI can be fine-tuned for classification of other HSIs with less computational cost and higher accuracy than training from scratch. Beyond the methodology, we present a comprehensive review of HSI-related data augmentation (DA), which is meaningful to future research of S2L on HSIs. Full article
Show Figures

Figure 1

21 pages, 8362 KiB  
Article
AI-TFNet: Active Inference Transfer Convolutional Fusion Network for Hyperspectral Image Classification
by Jianing Wang, Linhao Li, Yichen Liu, Jinyu Hu, Xiao Xiao and Bo Liu
Remote Sens. 2023, 15(5), 1292; https://doi.org/10.3390/rs15051292 - 26 Feb 2023
Cited by 5 | Viewed by 2452
Abstract
The realization of efficient classification with limited labeled samples is a critical task in hyperspectral image classification (HSIC). Convolutional neural networks (CNNs) have achieved remarkable advances while considering spectral–spatial features simultaneously, while conventional patch-wise-based CNNs usually lead to redundant computations. Therefore, in this [...] Read more.
The realization of efficient classification with limited labeled samples is a critical task in hyperspectral image classification (HSIC). Convolutional neural networks (CNNs) have achieved remarkable advances while considering spectral–spatial features simultaneously, while conventional patch-wise-based CNNs usually lead to redundant computations. Therefore, in this paper, we established a novel active inference transfer convolutional fusion network (AI-TFNet) for HSI classification. First, in order to reveal and merge the local low-level and global high-level spectral–spatial contextual features at different stages of extraction, an end-to-end fully hybrid multi-stage transfer fusion network (TFNet) was designed to improve classification performance and efficiency. Meanwhile, an active inference (AI) pseudo-label propagation algorithm for spatially homogeneous samples was constructed using the homogeneous pre-segmentation of the proposed TFNet. In addition, a confidence-augmented pseudo-label loss (CapLoss) was proposed in order to define the confidence of a pseudo-label with an adaptive threshold in homogeneous regions for acquiring pseudo-label samples; this can adaptively infer a pseudo-label by actively augmenting the homogeneous training samples based on their spatial homogeneity and spectral continuity. Experiments on three real HSI datasets proved that the proposed method had competitive performance and efficiency compared to several related state-of-the-art methods. Full article
(This article belongs to the Special Issue Active Learning Methods for Remote Sensing Data Processing)
Show Figures

Figure 1

23 pages, 4804 KiB  
Article
Integrating Hybrid Pyramid Feature Fusion and Coordinate Attention for Effective Small Sample Hyperspectral Image Classification
by Chen Ding, Youfa Chen, Runze Li, Dushi Wen, Xiaoyan Xie, Lei Zhang, Wei Wei and Yanning Zhang
Remote Sens. 2022, 14(10), 2355; https://doi.org/10.3390/rs14102355 - 13 May 2022
Cited by 16 | Viewed by 3119
Abstract
In recent years, hyperspectral image (HSI) classification (HSIC) methods that use deep learning have proved to be effective. In particular, the utilization of convolutional neural networks (CNNs) has proved to be highly effective. However, some key issues need to be addressed when classifying [...] Read more.
In recent years, hyperspectral image (HSI) classification (HSIC) methods that use deep learning have proved to be effective. In particular, the utilization of convolutional neural networks (CNNs) has proved to be highly effective. However, some key issues need to be addressed when classifying hyperspectral images (HSIs), such as small samples, which can influence the generalization ability of the CNNs and the HSIC results. To address this problem, we present a new network that integrates hybrid pyramid feature fusion and coordinate attention for enhancing small sample HSI classification results. The innovative nature of this paper lies in three main areas. Firstly, a baseline network is designed. This is a simple hybrid 3D-2D CNN. Using this baseline network, more robust spectral-spatial feature information can be obtained from the HSI. Secondly, a hybrid pyramid feature fusion mechanism is used, meaning that the feature maps of different levels and scales can be effectively fused to enhance the feature extracted by the model. Finally, coordinate attention mechanisms are utilized in the network, which can not only adaptively capture the information of the spectral dimension, but also include the direction-aware and position sensitive information. By doing this, the proposed CNN structure can extract more useful HSI features and effectively be generalized to test samples. The proposed method was shown to obtain better results than several existing methods by experimenting on three public HSI datasets. Full article
Show Figures

Graphical abstract

24 pages, 7447 KiB  
Article
Robust Spatial–Spectral Squeeze–Excitation AdaBound Dense Network (SE-AB-Densenet) for Hyperspectral Image Classification
by Kavitha Munishamaiaha, Gayathri Rajagopal, Dhilip Kumar Venkatesan, Muhammad Arif, Dragos Vicoveanu, Iuliana Chiuchisan, Diana Izdrui and Oana Geman
Sensors 2022, 22(9), 3229; https://doi.org/10.3390/s22093229 - 22 Apr 2022
Cited by 8 | Viewed by 2763
Abstract
Increasing importance in the field of artificial intelligence has led to huge progress in remote sensing. Deep learning approaches have made tremendous progress in hyperspectral image (HSI) classification. However, the complexity in classifying the HSI data using a common convolutional neural network is [...] Read more.
Increasing importance in the field of artificial intelligence has led to huge progress in remote sensing. Deep learning approaches have made tremendous progress in hyperspectral image (HSI) classification. However, the complexity in classifying the HSI data using a common convolutional neural network is still a challenge. Further, the network architecture becomes more complex when different spatial–spectral feature information is extracted. Usually, CNN has a large number of trainable parameters, which increases the computational complexity of HSI data. In this paper, an optimized squeeze–excitation AdaBound dense network (SE-AB-DenseNet) is designed to emphasize the significant spatial–spectral features of HSI data. The dense network is combined with the AdaBound and squeeze–excitation modules to give lower computation costs and better classification performance. The AdaBound optimizer gives the proposed model the ability to improve its stability and enhance its classification accuracy by approximately 2%. Additionally, the cutout regularization technique is used for HSI spatial–spectral classification to overcome the problem of overfitting. The experiments were carried out on two commonly used hyperspectral datasets (Indian Pines and Salinas). The experiment results on the datasets show a competitive classification accuracy when compared with state-of-the-art methods with limited training samples. From the SE-AB-DenseNet with the cutout model, the overall accuracies for the Indian Pines and Salinas datasets were observed to be 99.37 and 99.78, respectively. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

23 pages, 10089 KiB  
Article
Multiple Superpixel Graphs Learning Based on Adaptive Multiscale Segmentation for Hyperspectral Image Classification
by Chunhui Zhao, Boao Qin, Shou Feng and Wenxiang Zhu
Remote Sens. 2022, 14(3), 681; https://doi.org/10.3390/rs14030681 - 31 Jan 2022
Cited by 16 | Viewed by 3890
Abstract
Hyperspectral image classification (HSIC) methods usually require more training samples for better classification performance. However, a large number of labeled samples are difficult to obtain because it is cost- and time-consuming to label an HSI in a pixel-wise way. Therefore, how to overcome [...] Read more.
Hyperspectral image classification (HSIC) methods usually require more training samples for better classification performance. However, a large number of labeled samples are difficult to obtain because it is cost- and time-consuming to label an HSI in a pixel-wise way. Therefore, how to overcome the problem of insufficient accuracy and stability under the condition of small labeled training sample size (SLTSS) is still a challenge for HSIC. In this paper, we proposed a novel multiple superpixel graphs learning method based on adaptive multiscale segmentation (MSGLAMS) for HSI classification to address this problem. First, the multiscale-superpixel-based framework can reduce the adverse effect of improper selection of a superpixel segmentation scale on the classification accuracy while saving the cost to manually seek a suitable segmentation scale. To make full use of the superpixel-level spatial information of different segmentation scales, a novel two-steps multiscale selection strategy is designed to adaptively select a group of complementary scales (multiscale). To fix the bias and instability of a single model, multiple superpixel-based graphical models obatined by constructing superpixel contracted graph of fusion scales are developed to jointly predict the final results via a pixel-level fusion strategy. Experimental results show that the proposed MSGLAMS has better performance when compared with other state-of-the-art algorithms. Specifically, its overall accuracy achieves 94.312%, 99.217%, 98.373% and 92.693% on Indian Pines, Salinas and University of Pavia, and the more challenging dataset Houston2013, respectively. Full article
Show Figures

Figure 1

23 pages, 2063 KiB  
Article
Variational Generative Adversarial Network with Crossed Spatial and Spectral Interactions for Hyperspectral Image Classification
by Zhongwei Li, Xue Zhu, Ziqi Xin, Fangming Guo, Xingshuai Cui and Leiquan Wang
Remote Sens. 2021, 13(16), 3131; https://doi.org/10.3390/rs13163131 - 7 Aug 2021
Cited by 8 | Viewed by 3096
Abstract
Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) have been widely used in hyperspectral image classification (HSIC) tasks. However, the generated HSI virtual samples by VAEs are often ambiguous, and GANs are prone to the mode collapse, which lead the poor generalization abilities [...] Read more.
Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) have been widely used in hyperspectral image classification (HSIC) tasks. However, the generated HSI virtual samples by VAEs are often ambiguous, and GANs are prone to the mode collapse, which lead the poor generalization abilities ultimately. Moreover, most of these models only consider the extraction of spectral or spatial features. They fail to combine the two branches interactively and ignore the correlation between them. Consequently, the variational generative adversarial network with crossed spatial and spectral interactions (CSSVGAN) was proposed in this paper, which includes a dual-branch variational Encoder to map spectral and spatial information to different latent spaces, a crossed interactive Generator to improve the quality of generated virtual samples, and a Discriminator stuck with a classifier to enhance the classification performance. Combining these three subnetworks, the proposed CSSVGAN achieves excellent classification by ensuring the diversity and interacting spectral and spatial features in a crossed manner. The superior experimental results on three datasets verify the effectiveness of this method. Full article
(This article belongs to the Special Issue Deep Learning and Computer Vision in Remote Sensing)
Show Figures

Graphical abstract

Back to TopTop