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Abstract: Hyperspectral image classification (HSIC) methods usually require more training samples
for better classification performance. However, a large number of labeled samples are difficult to
obtain because it is cost- and time-consuming to label an HSI in a pixel-wise way. Therefore, how
to overcome the problem of insufficient accuracy and stability under the condition of small labeled
training sample size (SLTSS) is still a challenge for HSIC. In this paper, we proposed a novel multiple
superpixel graphs learning method based on adaptive multiscale segmentation (MSGLAMS) for
HSI classification to address this problem. First, the multiscale-superpixel-based framework can
reduce the adverse effect of improper selection of a superpixel segmentation scale on the classification
accuracy while saving the cost to manually seek a suitable segmentation scale. To make full use of
the superpixel-level spatial information of different segmentation scales, a novel two-steps multiscale
selection strategy is designed to adaptively select a group of complementary scales (multiscale). To
fix the bias and instability of a single model, multiple superpixel-based graphical models obatined by
constructing superpixel contracted graph of fusion scales are developed to jointly predict the final
results via a pixel-level fusion strategy. Experimental results show that the proposed MSGLAMS has
better performance when compared with other state-of-the-art algorithms. Specifically, its overall
accuracy achieves 94.312%, 99.217% ,98.373% and 92.693% on Indian Pines, Salinas and University of
Pavia, and the more challenging dataset Houston2013, respectively.

Keywords: hyperspectral image classification; superpixel segmentation; graph learning; sparse
representation; multiscale fusion

1. Introduction

Hyperspectral images (HSIs) contain hundreds of bands [1–3], which provide rich
spectral information and spatial information [4,5]. The HSI classification (HSIC) has always
been an activate research topic. HSIC is widely used in the fields of agriculture [6,7],
environment monitoring [8,9] and smart city design [10]. The representations of HSIs are
spatially sparse while spectrally correlated; unlike the object-level images classification,
HSIC needs to perform dense classification or regression over the whole image, hence how
to extract pixel-level spectral features while utilizing local spatial information of HSIs is
the core to process HSIs. Recently, computer vision has become a mainstream research
direction and has been applied in many fields, such as agronomy [11,12], plant science [13],
remote sensing and so on. After deep learning (DL) is applied to HSI classification, the
detailed spectral–spatial features can be extracted [14–17]. The authors in [18] proposed
a 1D+2D HSIC method, which uses a one-dimensional (1D) convolution kernel to extract
spectral features and a two-dimensional (2D) convolution kernel to extract spatial features.
Hamida et al. [19] directly used the three dimensional (3D) convolution neural networks
(3D-CNN) to extract spatial–spectral features simultaneously. Considering the local details
of HSIs, a framework based on kernel-guide deformable convolution and double-window
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joint bilateral filter is proposed to capture spatial–spectral features flexibly [20]. These DL-
based methods achieved excellent performance but often require a large number of training
samples. The limited number of training samples will obviously reduce the classification
accuracy of these DL-based methods. However, manually annotating a large number
of accurate training samples is extremely labor-intensive and time-consuming in a real
scenario [21–23], and thus, the small labeled training sample size (STLSS) problem is always
a challenge for HSIC [24,25].

Recently, superpixel (SP) segmentation has been widely applied to HSIC [26,27].
SP-based methods can generate an irregular homogeneous region with similar spatial
information [28,29]. The local spatial similarity within an SP can easily enlarge the size of
training samples, so the SP segmentation can be utilized to tackle the SLTSS problem [30,31].
The most commonly used SP segmentation methods are simple linear iterative clustering
(SLIC) [32,33] and entropy rate SP (ERS) [34]. Initially, the support vector machine (SVM)
and SP segmentation was first combined together for HSIC by [35]. Then, Zheng et al. [36]
proposed an SP-guided training sample enlargement and the distance weighted linear
regression-based classification (STSE_DWLR) to solve STLSS problem. Liu et al. [37] applied
SP segmentation to deep learning and employed the graph convolutional networks (GCN)
to extract global features. They proposed the CNN-enhanced GCN (CEGCN) to integrate
the complementary advantages of CNN and GCN, and achieved the pixel- and superpixel-
level feature fusion. Sellars et al. [38] introduced a superpixel contracted graph based
transductive learning framework, named superpixel graph learning (SGL).The SGL applies
the advantages of SP segmentation to HSIC and has good classification performance. These
SP-based methods have usually applied the SP segmentation as a pretreating technique and
have achieved excellent performance, however, how to select a suitable segmentation scale
(the number of SPs), which will affect the results of subsequent methods, still need to be
fixed. Some researches have demonstrated that different segmentation scales will seriously
affect the classification accuracy of SP-based methods [39–41]. To tackle with this issue, Jia
et al. [42] proposed an effective framework to calculate the optimal single segmentation
scale and select multiscale, but this method did not consider the spatial complementarity
between different segmentation scales. Although multiscale fusion can cope with the
manual dependence dilemma [43–46], these non-adaptive multiscale selection methods
will select the unwanted fusion scale and cause a negative contribution to the classification
accuracy. Later, a novel adaptive multiscale segmentations (AMSs) framework which can
select scales through an intra-inter discrimination index f (si) was provided by [47]. AMSs
adopted a two-step framework that first selects the basic scale and then selects the fusion
scales according to the basic scale. The intra-inter discrimination index f (si) has satisfactory
performance in small scale intervals, however, for hyperspectral data sets with complex
spatial distribution, such as that of the University of Pavia which requires large scale to
segment, this index may lose its effect.

To reduce the bias and variance of classification results when the number of training
samples is very small and select a group of multi-scale superpixel maps with comple-
mentary information, a multiple superpixel graphs learning method based on adaptive
multiscale segmentation (MSGLAMS) is proposed for HSIC in this paper. In the proposed
method, the multiscale superpixel segmentation maps through SLIC are generated first,
and an optimal reference scale (ORS) selection algorithm (ORSSA) is used to select an ORS
map as the basic scale. Then, a multiscale selection algorithm based on sparse representa-
tion is used to select fusion scale maps that have positive contribution to supplement the
spatial information of the ORS. Finally, the classification results of a different fusion scale is
obtained by SGL and the these results are fused by voting to obtain the final result. The
main contributions of this paper are:

(1) The proposed MSGLAMS adopts the multiscale-superpixel-based framework, which
can reduce the adverse effect of improper selection of a superpixel segmentation
scale on the classification accuracy while saving the cost to manually seek a suitable
segmentation scale.
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(2) To make full use of the spatial information of different segmentation scales, a novel
two-steps multiscale selection strategy is designed to adaptively select a set of com-
plementary multiscales. Specifically, an optimal reference scale selection algorithm
(ORSSA) which can select the single basic scale suitable for different data sets is pro-
posed to select an optimal reference scale (ORS). Then, the multiscale selection method
base on sparse representation (MSSR) is proposed to select fusion scales that have
positive contribution to supplement the spatial information of ORS.

(3) Multiple superpixel-based graphical models (SGL-based model), which are created
via constructed superpixel contracted graph of determined scales (fusion scales pool),
are adopted to jointly predict the final classification results, that is, pixel-level labels
are determined via the voting results of these different models. This Boosting-like
fusion strategy can significantly reduce the bias and instability of the final results, and
keep the similar inductive bias of models.

2. Proposed Method

In this section, the proposed HSIC framework is explained in detail. As shown in
Figure 1, for an HSI, the principal component analysis (PCA) [30] is first applied to extract
top three principal components (PCs), and the candidate scale pool is constructed according
to the size of the HSI. Then, the SLIC algorithm was used to segment HSI with different
scales to obtain multiscale segmentation maps. A novel optimal reference scale (ORS)
selection algorithm (ORSSA) is proposed to select the ORS suitable for different datasets
as the basic scale, and the classification results of the ORS map are used to construct
a sparse dictionary. Next, a multiscale selection method base on sparse representation
(MSSR) is used to select fusion scales that can supplement the spatial information of
enlarged samples of ORS map. Finally, multiple SGL models are obtained via constructed
superpixel contracted graph with different scales (fusion scales), and the final results are
jointly predicted via the voting results of these models.

Figure 1. The flowchart of the proposed MSGLAMS method. PCA: principal component (PC)
analysis; SLIC: simple linear iterative clustering; ORSSA: optimal reference scale (ORS) selection
algorithm; SGL: superpixel graph learning.

2.1. Construction of the Candidate Scale Pool

Different hyperspectral datasets usually reflect different ground distribution. It is nec-
essary to construct candidate scale pools [Slower, . . . , Supper] suitable for different datasets,
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because the meaningless SP segmentation scale is not helpful to improve the classification
accuracy and will waste computing time. As shown in Figure 2, when the scales of SP exceed
the appropriate range, it is a meaningless segmentation. Small-scale segmentation maps
cannot preserve the local detailed information of the HSI and can’t ensure that the pixels
within the SP have similar land-cover categories (undersegmentation). The large-scale seg-
mentation maps will lose large amount of spatial information (oversegmentation) [20,48].

(a) (b) (c)

Figure 2. Segmatation maps with different superpixel scale S on University of Pavia. (a) S = 91.
(b) S = 1376. (c) S = 6856. (b) is a meaningful segmentation scale map. (a) is an undersegmentation
map. (c) is an oversegmentation map.

Therefore, it is important to construct a candidate scale pool that can exclude the
meaningless segmentation scale and include the indispensable segmentation scales. A
candidate scale pool [Slower, . . . , Supper] in [42] was defined as

Interval(S) = [C C/R] (1)

where C is the real number of land cover classes and R is the texture ratio of the HSI.
C is usually much smaller than the lower boundary of meaningful segmentation scale,
especially for datasets such as that of Pavia University with large image sizes and a large
number of edge pixels. In addition, the texture ratio R is easily affected by algorithm
of texture detectors. The ideal interval is determined only by the dataset, so the lower
boundary and upper boundary are defined as

Slower = floor(
L×W

K1
)

Supper = Slower × C
(2)

where L and W are the length and width of the HSI. K1 = arg min(L, W). The Slower and
Supper defined by this method will not miss meaningful segmentation scales.

If the scale interval is defined as [Slower : k : Supper], the definition of Slower and Supper

will only affect the runtime of the algorithm, but the setting of k will affect the selection of
fusion scale. As shown in Figure 3, the number of SP cluster centers and the segmentation
scale are not linear. If the setting of k is too small, the final fusion scale pool will contain
many scales with same segmentation (i.e., non-contribution scales). If k is too large, it is
easy to lose the important fusion scale (i.e., positive-contribution scales). So the candidate
scale pool is divided into small scale pool [Slower : ks : SM], middle scale pool [SM : km : SL]
and large scale pool [SL : kl : Supper]. Assuming ∆ = Supper − Slower, SM is defined as

SM = Slower +
∆
6

(3)

SL is defined as
SL = SM +

∆
3

. (4)
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In addition, ks = k/2, km = 2k and km = 3k, which k = ∆/NS , NS is the number of
multiscale segmentation maps (generally set to 30). Such a candidate scale pool can retain
positive-contribution scales and exclude the meaningless segmentation maps.

Figure 3. The number of cluster centers corresponding to different SP scale maps obtained by SLIC
on University of Pavia. The same number of cluster centers means the same segmentation map.

2.2. Optimal Reference Scale Selection

To select multiple fusion scales, an ORS should be selected as the basic scale first.
As shown in Figure 4, the influence of the SP scale on the overall accuracy (OA) is not
linear. The small scale SP contains more similar spectral features, while the large scale SP
contains richer spatial information. It is difficult to choose a single segmentation scale with
good classification performance. Therefore, the optimal reference scale selection algorithm
(ORSSA) is designed to choose the optimal single scale suitable for different datasets by
calculating the segmentation evaluation indexes of different scale maps.

(a) (b) (c)

Figure 4. OAs of the SGL in different scales on three HSI datasets. (a) Indian Pines. (b) Salinas
(c) University of Pavia.

Small scale maps that contain pure spectral features can obtain high-quality enlarged
samples. Large scale maps that contain better spatial information can obtain more enlarged
samples. The optimal single scale generally contains similar spectral features and rich
spatial spatial features, so the optimal single scale can be only sought with balanced
spatial–spectral features in the middle scale pool.

Assuming that the middle scale pool is S=
{

S1, S2, · · · , SK}, S ⊆
[
SM : km : SL]. The

kth scale has M SP regions, Sk = {Sk
1, Sk

2, ..., Sk
M}. Then, pi ∈ Sk

m is the ith pixel within the
mth SP of kth scale, pc is the corresponding cluster center of Sk

m , (xi, yi) and (xc, yc) are the
spatial coordinates of pi and pc, respectively. In order to ensure the similar spectral features
of the enlarged sample, the optimal single scale should contain small spectral differences
between pixels within an SP, so the spectral evaluation index of the mth SP is defined as
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fspectral (Sk
m) =

Im
∑

i=1
cos−1

(
pT

i pc
‖pi‖·‖pc‖

)
Im

(5)

where Im is the number of pixel within the mth SP. Then, the overall spectral evaluation
index of kth scale can be expressed as

Fspectral

(
Sk
)
=

∑M
m=1 fspectral

(
Sk

m

)
M

. (6)

In addition, each SP should contain a larger number of pixels, so that SPs with poor
spatial information will not easily be randomly selected to enlarge training samples. In
order to ensure the size of enlarged samples, we define the spatial evaluation index of mth
SP as

fspatial (Sk
m) =

Im
∑

i=1
(
√
(xi − xc)

2 + (yi − yc)
2/d)

Im
(7)

where d is the length of the diagonal of mth SP Sk
m. The overall spatial evaluation index of

kth scale can be expressed as

Fspatial

(
Sk
)
=

∑M
m=1 fspatial

(
Sk

m

)
M

. (8)

The final segmentation evaluation index of kth scale is presented as

F(Sk) = (1− λ)Fspectral (Sk) + λFspatial (Sk) (9)

where Fspectral (Sk) and Fspatial (Sk) are the normalized results of (6) and (8), and λ is a
spatial–spectral balance factor. The optimal reference scale ORS = arg max(F(Sk)). The
pseudocode of the ORSSA is given in Algorithm 1.

Algorithm 1 ORSSA

Require: The middle scale pool, S=
{

S1, S2, · · · , SK}, S ⊆
[
SM : km : SL]; Number of SPs

in each scale, M = {M1, M2, · · · , MK}; parameter λ;
Ensure: The optimal reference scale ORS;

1: Obtain a series of middle scale maps through SLIC;
2: for k = 1 to K do
3: for m = 1 to Mk do
4: fspectral (Sk

m) can be calculated by (5);
5: fspatial (Sk

m) can be calculated by (7);
6: end for
7: Fspectral

(
Sk
)

can be calculated by (6);

8: Fspatial

(
Sk
)

can be calculated by (8);

9: Compute the segmentation evaluation index of kth scale Fspectral (Sk) by (9);
10: end for
11: ORS = arg max(F(Sk));
12: return ORS;

2.3. Superpixel Graph Learning

The superpixel graph learning (SGL) proposed by [38] is an SP contracted graph-based
transductive learning framework for semi-supervised HSI classification. The SGL can be
split into two major tasks: graph construction and label propagation.



Remote Sens. 2022, 14, 681 7 of 23

2.3.1. Graph Construction

An HSI is denoted as I ∈ RL×W×B and the reduced image after PCA is denoted as
Î ∈ RL×W×A. Assuming that the ith SP Si contains ni connected pixels, Si =

{
pi,1, . . . , pi,ni

}
,

three meaningful features need to be extracted from each SP ready for graph construction
first. The mean features vector of ith SP

−→
S m

i is defined as

−→
S m

i =
∑ni

j=1 Î
(

pi,j
)

ni
. (10)

The weighted feature vector
−→
S w

i can be expressed as

−→
S w

i =
J

∑
j=1

wi,zj

−→
S m

zj
(11)

where the weight between adjacent SPs wi,zj is defined as

wi,zj =

exp
(
−
∥∥∥−→S m

zj
−−→S m

i

∥∥∥2

2
/h
)

∑J
j=1 exp

(
−
∥∥∥−→S m

zj
−−→S m

i

∥∥∥2

2
/h
) . (12)

The final centroidal location of each SP
−→
S p

i is calculated by

−→
S p

i =
∑ni

j=1 pi,j

ni
. (13)

Next, a weighted undirected graph G = (V, E, W) can be created from these previously
discussed features and SP node set. The weight between two connected SPs Si and Sj is
constructed based on two Gaussian kernels and is given as

wij = sijlij (14)

where

sij = exp

 (β− 1)
∥∥∥−→S ω

i −
−→
S w

j

∥∥∥2

2
− β

∥∥∥−→S m
i −
−→
S m

j

∥∥∥2

2
σ2

s

 (15)

lij = exp

−
∥∥∥−→S p

i −
−→
S p

j

∥∥∥2

2
σ2

l

 (16)

where β is the balance factor between the mean and weighted features, and the width of
the Gaussian kernels are determined by σs, σl . The edge set is constructed using k-nearest
neighbors. Therefore, the edge weights are defined as

Wij =


wij, if i is one of the k nearest neighbor of j

or vice versa
0, otherwise

(17)

2.3.2. Label Propagation

A set of labeled spectral pixels are first randomly selected from the original HSI. The
final labeling can be specified using a matrix F ∈ RK×c. The cost function associated with
the matrix F is given by
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Q(F) =
1
2

n

∑
i,j=1

Wij

∥∥∥∥∥ Fi√
Dii
−

Fj√
Djj

∥∥∥∥∥
2

+
µ

2

n

∑
i=1
‖Fi −Yi‖2 (18)

where µ > 0 is a regularization parameter, Y ∈ RK×C is a labeling matrix contained the
labels of K superpixels. F denotes the set of n× c matrices with non-negative entries. The
labeling matrix is given by F∗ = argminF∈F Q(F). The above cost function has a closed

form solution which reads: F∗ = β
(

I − αD−(1/2)WD−(1/2)
)

Y, where β = µ/(1 + µ) and
α = 1− β. The final labeling of the nodes is then computed as: yi = argmaxj≤c Fij. The
final classification result map of the SP map can be obtained by calculating the label of
each SP.

2.4. Multiscale Selection Based on Sparse Representation

As shown in Figure 4, the classification accuracy of a single scale is greatly affected by
the selection of SP scale. When the number of samples is limited, the random selection of
samples will seriously affect the spectral–spatial features of the enlarged samples after SP
segmentation and thus affect the final classification results. The results shown in Figure 5
indicate that choosing a good single scale can improve the accuracy, but the robustness of
the single scale is poor. The accuracy of the same single scale under different iterations is
also very different because each iteration will randomly selects different samples to obtain
corresponding enlarged samples. After using a multiscale fusion strategy, complementary
spatial information can improve the classification accuracy under STLSS conditions, and
complementary spectral features of enlarged samples can improve the robustness of clas-
sification accuracy. Hence, the multiscale fusion strategy has more advantages than the
single-scale SP classification algorithm under the condition of STLSS. Hence, the accuracy
and robustness of classification can be obviously improved by multiscale fusion.

(a) (b) (c)

Figure 5. OAs of different scales for 200 iterations on three HSI datasets. The ORS selected by ORSSA,
worse single scale, and randomly selected multiscale fusion are labeled in orange ‘*’, blue ‘*’ and
green ‘*’ , respectively. The three horizontal lines are the mean values of 200 iterations, that is, the
bias of different manners. The “*” curves can reflect the variances of different manners. The number
of training samples are 3 per class. (a) Indian Pines. (b) Salinas (c) University of Pavia.

The sparse representation can select pixels similar to the spectral features of the sample
used to construct the dictionary [49–52], so when the classification result of ORS map is
used to construct the dictionary, the fusion scale maps similar to ORS map can be selected
by the representation residual. Consequently, the multiscale selection algorithm based on
sparse representation (MSSR) can be exploited to select fusion scale maps that have positive
contribution to supplement the spatial information of ORS.

The traditional sparse representation assumes that a pixel in HSI is represented as
y ∈ RB, where B is the number of spectral bands. The structured dictionary is denoted by
X =

[
X1, X2, . . . , XK] ∈ RB×D, where K is the total number of classes and D is the number

of training samples. In this algorithm, we suppose the HSI have K distinct classes, and
structured dictionary X =

[
X1, X2, . . . , XK] ∈ RB×N , where N is the number of all pixels of

the ORS map. Assuming the classification result of ORS maps has Nj pixels of jth class, the
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jth class subdictionary is Xj =
[
Xj

1, Xj
2, . . . , Xj

Nj

]
. The superpixel S can be represented by a

linear combination of these reference pixels as

S ≈ α
j
1Xj

1 + α
j
2Xj

2 + . . . + α
j
Nj

Xj
Nj

. (19)

The mth SP in the ith scale map can be represented as

Si
m = Xαi

m + Ni
m (20)

where αi
m is the sparse coefficient matrix. The sparse coefficient matrix αi

m can be calculated by

α̂i
m = arg min

∥∥∥Si
m − Xαi

m

∥∥∥
F

s.t.
∥∥∥αi

m

∥∥∥
0
≤ T (21)

where ‖·‖F is the Frobenius norm and the OMP [53] is implemented to solve this problem.
Once α̂i

m is obtained, and the jth class reconstruction residual error which is the difference
between original SP and reconstructed SP can be calculated by

rj(Si
m) =

∥∥∥Si
m − Xj · α̂i

m

∥∥∥
2
, j = 1, 2, . . . , K. (22)

The residual matrix < can be expressed by calculating the minimum residual error of
each SP. Mean value of residual matrix of ith scale map can be calculated by

E(Si) = mean(<(Si)) =

M
∑

m=1
arg min(rj(Si

m))

Nc
(23)

where M is the number of SPs in the Sith scale map. Small mean value of < means that the
segmentation information is more similar to the ORS map. The finally fusion scale pool is
determined by

SF =
{

S1, S2, · · · , S f
}

s.t.∀Si ∈ SF, E(Si) ≤ Ts (24)

where Ts is a threshold and Ts can be presented as

Ts = Emin +
Emax − Emin

κ
, κ = 1, 2, . . . , Ks (25)

where Emax and Emin are the maximum and minimum values of the E(Si), respectively.
κ = 1 means that all scales are selected for fusion, and Ts = Emin means that only the ORS
map selected by ORSSA is used for fusion. The classification result maps of SF is obtained by
the SGL. Subsequently, these result maps are fused to obtain the final classification result.

2.5. A Pixel-Level Fusion Strategy for Multiple Graphical Models

In general, superpixel-based methods assume that the pixels within the same super-
pixel share the same label. These superpixel-level predictions can be sub-optimal for dense
prediction tasks due to the discrepancy between superpixel-level and pixel-level prediction.
Moreover, the instability and bias of the single-scale superpixel based graph classifier comes
from the insufficient generalization ability of the single graph model, that is, the single
graph cannot well represent the distribution of a real HSI. To fix this gap, a pixel-level fusion
strategy for multiple graphical models is proposed in this paper. Similar to Boosting [54],
multiple graphical models, which are generated via constructed superpixel contracted
graphs of determined scales SF =

{
S1, S2, · · · , S f

}
, are adopted to jointly predict the label

of each pixel. Thereby, assume the f constructed graphs as

G1 = (V1, E1, W1), G2 = (V2, E2, W2), . . . , G f = (V f , E f , W f ). (26)
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For the pixel pi, the labels predicted by different models can be presented as

y1
i = argmaxj≤c F1

ij, y2
i = argmaxj≤c F2

ij, . . . , y f
i = argmaxj≤c F f

ij (27)

where Fij can be obtain by Equation (18) in Section 2.3.2. The final label can be obtained by
the majority voting rule, which presented as

yi = Voting{y1
i , y2

i , . . . , y f
i }. (28)

After predicting the label of each pixel, the final classification map is generated. The
pseudocode of the MSGLAMS is given in Algorithm 2.

Algorithm 2 The proposed MSGLAMS

Require: Raw HSI dataset I ∈ RL×W×B with B bands; Training set A ∈ RB×m with m
labeled samples; Parameter λ and κ;

Ensure: A final classification map after multiscale fusion;
1: Define the interval of candidate scale pool Slower and Supper by Equation (2);
2: Construct a candidate scale pool composed of the small scale pool, middle scale pool

and large scale pool by Equations (3) and (4);
3: Reduced image Î ∈ RL×W×A is obtained by PCA.
4: Apply SLIC algorithm on candidate scale pool to create multiscale segmentation maps.
5: Select the ORS by Algorithm 1;
6: Obtain the classification result of ORS (l1, l2, . . . , lL×W) by SGL;
7: Construct a sparse dictionary X =

[
X1, X2, . . . , XK] ∈ RB×D by the classification results

of ORS;
8: for Si=Slower to Supper do
9: Calculate the E(Si) through Equation (23);

10: end for
11: Determine the final fusion scale pool SF by Equation (24);
12: Create multiple graphical models of SF by Equation (26) .
13: Fuse multiple scale maps to obtain the final classification result by

Equations (27) and (28).
14: return Final classification result;

3. Experimental Results and Analysis

In this section, the details of three experimental datasets and experimental settings
are first introduced. Then, the results of the proposed method and other state-of-the-art
methods on three HSI datasets are compared. Finally, the effect of the ORASS algorithm and
the MSSR algorithm, and the parameter analysis of the proposed MSGLAMS is discussed.

3.1. Datasets

Three HSI datasets are selected for experiments, which are those of the Indian Pines,
Salinas and University of Pavia. These datasets are collected by different sensors over
different land covers, and have been selected for experiments by many related papers. The
details of these datasets are given as follows:

1. The dataset was collected by an Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) sensor over an agricultural site in Indiana. The dataset consists of
145 × 145 pixels, 200 spectral channels in the wavelength range of 0.4–2.45 µm. The
spatial resolution of the data is 20 m. The ground truth map utilizes 10,249 labeled
pixels with 16 different surface classes.

2. This image was also collected by the AVIRIS sensor over Salinas Valley, California. It
contains 512 × 217 pixels with a spatial resolution of 3.7 m and 200 spectral channels
over 0.4–2.5 µm. The dataset has a spatial resolution of 3.7 m/pixel. Its ground truth
contains 54,129 labeled pixels and 16 classes.
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3. This dataset was acquired by the Reflective Optics System Imaging Spectrometer
(ROSIS) sensor over the urban area surrounding the University of Pavia, Italy. The
spatial size of the data is 610 × 340, and the spatial resolution is as high as 1.3 m/pixel.
The image contains 115 spectral channels from 0.43 to 0.86 µm and has a spatial
resolution of 1.3 m. Its ground truth contains 42,776 labeled pixels and 9 classes.

4. The Houston 2013 dataset was captured by an airborne spectrographic image sensor,
which covers the area of University of Houston and its neighboring urban area.
Houston 2013 dataset include 349× 1905 pixels with a spatial resolution of 2.5 m and
consists of 144 spectral channels ranging from 0.38 to 1.05 µm, and the ground truth
map utilizes 15,029 labeled pixels with 15 different land-cover classes. It adopted the
standard training and testing sets given by the 2013 GRSS Data Fusion Contest.

Detailed information of different land cover classes and the corresponding false colors
of Indian Pines, Salinas, and University of Pavia are listed in Tables 1–4, respectively.

Table 1. background color and number of land cover classes on indian pines.

Color Land Cover Type Numbers
Stone-Steel-Towers 93

Hay-windrowed 478
Corn-mintill 830

Soybean-notill 972
Alfalfa 46

Soybean-clean 593
Grass-pasture 483

Woods 1265
Buildings-Grass-Tree-Drives 386

Grass-pasture-mowed 28
Corn 237
Oats 20

Corn-notill 1428
Soybean-mintill 1257

Grass-trees 1257
Wheat 205

Total Number 10,249

Table 2. background color and number of land cover classes on salinas.

Color Land Cover Type Numbers
Brocoli_green_weeds_1 2009
Brocoli_green_weeds_2 3726

Fallow 1976
Fallow_rough_plow 1394

Fallow_smooth 2678
Stubble 3959
Celery 3579

Grapes_untrained 11,271
Soil_vinyard_develop 6203

Corn_senesced_green_weeds 3278
Lettuce_romaine_4wk 1068
Lettuce_romaine_5wk 1927
Lettuce_romaine_6wk 916
Lettuce_romaine_7wk 1070

Vinyard_untrained 7268
Vinyard_vertical_trellis 1807

Total Number 54,129
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Table 3. background color and number of land cover classes on Pavia university.

Color Land Cover Type Numbers
Asphalt 6631

Meadows 18,649
Gravel 2099
Trees 3064

Painted metal sheets 1345
Bare Soil 5029
Bitumen 1330

Self-Blocking Bricks 3682
Shadows 947

Total Number 42,776

Table 4. background color and number of land cover classes on Houston2013.

Color Land Cover Type Numbers
Healthy grass 1251
Stressed grass 1254
Synthetic grass 697

Trees 1244
Soil 1242

Water 5029
Residential 126
Commercial 1244

Road 1252
Highway 122
Railway 1235

Parking Lot 1 1233
Parking Lot 2 469
Tennis Court 428

Running Track 660
Total Number 15,029

3.2. Experimental Settings

In order to verify the effectiveness of the proposed MSGLAMS comprehensively, the
experiment can be divided into three parts. First, the comparison between MSGLAMS
and other state-of-the-art methods is conducted. Second, as two key components of the
the proposed MSGLAMS, the performances of ORASS and MSSR are also compared with
their counterparts, respectively. Finally, the influence of key parameters of the MSGLAMS
is analyzed. For the evaluation metrics, overall accuracy (OA), average accuracy (AA)
and the kappa coefficient are adopted to quantify the classification performance. All the
experiments are repeated ten times to obtain the final average performance. The hardware
platform is Intel Xeon Silver 4210 2.4 GHz twelve-core processor CPU, GeForce RTX 3090
GPU and 32G memory.

3.2.1. Experimental Settings for Comparing with Other State of the Arts

In order to validate the performance of our proposed framework MSGLAMS, seven
state-of-the-art algorithms are selected for comparison. These methods include three HSI
classification methods based on SP segmentation: CEGCN [37], STSE_DWLR [36], and
SGL [38]. Two HSI classification methods to solve small sample problems: KDCDWBF [20]
and 3D-CNN [19]. Two common HSI classification methods: 1D+2D [18] and SVM. For
the Houston, we still can’t provide the memory needed for GCN-M method even if we
have adopted a decent hardware platform(CPU: Intel Xeon Silver 4210 2.4 GHz twelve-core
processor; GPU: GeForce RTX 3090; Memory: 32G).
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3.2.2. Experimental Settings of ORSSA

The purpose of proposed ORASS is to select an ORS map with best classification
performance as basic scale. The three mainstream single scale selection algorithms are
used to compare with ORSSA. First, the texture ratio was proposed in [55] to calculate the
optimal single scale (TRS). The ORS calculated by TRS are 706, 1603 and 2765 for the Indian
Pines, Salinas Scene, and University of Pavia, respectively. Second, the resolution of the
dataset is used to calculate the optimal single scale (RES) in [42], and the RES are obtained
as 1051, 3142 and 2216 for the Indian Pines, Salinas Scene, and University of Pavia. Finally,
the ORS can be adaptively selected through inter-intra parameters (ASS) in [47], and the
parameter setting is consistent with [47]. The spatial–spectral balance factor λ of ORSSA is
set to 0.3 on the three datasets.

3.2.3. Experimental Settings of MSSR

The multi-scale comparison experiment is to compare the impact of different multiscale
selection methods on the classification results of the same classifier SGL. The multiscale
selection comparison methods include the multiscale selection formula (MSF) in [42], the
multiscale SP number selection formula (MSNSF) in [56] and the adaptive multiscale
selection (AMS) method proposed by [47]. The number of multiscales K in MSF and
MSNSF is the same as the number of fusion scales of MSSN and the basic scale of MSF and
MSNSF are both set to the ORS. The parameter κ in Equation (25) of MSSR is set to {4, 4, 7}
for the Indian Pines, Salinas Scene, and University of Pavia, respectively. The influence of κ
will be analyzed in detail in the Section 3.5.

3.3. Comparison of Results of Different Methods

In this section, seven state of the arts are compared with the proposed MSGLAMS
framework. Tables 5–8 report the classification accuracy of MSGLAMS and seven methods
on the Indian Pines, Salinas and University of Pavia dataset, and the cells with a green
background represent the highest accuracy. The classification maps obtained by these
methods are illustrated in Figures 6–9. It is easy to find that the accuracy of MSGLAMS
far exceeds the common classification methods SVM and 1D+2D because the common
classification methods cannot solve the problem of STLSS. Furthermore, the classification
accuracy of MSGLAMS also far exceeds that of the small sample classification methods
KDCDWBF and 3D-CNN. By comparing three small sample classification methods based
on SP segmentation GNC-M, STSE_DWLR and SGL, the OA of MSGLAMS exceeds the
best performing comparison method SGL 5.66%, 4.65% on the university of Pavia and the
Indian Pines datasets, respectively. Kappa exceeds 7.23%, 4.57% than SGL on these two
datasets. GNC-M, STSE_DWLR, SGL and our MSGLAMS perform well on the Salinas
dataset, because the texture of Salinas dataset is not complicated. For the more challenging
dataset Houston2013, MSGLAMS yields 92.906% overall accuracy, which outperforms
the KDCDWBF and SGL by a large margin, i.e., 3.665% and 6.845%. It can be inferred
that MSGLAMS also can achieve excellent performance even if the spatial distribution of
HSI is complex. It should be noted that all accuracies except stressed grass and synthetic
grass reached the top-1. Overall, these experimental results suggest that the proposed
method can overcome the problem of unstable classification performance under small
sample conditions and thus effectively improve the classification accuracy.
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Table 5. Classification accuracy for the Indian Pines image with ten labeled samples per class.

Class Name SVM 3D-CNN 1D+2D GCN-M KDCDWBF STSE_DWLR SGL MSGLAMS
Alfalfa 0.49571 0.65940 0.50457 0.64092 1.00000 0.44264 1.00000 1.00000

Corn-notill 0.46833 0.29684 0.27424 0.93793 0.87593 0.61650 0.73484 0.93067
Corn-mintill 0.43615 0.35215 0.30760 0.85950 0.93172 0.69343 0.95595 0.99578

Corn 0.45338 0.42414 0.38454 0.39823 0.95157 0.70895 0.95595 0.99578
Grass-pasture 0.70857 0.63286 0.48650 0.86174 0.90497 0.55580 0.95983 0.84058

Grass-trees 0.84465 0.84096 0.70611 0.99067 0.99034 0.86224 0.98194 0.99452
Grass-pasture-mowed 0.43256 0.35618 0.25098 0.44103 0.88891 0.46240 1.00000 1.00000

Hay-windrowed 0.92244 0.95833 0.90342 0.99914 1.00000 0.97639 1.00000 1.00000
Oats 0.18511 0.21189 0.60169 0.32545 1.00000 0.32312 1.00000 1.00000

Soybean-notill 0.32139 0.40187 0.33047 0.84658 0.85973 0.62763 0.81393 0.85185
Soybean-mintill 0.49923 0.50666 0.56832 0.94420 0.75716 0.77789 0.88630 0.95723
Soybean-clean 0.34218 0.21864 0.24435 0.76209 0.75133 0.53653 0.95026 0.81619

Wheat 0.87283 0.83830 0.82577 0.99494 1.00000 0.93417 0.97949 1.00000
Woods 0.80549 0.88882 0.80326 0.99723 0.99928 0.80735 1.00000 0.99921

Buildings-Grass-Trees-Drives 0.38141 0.35919 0.31423 0.73869 0.99735 0.37927 1.00000 1.00000
Stone-Steel-Towers 0.86495 0.82275 0.97096 0.85339 1.00000 0.48141 1.00000 1.00000

OA 0.54644 0.53484 0.49926 0.89850 0.88372 0.70582 0.89662 0.94312
AA 0.56652 0.54806 0.52981 0.74946 0.93177 0.63661 0.94362 0.95839

Kappa 0.49372 0.48120 0.43718 0.88360 0.86803 0.66948 0.88228 0.92802

Table 6. Classification accuracy for the Salinas image with ten labeled samples per class.

Class Name SVM 3D-CNN 1D+2D GCN-M KDCDWBF STSE_DWLR SGL MSGLAMS
Brocoli_green_weeds_1 0.97213 0.77190 0.89575 1.00000 1.00000 1.00000 0.99350 1.00000
Brocoli_green_weeds_2 0.97979 0.83700 0.88249 1.00000 0.99899 0.98541 1.00000 1.00000

Fallow 0.92227 0.69037 0.38318 1.00000 1.00000 0.99931 1.00000 1.00000
Fallow_rough_plow 0.98131 0.96011 0.99348 0.99957 0.99931 0.99373 0.99783 0.99498

Fallow_smooth 0.96958 0.88974 0.94161 0.97818 0.98884 0.99860 0.98726 0.98208
Stubble 0.99469 0.99141 0.99750 0.99980 0.99926 0.99913 0.99873 1.00000
Celery 0.98829 0.89513 0.92519 0.99872 0.99727 0.94286 0.98963 0.99888

Grapes_untrained 0.62056 0.68778 0.70029 0.87680 0.99156 0.87804 0.98703 0.98501
Soil_vinyard_develop 0.97219 0.90053 0.17241 1.00000 1.00000 0.99840 1.00000 1.00000

Corn_senesced_green_weeds 0.82560 0.80295 0.75480 0.93511 0.96025 0.95372 0.97980 0.98383
Lettuce_romaine_4wk 0.79953 0.62583 0.53860 0.99659 0.98363 0.90000 0.96408 0.99906
Lettuce_romaine_5wk 0.97146 0.88920 0.83733 1.00000 1.00000 0.99715 1.00000 0.99637
Lettuce_romaine_6wk 0.97738 0.80832 0.83215 0.99668 0.97578 0.99730 0.98675 0.98908
Lettuce_romaine_7wk 0.90863 0.90656 0.94550 0.99396 0.98775 0.97158 0.94434 0.94393

Vinyard_untrained 0.55898 0.25129 0.55553 0.93584 0.87010 0.79336 0.99559 0.99106
Vinyard_vertical_trellis 0.97332 0.57847 0.86472 0.98697 1.00000 0.82473 1.00000 1.00000

OA 0.83018 0.74808 0.70606 0.95995 0.97665 0.93139 0.99175 0.99217
AA 0.90098 0.78041 0.76378 0.98121 0.98467 0.95208 0.98903 0.99152

Kappa 0.81221 0.71955 0.68856 0.95546 0.97395 0.92355 0.99082 0.99128

Table 7. Classification accuracy for the university of Pavia image with ten labeled samples per class.

Class Name SVM 3D-CNN 1D+2D GCN-M KDCDWBF STSE_DWLR SGL MSGLAMS
Asphalt 0.70013 0.84315 0.82234 0.97317 0.84083 0.87721 0.85153 0.97240

Meadows 0.79182 0.74326 0.60375 0.89858 0.87875 0.84716 0.87167 0.99507
Gravel 0.33954 0.81594 0.60163 0.94129 0.99712 0.77953 0.85543 0.92758
Trees 0.64275 0.70643 0.64811 0.95690 0.77147 0.82180 0.89293 0.93570

Painted metal sheets 0.98206 1.00000 1.00000 1.00000 1.00000 0.98873 0.99551 0.99926
Bare Soil 0.43017 0.61936 0.36057 0.99016 1.00000 0.74031 1.00000 1.00000
Bitumen 0.46258 0.64829 0.62409 0.99955 1.00000 0.68226 0.99545 1.00000

Self-Blocking Bricks 0.71294 0.90115 0.80587 0.98829 0.98156 0.87564 0.88589 0.98099
Shadows 0.99965 0.99553 0.99634 0.98975 0.52196 0.99931 0.99146 0.99894

OA 0.69445 0.75116 0.63356 0.94319 0.89384 0.83138 0.89591 0.98373
AA 0.67352 0.80812 0.71808 0.97085 0.88797 0.84577 0.92665 0.97888

Kappa 0.60372 0.69162 0.55293 0.92615 0.86203 0.78824 0.86523 0.97843
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Table 8. Classification accuracy for the Houston2013 image with ten labeled samples per class.

Class Name SVM 3D-CNN 1D+2D KDCDWBF STSE_DWLR SGL MSGLAMS
Healthy grass 0.86978 0.69503 0.89193 0.95822 0.93328 0.95414 0.97161
Stressed grass 0.82756 0.89545 0.96160 0.96331 0.68559 0.87345 0.77028
Synthetic grass 0.32008 0.83721 0.98606 0.99064 0.92484 0.99574 0.99748

Trees 0.90607 0.80034 0.92557 0.95275 0.47288 0.78560 0.89952
Soil 0.81166 0.84134 0.95273 0.97953 0.72748 1.00000 1.00000

Water 0.66780 0.48551 0.91662 0.86703 0.93313 0.89380 0.98230
Residential 0.46402 0.75479 0.73228 0.86080 0.51978 0.72018 0.93766
Commercial 0.51150 0.39113 0.64877 0.80451 0.33407 0.72156 0.81905

Road 0.59123 0.18508 0.61895 0.83688 0.26036 0.70592 0.84684
Highway 0.34081 0.35746 0.66846 0.79076 0.98727 0.98455 1.00000
Railway 0.45040 0.48471 0.57222 0.87527 0.88303 0.87547 0.98275

Parking Lot 1 0.20157 0.35746 0.45568 0.84590 0.89429 0.83414 0.95451
Parking Lot 2 0.13862 0.06155 0.24215 0.84586 0.92604 0.83069 0.93196
Tennis Court 0.76142 0.59532 0.88101 0.94617 0.98210 0.99610 1.00000

Running Track 0.97148 0.94607 0.96709 0.96433 0.96319 0.95363 0.99248
OA 0.59387 0.59493 0.75340 0.89350 0.71886 0.86091 0.92906
AA 0.59464 0.57904 0.76141 0.89880 0.75586 0.84985 0.93905

Kappa 0.55917 0.56117 0.73349 0.88541 0.69744 0.87520 0.92339

Figure 6. Classification maps of different methods on Indian Pines dataset; (a) Composite RGB image.
(b) Groundtruth map. (c) SVM; (d) 3D-CNN; (e) 1D+2D; (f) GCN-M; (g) KDCDWBF; (h) STSE_DWLR;
(i) SGL; (j) MSGLAMS (Proposed).
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Figure 7. Classification maps of different methods on Salinas dataset; (a) Composite RGB image. (b)
Groundtruth map. (c) SVM; (d) 3D-CNN; (e) 1D+2D; (f) GCN-M; (g) KDCDWBF; (h) STSE_DWLR;
(i) SGL; (j) MSGLAMS (Proposed).

Figure 8. Classification maps of different methods on University of Pavia dataset; (a) Composite
RGB image. (b) Groundtruth map. (c) SVM; (d) 3D-CNN; (e) 1D+2D; (f) GCN-M; (g) KDCDWBF;
(h) STSE_DWLR; (i) SGL; (j) MSGLAMS (Proposed).
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Figure 9. Classification maps of different methods on Houston2013 dataset; (a) Composite RGB
image. (b) Groundtruth map. (c) SVM; (d) 3D-CNN; (e) 1D+2D; (f) KDCDWBF; (g) STSE_DWLR;
(h) SGL; (i) MSGLAMS (Proposed).

3.4. Analysis of Experimental Results of the ORASS and MSSR

To better display the effect and function of these two key components of the the
proposed MSGLAMS, the performance of the ORASS and MSSR are compared with other
single scale and multiscale selection methods, respectively. The experimental results of
single-scale and multiscale selection methods are put in the same tables for comparison.
Tables 9–11 show the classification accuracy OA of different scales on the three datasets.
The bolded results represent the highest accuracy in the single-scale selection methods,
and the cells with green background represent the highest accuracy in both single-scale
selection methods and multiscale selection methods.

Table 9. OAs obtained by different single scale and multiscale on Indian Pines dataset with different
number of training samples per calss.

Samples per Class
Single-Scale Selection Methods Multiscale Selection Methods

TRS RES ASS ORASS MSF AMS MSNSF MSSR
3 0.75198 0.74120 0.72434 0.79413 0.83637 0.81529 0.77793 0.86604
5 0.82860 0.80873 0.76507 0.84099 0.85296 0.85374 0.82847 0.87032
7 0.85636 0.84646 0.76472 0.86877 0.87306 0.86711 0.89814 0.92643
10 0.86539 0.85094 0.81504 0.87135 0.91843 0.90945 0.89975 0.94214
15 0.88001 0.88390 0.85503 0.91358 0.95443 0.92107 0.92955 0.95648

It can be seen from the results that among all single-scale selection algorithms, the
single scale selected by ORASS has better performance. ASS is also an adaptive single-scale
selection method, but because the training sample size is small, the intra-inter indexes f (si)
of the SP maps is not must positively related to the OAs. Therefore, the optimal single scale
selected by the maximum value of the intra-inter index argmax( f (si)) may not have the
best performance. TRS and RES do not have the ability to adaptively select scales according
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to different SP segmentation methods, so the fixed scale chosen by TRS and RES may not
be suitable for the SGL classifier.

Table 10. OAs of different single scale and multiscale on Salinas dataset with different number of
training samples per calss.

Samples per Class
Single-Scale Selection Methods Multiscale Selection Methods

TRS RES ASS ORASS MSF AMS MSNSF MSSR
3 0.94556 0.95464 0.95322 0.96771 0.98116 0.96434 0.96227 0.99048
5 0.96358 0.95996 0.96966 0.97008 0.98501 0.98013 0.97572 0.99188
7 0.96379 0.97652 0.97121 0.98809 0.98877 0.98553 0.98108 0.99408
10 0.97297 0.98419 0.98137 0.99043 0.99154 0.98619 0.98423 0.99477
15 0.98973 0.98697 0.98441 0.99061 0.99161 0.99012 0.98683 0.99547

Table 11. OAs of different single scale and multi-scale fusion on university of Pavia dataset with
different number of training samples per calss.

Samples per Class
Single-Scale Selection Methods Multiscale Selection Methods

TRS RES ASS ORASS MSF AMS MSNSF MSSR
3 0.82787 0.81473 0.83604 0.84376 0.90945 0.87703 0.82612 0.94128
5 0.83131 0.83793 0.84895 0.86153 0.91769 0.90020 0.88813 0.94588
7 0.85337 0.84037 0.86587 0.87798 0.92202 0.90798 0.92776 0.95404
10 0.87185 0.88042 0.88078 0.89451 0.93877 0.92767 0.94735 0.96327
15 0.91360 0.91487 0.91669 0.93349 0.95532 0.93246 0.95841 0.96454

In addition, the classification accuracy of HSI has been significantly improved through
a multiscale fusion strategy. Especially for the dataset of the University of Pavia with com-
plex texture, the classification accuracy of multiscale fusion is much higher than single scale.
However, choosing different fusion scales will supplement different spatial information
of ORS and effect the final classification accuracy. The negative-contribution scales will
destroy the quality and quantity of the enlarged samples and reduce the classification accu-
racy. For example, the OA of MSF and MSNSF is lower than MSSR, because the fixed fusion
scales selected by MSF and MSNSF may contain scales with negative contribution. AMS
has the ability to adaptively select multiple scales, but it still relies too much on intra-inter
indexes f (si). The f (si) is not must positively related to the OAs, so AMS does not have the
best performance. As shown in Tables 9–11, the OA of MSSR is higher than other multiscale
selection methods and much higher than single-scale SP segmentation. Because under
the condition of STLSS, the fusion scales selected by MSSR have complementary enlarged
samples information, which makes a positive contribution to improving the classification
accuracy. Finally, with the increase of the number of samples, the OAs of different scales
are very close, especially on the dataset Salinas with simple texture.

3.5. Parameter Analysis

In this section, the influence of three key parameters of the MSGLAMS method are
analyzed in detail. First, we jointly analyzed the influence of the spatial–spectral balance
parameter λ on the ORS selection and the influence of κ in Equation (25) on the classification
results. Then, the effect of the number of training samples ({3, 5, 7, 10, 15} randomly selected
samples per class) on several classifiers is examined on the sets of the Indian Pines, Salinas,
and University of Pavia images.

3.5.1. Parameter Analysis of λ and κ

The setting of the spatial–spectral balance parameter λ determines the selection of
ORS which used to construct the sparse dictionary, and ultimately affects the fusion scale
pool. The interval of λ is set to [0 : 0.1 : 1]. When λ = 0, ORSSA only selects the ORS based
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on the spectral evaluation index Fspectral, i.e., ORS = Supper, because Supper contains the
smallest spectral difference between pixels within the same SP. Conversely, λ = 1 means
that ORASS only selects ORS based on the spatial evaluation index Fspatial, i.e., ORS = Slower,
because each SP in Slower scale map contains the largest number of pixels. The interval
of κ in the fusion threshold TS is set to [1 : 2 : 11]. When κ = 1, TS = Emax, representing
all scales fusion. For κ = 11 or higher, the performance of MSGLAMS is close to ORSSA.
Figure 10 shows the influence of λ and κ on the overall accuracy on the three datasets, and
deeper color corresponds to higher performance. For the Indian Pines dataset, MSGLAMS
suggests the best performance when λ = 0.3 and κ = 5. In addition, it can be seen from the
result of κ = 11, the ORS selected by ORASS has the best performance when the λ = 0.3.
When the κ value is small, especially κ = 5, OA of MSGLAMS is higher than other κ values.
For the Salinas dataset, MSGLAMS shows the best performance when λ = 0.7 and κ = 5,
and when λ = 0.4, the ORS selected by ORSSA achieved the best performance. Finally, for
the University of Pavia dataset, MSGLAMS has the best performance when λ = 0.3 and
κ = 7, and when λ = 0.3, ORASS yield the best performance.

(a) (b) (c)

Figure 10. Influence of two parameters on classification accuracy on the three HSI data sets. (a) Indian
Pines. (b) Salinas. (c) University of Pavia. λ is the spatial–spectral balance parameter, which
determines the selection of the optimal reference scale (ORS). κ is the fusion threshold parameter,
which determines the number of the multiscale maps. Deeper colors represent better performance.
Generally, MSGLAMS can achieve excellent performance when the λ = 0.3 and κ = 5.

Two conclusions can be drawn from the above analysis. First, the small spatial–spectral
balance factor λ (i.e., small spectral difference between pixels within the same SP) will get
a better performing ORSSA. Consequently, in order to obtain a best-performance ORS to
construct a sparse dictionary, λ can be set to 0.3. Second, fusing worse scales can reduce the
accuracy (e.g., when κ = 1 or κ = 3), and too few fusion scales may not capture complete
spatial information of multiscale (e.g., when κ = 9 or κ = 11). For normal HSIs, κ can be
set to 5, but for datasets with complex textures (such as University of Pavia), setting κ = 7
will achieve better classification results.

3.5.2. Effect of Different Number of Training Samples

The effect of the number of training samples on several classifiers is examined on the
Indian Pines, Salinas, and University of Pavia images in this section. The parameters for all
the classifiers are kept the same as that in Section 3.3, and randomly select {3, 5, 7, 10, 15}
samples per class as training samples. Figure 11 shows the OA of different classifiers when
selecting randomly different numbers of training samples. It can be seen from the results
in Figure 11 that the OA obtained by the eight classifiers will increase with the increasing
of the number of training samples. In addition, MSGLAMS has the best performance
under different training sample sizes. When the number of samples selected is smaller, the
advantage of MSGLAMS is more obvious. Therefore, when the number of training samples
is small (e.g., three or five training samples per class), the OA of MSGLAMS is significantly
higher than other comparison methods. This result proves the obvious advantages of our
proposed MSGLAMS under the condition of STLSS.
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(a) (b) (c)

Figure 11. Classification accuracy values of different numbers of labeled samples on three datasets.
(a) Indian Pines; (b) University of Pavia; (c) Salinas.

3.5.3. Running Time Comparison

To comprehensively evaluate our proposed method, the corresponding experiments
are conducted on four datasets. Table 12 presents the runtime results of different methods.
For the small-size datasets, such as Indian Pines, Salinas and University of Pavia, SVM
and lightweight networks (1D+2D and 3D-CNN) yield shorter runtime. For the large-size
dataset, Houston2013, the results suggest that all methods require more runtime. Compared
with the first three methods, STSE_DWLR and SGL require more computation time. The
key of GCN-M is the graph convolution network, which needs to feed the whole HSI
into network, hence the GCN-M requires much more calculated cost. KDCDWBF also
requires more runtime due to its extra post-processing procedure. Our proposed method
also requires more computational cost because MSGLAMS needs spend a lot of time to
build multiple superpixel contracted graphs. Especially when the size of an HSI is large, it
requires more time to construct the large-scale superpixel maps.

Table 12. runtime result (seconds) comparison on four data sets.

Data Set SVM 3D-CNN 1D+2D GCN-M KDCDWBF STSE_DWLR SGL MSGLAMS

Indian Pines 3.39 21.837 9.16 110.49 131.34 40.317 64.65 95.033
Salinas 20.55 50.31 20.04 750.28 672.35 103.08 163.79 569.90

University of Pavia 4.14 56.57 17.61 608.22 714.35 70.05 351.76 590.53
Houston2013 34.56 101.42 42.70 - 1157.96 70.05 520.31 874.59

4. Conclusions

This paper proposes a multiple superpixel graphs learning method based on adaptive
multiscale segmentation for HSI classification (MSGLAMS). The MSGLAMS can be split
into two major section: the selection of multiscale, and creating multiple superpixel-
based graphical models to jointly predict the classification results via a pixel-level fusion.
Aiming at the election of a multiscale, a novel two-steps multiscale selection strategy is
designed to adaptively select a set of complementary multiscales. Initially, an optimal
reference scale selection algorithm (ORSSA) is proposed to select the optimal reference
scale (ORS) as a basic scale from the built candidate scale pool. Then, a multiscale selection
algorithm based on sparse representation (MSSR) is developed to select the fusion scales,
which has positive contribution to supplementing spatial information of ORS. Finally,
multiple superpixel-based graphical models are obatined via a constructed superpixel
contracted graph of determined scales (fusion scales), and the final results are jointly
predicted via the voting results of these models. The proposed MSGLAMS adopts the
multiscale-superpixel-based framework, which can reduce the adverse effect of improper
selection of a superpixel segmentation scale on the classification accuracy while saving
the cost to manually seek suitable segmentation scale. To make full use of the spatial
information of different segmentation scales, a novel two-steps multiscale selection strategy
is designed to adaptively select a set of complementary multiscales. To fix the bias and
instability of a single model, multiple superpixel-based graphical models obatined by
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constructing superpixel contracted graph of fusion scales are developed to jointly predict
the final results via a pixel-level fusion strategy. This Boosting-like prediction strategy can
significantly improve the accuracy and robustness of the classification results, especially
when the number of labeled samples is small. The experimental results on the three datasets
indicate the superiority of the proposed MSGLAMS over several well-known classifiers
in terms of qualitative and quantitative results, especially when the number of selected
labeled samples is small.

The proposed method has achieved excellent performance on four datasets, but it
needs a higher computational costs for HSIs with larger sizes. In the future, we will try to
reduce computational complexity and adopt the CUDA to accelerate MSGLAMS.
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