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Abstract: Hyperspectral image classification (HSIC) is one of the most important research topics
in the field of remote sensing. However, it is difficult to label hyperspectral data, which limits the
improvement of classification performance of hyperspectral images in the case of small samples. To
alleviate this problem, in this paper, a dual-branch network which combines cross-channel dense
connection and multi-scale dual aggregated attention (CDC_MDAA) is proposed. On the spatial
branch, a cross-channel dense connections (CDC) module is designed. The CDC can effectively
combine cross-channel convolution with dense connections to extract the deep spatial features of
HSIs. Then, a spatial multi-scale dual aggregated attention module (SPA_MDAA) is constructed. The
SPA_MDAA adopts dual autocorrelation for attention modeling to strengthen the differences between
features and enhance the ability to pay attention to important features. On the spectral branch, a
spectral multi-scale dual aggregated attention module (SPE_MDAA) is designed to capture important
spectral features. Finally, the spatial spectral features are fused, and the classification results are
obtained. The experimental results show that the classification performance of the proposed method
is superior to some state-of-the-art methods in small samples and has good generalization.

Keywords: hyperspectral image; convolutional neural networks (CNNs); cross-channel convolution;
dual aggregated attention

1. Introduction

Hyperspectral images (HSIs) have been used in a variety of fields as remote sensing
technology has advanced [1]. Almost all walks of life are involved, from national military
security to agricultural crop growth; from the detection of water resources to the monitoring
of mountain fire forestry; from atmospheric exploration to geological survey; from the
medical industry to mineral resources [2–5]. These applications, however, are intrinsically
closely related to hyperspectral image classification (HSIC) technology [6].

In the early days, the methods used for HSIC were mainly classical machine learning
algorithms. For example, a K-nearest neighbor classifier [7] was constructed by Samaniego
L. A maximum likelihood classifier [8] was designed by Ediriwickrema J. A method of
Rogers regression [9] was proposed by Foody G M. However, the classification performance
of these methods is relatively poor when the number of samples is small and the data
dimension of HSI is too high. To this end, a principal component analysis (PCA) method [10]
was proposed by Prasad S. PCA is used to map high-dimensional data to low-dimensional
space, lower the dimension of HSI, and keep the basic feature information of HSI. The
information of the spatial dimension was overlooked by the early HSIC, which only took
into account the information of the spectral dimension. However, HSI is obtained by
simultaneously imaging the target area with multiple continuously subdivided bands. This
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means that a lot of spectral information and spatial information are contained by HSIs [11].
Therefore, the spectral information and spatial information of HSI need to be extracted
simultaneously when the HSI is classified. Thereupon, the HSIC method based on the
combination of spatial spectral features was proposed [12–16]. Among them, [12] utilizes a
hybrid framework of principal component analysis (PCA), finite element method based
on hierarchical learning, and logistic regression (LR) to extract spectral spatial features
to achieve high classification accuracy [13]. The sparse multinomial logistic regression
(SMLR) classifier is used to learn spectral information, and the spatial features are modeled
by spatially adaptive total variation (SpATV) regularization. In [14], a deep learning
(DL) framework combining PCA, DL, and LR is proposed, which can fuse spatial and
spectral features to significantly improve the classification performance of HSIs. In [15], the
author reduces spectral loss through spectral spatial weighted modulation and spectral
compensation. The effectiveness of the method was verified through classification results.
In [16], a multi-scale low rank decomposition algorithm is used to extract multi-scale spatial
features, and a Landmark-neighborhood preserving embedding algorithm is used to fuse
spatial and spectral features. In addition, the classification performance of the network
largely depends on its feature extraction ability [17–22]. However, the feature extraction
of the network is seriously disturbed by the complex and diverse distribution of ground
objects in HSI. It is difficult to find a specific feature extraction method suitable for all HSIs.
The emergence of convolutional neural networks (CNNs) [23,24] brings great convenience
to feature extraction.

This has made CNN popular with researchers in the field of HSIC, and some excellent
classification methods have also been proposed. For example, a classification method of the
three-dimensional convolutional neural network (3D-CNN) was proposed by Chen [25]. 3D-
CNN can extract deep spatial and spectral information at the same time and has achieved
good classification results. In order to mine deeper features, it is often necessary to extract
deeper features by overlapping multi-layer convolutions. However, if the convolution layer
of the network is too deep, it will lead to the problem of gradient explosion and gradient
disappearance. This will make the network training difficult to converge, over-fit, and may
even lead to network collapse. In addition, blind stacking of convolutions will inevitably
bring huge parameter quantities. This will cause the network training speed to become
extremely slow and also bring a great burden to the computer hardware equipment. The
emergence of deep residual networks (resnet) and dense connected networks (DenseNet)
has greatly alleviated this problem [26–33]. As such, a multi-scale dense network (MSDN)
was proposed [34], which reduced the loss of information in feature engineering and
extracted more abundant fine features at low cost. After that, a multi-layer fusion dense
network (MFDN) was proposed by Li [35] to extract features in different scenarios through
multi-scale dense connections and fuse them. However, the distribution of ground objects in
the dataset used for HSIC is chaotic, which brings a great test to the classification network.
This also makes feature extraction crucial in classification tasks. When the number of
samples is small, if more key features cannot be obtained, it is difficult to accurately predict
all categories in classification prediction. Therefore, unified multi-scale learning (UML) was
proposed by Wang [36]. UML uses multi-scale channel shuffling to shuffle channel features
of different sizes, which can effectively extract more different features. Nevertheless, in
the HSI dataset with extremely few sample labels, it is still a difficult point to effectively
improve the classification performance of the model.

Recently, in order to alleviate the problem of sample scarcity, an attention mechanism
was proposed [37–40]. An attention mechanism is a mechanism that emphasizes the area of
interest and suppresses the irrelevant background area in the way of “dynamic weighting”.
An attention-assisted CNN model [41] was proposed by Hang. Hang combines attention
with CNN in parallel to extract more discriminative spatial spectral features. However, con-
volution is not robust to the rotation of spatial position, which will affect the improvement
of classification accuracy. Therefore, a rotation-invariant attention network (RIAN) and a
cross-attention-spectrum-spatial network (CASSN) have been proposed successively [42,43].
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RIAN restrains the interference of position rotation on classification by correcting attention
in space, while CASSN uses the interaction of cross- spatial attention to mitigate the im-
pact of position rotation. In addition, Ma et al. designed a double-branch multi-attention
network (DBMA) by combining a multi-branch structure with attention [44] and achieved
good classification performance. A double-branch dual-attention network (DBDA) [45]
was proposed by Li. DBDA captures the spatial information and spectral information of
HSI through double branches and classifies them with attention. In the past two years, a
transformer model combining self-attention has been proposed. In [46], a hyperspectral
image transformer in transformer (HSI-TNT) method was proposed. In this method, two
transformer deep networks were used to fuse local and global features, and the effectiveness
of the method was finally demonstrated through a large number of experiments.

However, in the case of small samples, improving the feature extraction ability of the
network and strengthening the ability to pay attention to spatial spectral information to
achieve high-precision classification is still a major difficulty in HSIC. In order to alleviate
this problem and further improve the classification performance in the HSIC with extremely
scarce sample labels, a HSIC method of cross-channel dense connections and multi-scale
dual aggregated attention (CDC_MDAA) with double branches was proposed in this paper.
First, on the spatial branch, a cross-channel dense connection (CDC) is proposed. CDC
realizes the interactive fusion of channel information and makes use of dense connection to
multiplexing spatial features multiple times to extract the depth spatial features of HSIs.
Then, in order to capture the key spatial spectral features, a dual aggregated attention
(DAA) method is proposed. In particular, the DAA is divided into a spatial dual aggregated
attention module (SPA_DAA) and a spectral dual aggregated attention module (SPE_DAA).
SPA_ DAA and SPE_ DAA can focus on the extracted spatial features and spectral features,
respectively, and enhance the difference of features to capture important features conducive
to classification. After a lot of experiments, compared with other mainstream methods,
CDC_ MDAA can achieve optimal classification performance on different data sets.

The main contributions of this paper include the following four parts:

(1) In this article, a cross channel dense connection and multi-scale dual aggregated
attention network (CDC_MDAA) is proposed to alleviate the small sample problem,
and extensive experiments have shown that the proposed method is superior to some
state-of-the-art methods in small samples.

(2) A CDC module is proposed, which combines cross-channel convolution with dense
connection to effectively extract the spatial features of HSIs. The CDC realizes the
interactive fusion of channel information and introduces dense connections. The
same feature can be multiplexed multiple times, the loss of information in the feature
extraction process can be reduced, and too many parameters are avoided.

(3) A DAA module is constructed. The DAA uses dual autocorrelation for attention mod-
eling, which can strengthen the difference between features to enhance the ability to
pay attention to important features. In addition, enhanced normalization is proposed
to further highlight important features.

(4) A multi-scale head strategy is proposed for the DAA mechanism. It can increase
the receptive field and obtain the attention value of multiple features to enhance the
attention ability.

The rest of this paper is organized as follows. Section 2 is divided into four parts, which,
respectively, introduce the overall architecture of CDC_MDAA, CDC, DAA, and multi-scale
header strategies. In Section 3, the data sets, experimental parameters, model framework
setting, and experimental analysis are discussed. Finally, in Section 4, conclusions are given.

2. Methods

In this paper, a CDC_MDAA is proposed for HSI classification. The CDC_MDAA is
mainly composed of three parts. The first part is the CDC module and residual connection
module for feature extraction. The second part is the DAA mechanism, which enhances
important features by dynamic weighting. In the third part, a multi-scale head strategy is
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designed based on DAA to expand the receptive field and enhance the ability of attention
to features.

2.1. The Overall Framework of CDC_MDAA

The CDC_MDAA proposed in this paper is composed of a CDC module, a residual
connection, DAA, global average pooling (GAP), and a full connection (FC) layer, as
shown in Figure 1. The CDC_ MDAA is a spatial-spectral association dual-branch network
composed of a spatial branch and a spectral branch. On the spatial branch, the spatial
features of HSI are extracted by the CDC module. After obtaining the spatial feature maps,
they are processed by a nonlinear deformation module to reduce the dimension and then
input into the spatial aggregated attention mechanism. The spatial aggregated attention
mechanism connects two SPA_MDAA (composed of the multi-scale header strategy and
SPA_DAA) modules by skipping connection to strengthen the attention ability. Similarly,
in the spectral branch, the spectral features are extracted by the residual connection module
and then the extracted features are introduced into the proposed spectral aggregated
attention mechanism. The spectral aggregated attention mechanism is composed of two
SPE_MDAA (composed of the multi-scale header strategy and SPE_DAA) modules, which
also adopt skipping connection. Then, spectral branch and spatial branch are fused, and
then processed through a convolution layer and GAP. Finally, it is passed into the FC and
the classification results are obtained.
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Figure 1. The overall structure of CDC_MDAA.

2.2. The CDC Module

In this paper, the CDC module is proposed by combining cross-channel convolution
and dense connection. As shown in Figure 2, the convolution kernel of size 1× 1× 1 is
adopted at the beginning, which greatly reduces the number of parameters of the model
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and limits the number of channels, which facilitates the subsequent feature extraction. Then
convolution kernel of size 3× 3× 1 is used for the interactive fusion of channel information.
This process can be described as

x1 = Relu
(

BN
(

F1
(
x; wF1

)))
x ∈ Rh×w×b,c, x1 ∈ Rh×w×b,c1 (1)

x2 = Relu
(

BN
(

F2
(
x; wF2

)))
x ∈ Rh×w×b,c, x2 ∈ Rh×w×b,c2 (2)

x3 = Relu
(

BN
(

F3
(
x; wF3

)))
x ∈ Rh×w×b,c, x3 ∈ Rh×w×b,c3 (3)

x′ = Catc

(
f1

(
x1; w f1

)
; f2

(
x2; w f2

)
; f3

(
x3; w f3

))
x′ ∈ Rh×w×b,c′ (4)
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Figure 2. The CDC module.

Among them, F1(·), F2(·), and F3(·), in turn, represent the pointwise convolutionwith
the number of output channels being 12, 24, and 36. BN(·) is batch normalization and
Relu(·) is activation function. f1(·), f2(·), and f3(·) represent three composite functions
that integrate convolution, batch normalization, and activation functions. The difference is
that the input channel sizes of their convolution kernel are 12, 24, and 36, in order. Catc(·)
refers to the operation of connecting according to the channel dimension. In addition, c is
the number of channels of x.b,h, and w, in turn, representing the band, length, and width
of x. c1, c2, and c3 are the number of channels with sizes of 12, 24, and 36, respectively. c′ is
the number of channels with size 64.

Then, the dense connection is integrated into the CDC module. During back propa-
gation, each layer will receive gradient signals of all layers following it. Therefore, as the
network depth increases, the gradient near the input layer will become smaller and smaller.
This will cause the gradient of the network to disappear. During back propagation, gradient
signals of all layers can be used repeatedly by dense connection, which to some extent
alleviates the problem of gradient dissipation during training. In addition, a large number
of features are reused during forward propagation, so that a large number of features can
be generated even with a small number of convolution cores. To some extent, it can also
be said that dense connection plays a role in reducing parameters. This process can be
expressed as

x′ l = H
([

x′0, x′1, x′2, · · · x′ l−1
])

(5)

where the subscript of x′0 represents the current number of layers. Since the output of
cross-channel convolution is the input of densely connected blocks, the output of features
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extracted by cross-channel convolution is defined as x′0. Among them, H(•) is defined as
the composite function of 3D convolution, batch normalization, and Relu.

In general, CDC first performs feature extraction on the input feature maps by three
3D convolutions with size 1× 1× 1. Then, the three 3D convolutions with size 3× 3× 1 are
connected to further extract spatial features. After the feature connection is obtained, it is
input into the subsequent dense connection to extract deeper spatial features. The CDC can
effectively extract deep spatial features, realize the interactive fusion of channel information,
and enhance the nonlinear expression ability of features. The CDC implementation process
is shown in Algorithm 1.

Algorithm 1. The implementation process of the CDC module

1. Input: select sample patches x ∈ Rh×w×b,c randomly from HSI.
2. The three pointwise convolutions with output channels 12, 24, and 36 are used to process x.

Then, batch normalization is added to prevent the network from over-fitting and Relu is
used to increase the nonlinear expression ability of features. Finally, the features
x1 ∈ Rh×w×b,c1 , x2 ∈ Rh×w×b,c2 , x3 ∈ Rh×w×b,c3 are obtained.

3. Then, three 3D convolutions of size 3× 3× 1 are used to process x1, x2, and x3, respectively.
After convolution, batch normalization and activation function are used to process the
obtained features. Finally, the obtained features are connected according to the channel
dimension to obtain feature x′ ∈ Rh×w×b,c′ .

4. Next, input x′ into a concatenated structure composed of three convolution blocks. x′ will be
input to each convolution node, and the result of each convolution block will be input to
each node after it, forming a dense connection.

5. Output: the final output is X ∈ Rh×w×b,c′ .

2.3. The DAA Module

The attention mechanism enhances the prediction ability of the network by highlight-
ing the important features in the image and weakening the irrelevant features. Therefore,
the performance of the attention mechanism depends on its own differentiated treatment
of features, that is, different attention to features. In order to strengthen the attention ability
of the network and improve the classification performance of the network. A new attention
mechanism, DAA, was proposed in CDC_MDAA. The DAA is divided into SPA_DAA
and SPE_DAA.

As shown in Figure 3, on the spatial branch, the SPA_DAA module is proposed.
Specifically, the SPA_DAA uses the two-dimensional convolutions of size 1× 1 to construct
the query, value, and key. In the SPA_DAA, two groups of query and key are designed to
carry out dot multiplication, respectively, in order to strengthen the attention to features.
The calculation of query, key, and value can be represented as

q1 = F
(
X′; ωq1

)
X′ ∈ Rc′×h×w, q1 ∈ Rhw×c′ (6)

q2 = F
(
X′; ωq2

)
X′ ∈ Rc′×h×w, q2 ∈ Rhw×c′ (7)

k1 = F
(
X′; ωk1

)
X′ ∈ Rc′×h×w, k1 ∈ Rc′×hw (8)

k2 = F
(
X′; ωk2

)
X′ ∈ Rc′×h×w, k2 ∈ Rc′×hw (9)

v = F
(
X′; ωv

)
X′ ∈ Rc′×h×w, v ∈ Rc′×hw (10)

Here, X′ is the input. ωq1 , ωq2 , ωk1 , ωk2 , and ωv are the weight parameters of query
q1, q2; key, k1, k2; and value, v, and these parameters are parameters that can be used for
training. In addition, F(•) in the formula is the 2D convolution kernel with size 1× 1.
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After the query and the key point multiplication in the training process, some par-
ticularly large singular feature values will be obtained. This will cause the phenomenon
of gradient explosion, resulting in poor training performance. However, the purpose of
attention is only to make the value of the corresponding part of the features with high cor-
relation larger, and the value of the corresponding part of the features with low correlation
smaller. That is known as the importance difference of the obtained features. In traditional
attention, softmax is usually used to normalize the attention maps, but this will make the
gradient of some inputs become 0. This means that for the activation of this region, the
weight will not be updated during the back propagation. Therefore, it will produce dead
neurons that cannot be activated and ultimately affect the effect of classification. For this
reason, the enhanced normalization strategy is proposed in the SPA_DAA. First, a global
mean normalization is performed for all values, and then batch normalization is performed.
Enhanced normalization not only solves the impact of singular feature values on network
training, but also further enhances the ability of SPA_DAA to pay attention to spatial
features. This is because the dot product of two groups of attention is used at the beginning,
which is equivalent to the square of the feature values of a single attention. This makes the
distance between the feature values and the non-interested feature values become larger.
At this time, the mean normalization is equivalent to enhancing the features of interest and
suppressing the features of non-interest. In this way, the SPA_DAA has further improved
its attention ability through enhanced normalization support. The production process of
attention maps can be represented as

attn1 = (q1·k1) q1 ∈ Rhw×c′ , k1 ∈ Rc′×hw, attn1 ∈ Rhw×hw (11)

attn2 = (q2·k2) q2 ∈ Rhw×c′ , k2 ∈ Rc′×hw, attn2 ∈ Rhw×hw (12)

attn = QIR(attn1·attn2; N) attn ∈ Rhw×hw (13)

Attn = BN(attn) ∈ Rhw×hw attn ∈ Rhw×hw, Attn ∈ Rhw×hw (14)

where attn1 and attn2 are obtained by the point multiplication of query tensor q1 and value
tensor k1 and the point multiplication of query tensor q2 and value tensor k2, in turn. In
Equation (13), after multiplying attn1 and attn2, divide all the resulting values by the mean
N, and then round up to get attn, where QIR(•) is a compound operation of division and
rounding. In this way, the values can be uniformly weakened to prevent the generation of
too-large singular values. hw× hw is the size of attn1 and attn2. In Equation (14), Attn is
the attention graph obtained, where Equations (13) and (14) can be simplified as

Attn = EB(attn1·attn2) (15)

EB(•) is a composite function of two operations of QIR(•) and BN(•). Because it is
two consecutive normalization processes, it is called enhanced normalization. Finally, the
output of the SPA_DAA module can be expressed as

Out_F = v·Attn = v·EB(attn1·attn2) Out_F ∈ Rc′×hw (16)

The value of each position of Out_F is reconstructed by multiplying the weighted
value, v, with Attn. The detailed implementation process of SPA_DAA module is shown
in Algorithm 2.
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Algorithm 2. The detailed implementation process of SPA_DAA module

1. Input: the feature map X′ ∈ Rc′×h×w, where X′ is the result of the nonlinear dimensionality
reduction of feature X obtained by the CDC module.

2. Input X into three 2D convolutions to obtain q1 ∈ Rhw×c′ , q2 ∈ Rhw×c′ , and v ∈ Rc′×hw,
respectively. Then transpose q1 and q2 to obtain k1 ∈ Rc′×hw and k2 ∈ Rc′×hw.

3. Divide q1 and k1 into one group and q2 and k2 into another group. Multiply the two groups
of query tensors and key tensors, respectively, to obtain attn1 ∈ Rhw×hw and
attn2 ∈ Rhw×hw.

4. Then, multiply attn1 and attn2 to obtain the attention mask,Attn, through enhanced
normalization processing.

5. Output: finally, multiply the obtained attention mask with v ∈ Rc′×hw to obtain attention,
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Figure 3. The SPA_ DAA module.

Similarly, a SPE_DAA is proposed on the spectral branch. As shown in Figure 4, unlike
SPA_DAA, SPE_DAA uses 3D convolution kernels to build query, key, and value. While
focusing on spectral characteristics, spatial locations are linked to establish correlations
between spectral and spatial locations. Therefore, the SPE_DAA can not only focus on the
feature differences of the constructed spectral information, but also associate the spatial
spectral information. The calculation of query tensor, key tensor, and value tensor in the
SPE_DAA can be expressed as

Q1 = G
(
X′′ ; ψQ1

)
X′′ ∈ Rh×w×b,c′ , Q1 ∈ Rhw×c′ (17)

Q2 = G
(
X′′ ; ψQ2

)
X′′ ∈ Rh×w×b,c′ , Q2 ∈ Rhw×c′ (18)

K1 = G
(
X′′ ; ψK1

)
X′′ ∈ Rh×w×b,c′ , K1 ∈ Rc′×hw (19)

K2 = G
(
X′′ ; ψK2

)
X′′ ∈ Rh×w×b,c′ , K2 ∈ Rc′×hw (20)

V = G(X′′ ; ψV) X′′ ∈ Rh×w×b,c′ , V ∈ Rc′×hw (21)

where, Q1 and Q2 are the queries of spectral branch. K1 and K2 are keys and V is value.
G(•) is a 3D convolution operation. In fact, Q1, Q2, and V in the SPE_DAA adopt the
same settings, so the parameters are shared with each other. The calculation of the spectral
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attention map follows the idea of SPA_DAA and adopts the enhanced normalization
strategy. The calculation process can be expressed as

attn_asso1 = (Q1·K1) attn_asso1 ∈ Rhw×hw (22)

attn_asso2 = (Q2·K2) attn_asso2 ∈ Rhw×hw (23)

Attn_asso = EB(attn_asso1·attn_asso2) Attn_asso ∈ Rhw×hw (24)

Among them, attn_asso1 and attn_asso2 are the spatial spectral-associated attention
features obtained by the multiplication of query tensor and key tensor. In Equation (24),
Attn_asso is the spectral attention map obtained by the enhanced normalization of two
separate spatial spectral association attentions. Then, multiply Attn_asso with the value in
Equation (21) to reconstruct the spatial spectral association information. This process can
be expressed as

Out = V·Attn_asso Out ∈ Rc′×hw (25)

It is worth noting that SPE_DAA does not only focus on the information of spectral
dimension, but also closely associates the spectral with the spatial position, which makes the
subsequent fusion of spatial and spectral branches more appropriate. The implementation
process of SPE_DAA is shown in Algorithm 3.

Algorithm 3. The implementation process of the SPE_DAA module

1. Input: feature map X′′ ∈ Rh×w×b,c′ . X′′ is the feature obtained by the residual module.
2. Reduce the spectral dimension of X′′ through the 3D convolution of size 1× 1× b and

associate the spectral information with the spatial information. Then, it is processed by 3D
convolutions and Q1 ∈ Rhw×c′ , Q2 ∈ Rhw×c′ , V ∈ Rc′×hw, K1 ∈ Rc′×hw, and K2 ∈ Rc′×hw

are obtained, respectively.
3. The Q1 and the K1 are divided into a group and the Q2 and the K2 are divided into a group.

Multiply the two groups of query tensors and key tensors, respectively, to obtain
attn_asso1 ∈ Rhw×hw and attn_asso2 ∈ Rhw×hw.

4. Then, multiply attn_asso1 and attn_asso2, and obtain the attention mask, Attn_asso,
through enhanced normalization processing.

5. Output: multiply the obtained attention mask with V ∈ Rc′×hw to obtain attention,
Out ∈ Rc′×hw.
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2.4. The Multi-Scale Head Strategy

Based on the DAA module, a multi-scale head mechanism is proposed. The multi-
scale dual aggregated attention mechanism (MDAA) is composed of multi-scale head
and the DAA, as shown in Figure 5. The upper part is composed of a multi-scale head
mechanism and a SPA_DAA composition, namely, a spatial multi-scale dual aggregated
attention (SPA_MDAA) module. The SPA_ MDAA uses two 2D convolutions of size 1× 1
and 3× 3 as its head. Different from the traditional multi-head mechanism of attention,
multi-scale heads do not simply connect the attention of different heads but multiply the
two to provide attention with greater attention ability. This way of processing restricts
the number of channels to a certain extent. It also reduces the number of parameters and
makes the calculation relatively simple. With the introduction of multi-scale convolution,
the receptive field of attention has been well expanded.
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The multi-scale head mechanism is also designed on the SPE_DAA, as shown in the
lower part of Figure 5. A spectral multi-scale dual aggregated attention (SPE_MDAA) mod-
ule is composed of a multi-scale head mechanism and a SPE_DAA module. Three heads of
different sizes are used in the SPE_MDAA. The three heads are three 3D convolutions with
the sizes of 1× 1× 1, 1× 1× 3, and 1× 1× 5. The SPA_ MDAA and the SPA_ MDAA are
similar, and they are also the multiplication of a single attention.

3. Experimental Results and Analysis

First, four HSI data sets are introduced in detail. Then, the hyper-parameter setting
of the experiment is described. In order to make a fair comparison, all experiments were
conducted in the same environment. Specifically, the elected CPU is AMD Ryzen 75800H.
The selected GPU is NVIDIA RTX 3070. The software environment for the experiment is
CUDA11.2, Python 3.7.12, and torch 1.10.0.4 of Windows 10. Pycharm is used to compile
software. In order to verify the effectiveness of the proposed module in the network, a large
number of ablation experiments have been carried out in this paper. In addition, in order to
obtain the best network performance, some comparative experiments were carried out and
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the best network structure was determined. Finally, in order to evaluate the performance
of the method proposed in this paper, the network is quantitatively evaluated on four data
sets using three important evaluation indicators: overall accuracy (OA), average accuracy
(AA), and kappa coefficient. Their calculation process can be expressed as

OA =
∑n

i=1 si,i

S
(26)

AA =
1
n∑n

i=1
si,i

∑n
j=1 si,j

(27)

Kappa =

n
∑

i=1
si,j −

n
∑

i=1
(si,− s−,i)/S

S−
n
∑

i=1
(si,− s−,i)/S

(28)

where S is the total number of samples and si,j is the number of samples classified by
category i as category j; n is the number of categories. In order to avoid the randomness of
the experimental results, each group of experiments was repeated 10 times and then the
averages of the 10 experimental results were taken as the final experimental results. In this
paper, the best experimental results in the table are displayed in bold.

3.1. HSI Datasets

In order to verify the effectiveness of CDC_MDAA, the experiment described in this
paper was conducted on four more challenging data sets, including Indian Pines (IN),
Salinas Valley (SV), Kennedy Space Center (KSC), and Pavia University (UP), as shown in
Figure 6. Figure 6a is a pseudo-color map of IN data set. The IN dataset uses the airborne
visible infrared imaging spectrometer (AVIRIS) to continuously image ground objects in
220 continuous bands, and only 200 bands are reserved as the research object. There are
21,025 pixels in total, but only 1024 of them are ground object pixels, including 16 classes.
The UP dataset is continuously imaged on 115 bands. In reality, only 103 spectral bands that
are not polluted by noise are used for experiments. There are only 42,776 pixels of marked
ground objects in the UP, a total of 9 types of ground objects. The pseudo-color map of
UP is shown in Figure 6b. The pseudo-color map of the SV dataset is shown in Figure 6c.
The SV contains 204 bands and 111,104 pixels. However, only 54,129 pixels can be used for
classification, including 16 classes. The KSC contains 176 bands and 314,368 pixels. The
marked ground objects have only 5211 pixels, including 13 classes. The pseudo-color map
of KSC is shown in Figure 6d.
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In this paper, the ground object classes and sample numbers of the four data sets
are given, as shown in Tables 1–4. In this paper, different sample proportions are used as
training sets for different data sets. Among them, IN uses 3% of the samples as the training
set, KSC uses 5% of the samples as the training set, and SV and UP use 0.5% of the samples
as the training set.

Table 1. Ground object classes and sample numbers of IN.
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Table 1. Ground object classes and sample numbers of IN. 
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Table 2. Ground object classes and sample numbers of UP.
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Table 1. Ground object classes and sample numbers of IN. 
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Table 3. Ground object classes and sample numbers of SV.
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2  
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Table 4. Ground object classes and sample numbers of KSC.
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Table 4. Ground object classes and sample numbers of KSC. 

 

 
Ground truth 

NO. Lengend Name Sample 

1  
 Scrub 761 

2  
 W swamp 243 

3  
 CP hammock 256 

4  
 Slash pine 252 

5  
 

Oak/Broadleaf 161 

6  
 

Hardwood 229 

7  
 

Grass-p-m 105 

8  
 

G marsh 431 

9  
 

Sp marsh 520 

10  
 

C marsh 404 

11  
 

Sa marsh 419 

12  
 

Mud flats 503 

13  
 

Water 927 

3.2. Experimental Parameters and Model Setting 
In this part, the experimental parameters are set, and the best model is determined. 

3.2.1. Experimental Parameter Setting 
The epoch of the network is set to 400 and the batch size is set to 64. Because the 

learning rate strategy of cosine annealing is adopted, a small learning rate can avoid the 
problem of local optimal solution. But a too-small learning rate will make the model dif-
ficult to converge. In addition, the input size of the patch will also affect the performance 
of the network. In order to find the best hyper-parameter for the network, this paper ex-
plores the influence of input patch size on the accuracy under different learning rates. As 
shown in Figure 7, the experimental results are drawn into surface maps. On the four 
data sets, the surface maps show a convex shape, and the convex part is concentrated 
around a 9 9×  patch and 0.001 learning rate. This shows that when the patch size is 
9 9×  and the learning rate is 0.001, the classification performance of the network is the 
best. Therefore, the patch size is set to 9 9×  and the learning rate is set to 0.001 in 
CDC_MDAA. 
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3.2. Experimental Parameters and Model Setting

In this part, the experimental parameters are set, and the best model is determined.

3.2.1. Experimental Parameter Setting

The epoch of the network is set to 400 and the batch size is set to 64. Because the
learning rate strategy of cosine annealing is adopted, a small learning rate can avoid the
problem of local optimal solution. But a too-small learning rate will make the model
difficult to converge. In addition, the input size of the patch will also affect the performance
of the network. In order to find the best hyper-parameter for the network, this paper
explores the influence of input patch size on the accuracy under different learning rates. As
shown in Figure 7, the experimental results are drawn into surface maps. On the four data
sets, the surface maps show a convex shape, and the convex part is concentrated around a
9× 9 patch and 0.001 learning rate. This shows that when the patch size is 9× 9 and the
learning rate is 0.001, the classification performance of the network is the best. Therefore,
the patch size is set to 9× 9 and the learning rate is set to 0.001 in CDC_MDAA.
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3.2.2. Model Setting

In the overall framework of the model, two SPA_MDAA modules are selected as
spatial attention modules and two SPE_MDAA modules are selected as spectral attention
modules. In order to verify the advantages of this structure in CDC_MDAA, several groups
of experiments were carried out on the more challenging IN. The experimental results are
shown in Figure 8, where 1SPE_MDAA + 1SPA_MDAA represents the combination of
one SPE_MDAA module and one SPA_MDAA module. By analogy, the experiment was
set to 9 groups. By comparing the experimental results obtained under the combination of
2SPE_MDAA + 2SPA_MDAA, the network obtained the maximum OA value of 96.94%,
the maximum KAPPA value of 96.51%, and the larger AA value of 94.31%. The results
show that when two SPE_MDAA modules are selected as spectral attention modules and
two SPA_MDAA modules are selected as spatial attention modules, the network can show
the best classification performance.
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In Figure 9, spc_h represents the spectral attention head, and spa_h represents the
spatial attention head. It can be seen from the experimental results that OA and KAPPA
can obtain the best performance when 3spa_h + 2spe_h is selected. Therefore, the 3spa_h +
2spe_h structure is selected in the CDC_MDAA network.

3.3. Experimental Analysis
3.3.1. Effectiveness Analysis of the Proposed Module

In this part, a large number of ablation experiments have been performed to verify
the effectiveness of the proposed CDC, SPA_MDAA and SPE_MDAA. The experimental
results are shown in Tables 5–7. The effectiveness of CDC is analyzed in Table 5. It can be
seen from Table 5 that, compared with the strategy without CDC, OA, AA, KAPPA of the
strategy with CDC has increased by 4.23%, 0.29%, and 4.77%, respectively. Obviously, CDC
can greatly improve the classification performance of the network. This is because CDC
can realize cross-channel information interaction, and repeatedly use feature information
through dense connection, which more effectively extract spatial features. The classification
results of the ablation experiment on SPA_MDAA are shown in Table 6. It can be seen
that, the classification performance of the network has been significantly improved after
integrating SPA_MDAA into CDC_MDAA. Compared with the CDC_MDAA without
SPA_MDAA, OA increases by 8.18%, AA increases by 9.07%, and KAPPA increases by
10.68%, which is fully prove the effectiveness of the proposed SPA_MDAA. Finally, the
effectiveness of SPE_MDAA is analyzed in this paper, as shown in Table 7. Compared
with CDC_MDAA without SPE_MDAA, the OA, AA, and KAPPA of CDC_MDAA with
SPE_MDAA has increased by 5.49%, 2% and 3.96%, respectively. Therefore, SPE_MDAA
has also greatly improved the classification performance of CDC_MDAA.

Table 5. Effectiveness analysis of CDC.

STRATEGY OA AA KAPPA

Without CDC 92.71% 94.02% 91.74%
With CDC 96.94% 94.31% 96.51%

Table 6. Effectiveness analysis of SPA_MDAA.

STRATEGY OA AA KAPPA

Without SPA_MDAA 88.76% 85.24% 85.83%
With SPA_MDAA 96.94% 94.31% 96.51%

Table 7. Effectiveness analysis of SPE_MDAA.

STRATEGY OA AA KAPPA

Without SPE_MDAA 91.45% 92.31% 92.55%
With SPE_MDAA 96.94% 94.31% 96.51%

3.3.2. Convergence of Network

In order to verify the convergence of CDC_MDAA, the variation in the loss value
during the process of training with the number of iterations and the variation in the accuracy
with the number of iterations are provided, which are shown in Figure 10. On four different
data sets, the training accuracy and verification accuracy of CDC_MDAA show an upward
trend with the increase in the number of training iterations. The corresponding training
loss and verification loss showed a downward trend. In addition, the training accuracy
is very close to the verification accuracy, which has good fitting. It is worth noting that
while the training loss value and the verification loss value continue to decline with the
training, there is no significant fluctuation. The overall downward trend is smooth, which
also shows that the network has good stability in convergence.
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3.3.3. Comparison of Different Methods

To further verify the effectiveness and generalization of the proposed CDC_MDAA,
this paper compares CDC_MDAA with some mainstream classification methods, includ-
ing SVM [47], CDCNN [48], FDSSC [49], SSRN [50], DBMA, DBDA, DTAN [51], and
FECNet [52]. The classification results of all methods on different data sets are shown
in Tables 8–11. First, from the perspective of evaluation indicators (OA, AA, KAPPA),
compared with other methods, the classification accuracy of CDC_MDAA is always ob-
viously higher than that of other methods. This demonstrates that CDC_MDAA can
provide superior classification performance. In addition, from the perspective of network
generalization, the proposed method can show stable classification performance on all
four data sets. However, the classification performance of other networks on different
data sets is uneven. For example, the classification performance of the DTAN network is
good on the SV data set in Table 10 but its classification performance on the other three
data sets is somewhat unsatisfactory. The proposed CDC_MDAA can always achieve the
highest OA, AA, and KAPPA on four different data sets. This proves that CDC_MDAA
has excellent generalization ability and can adapt to datasets in different scenarios. Finally,
the training and testing times for different methods are also presented in Tables 8–11. It
can be seen that CDCNN has the shortest training and testing time on different datasets.
This is because the structure of CDCNN is very simple and the network layer is shallow,
which makes the classification accuracy of CDCNN very poor. However, the proposed
method needs less runtime compared to the vast majority of methods while ensuring
classification performance. This demonstrates the advantages of the proposed method in
terms of network complexity.

The classification maps obtained by all networks are shown in Figures 11–14. It can be
seen that all methods can effectively classify hyperspectral images. However, compared
with CDC_MDAA, the classification maps of other methods have more noise and more false
classification. This is due to the relatively weak feature extraction ability of other methods
and the inability to highlight important features. It is worth noting that CDC_MDAA can
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provide clearer boundaries than other networks on the four data sets and can distinguish
different types of ground objects more clearly, which is closer to the ground truth. It benefits
from the excellent feature extraction ability of the CDC module. Moreover, the difference
processing of features by dual aggregated attention can highlight important features and
enhance the discriminating ability of the network. Therefore, it has better classification
performance of hyperspectral images.

Table 8. Classification results of different methods on IN dataset.

Class SVM SSRN FDSSC CDCNN DBMA DBDA DTAN FECNet Proposed

1 36.62 81.03 85.72 24.67 77.33 99.06 30.00 99.06 100.0
2 55.48 87.48 93.35 49.93 78.68 92.74 93.87 96.63 98.84
3 62.33 76.35 89.51 31.93 76.12 92.28 95.12 93.25 98.69
4 42.53 73.88 93.68 33.52 75.11 94.46 94.55 95.61 95.41
5 85.05 84.28 92.61 71.47 94.91 99.10 94.63 98.55 100.0
6 83.31 92.68 98.31 73.42 93.99 98.28 99.21 97.51 96.89
7 59.86 79.06 82.46 36.29 44.33 66.57 50.00 73.14 62.50
8 89.67 96.85 97.54 78.08 97.49 99.24 92.73 99.84 100.0
9 39.27 73.57 71.07 42.14 45.66 93.64 20.00 79.71 84.21
10 62.31 84.45 89.30 41.71 77.27 93.77 92.50 90.09 89.49
11 64.72 86.95 93.97 55.67 83.89 93.83 93.55 96.11 98.97
12 50.54 83.31 88.25 27.68 77.65 90.65 89.12 93.20 95.85
13 86.73 98.83 99.53 67.88 96.74 97.48 99.89 98.34 100.0
14 88.67 95.13 95.82 76.39 93.41 97.69 95.31 97.28 95.87
15 61.81 88.58 92.48 47.30 76.83 93.79 93.54 95.11 96.75
16 98.66 96.52 98.22 65.67 92.33 93.67 93.21 97.26 95.45

OA(%) 68.76 86.68 92.37 59.19 82.38 92.26 93.47 95.47 96.94
AA(%) 66.72 86.18 91.36 51.48 80.11 92.90 81.66 93.79 94.31

KAPPA× 100 63.98 84.76 91.30 0.781 79.86 91.24 92.48 94.83 96.51
Trian time — — 619.8 s 1414.0 s 35.6 s 279.5 s 280.1 s 112.5 s 340.2 s 143.3 s
Test time — — 4.68 s 9.88 s 1.8 s 16.3 s 16.4 s 10.2 s 15.9 s 9.3 s

Table 9. Classification results of different methods on UP dataset.

Class SVM SSRN FDSSC CDCNN DBMA DBDA DTAN FECNet Proposed

1 81.26 93.22 84.30 79.88 89.41 90.77 63.87 96.77 97.91
2 84.52 93.75 95.47 86.66 94.34 98.07 95.59 99.20 99.40
3 56.56 64.97 80.58 32.74 84.99 90.04 83.68 96.56 98.77
4 94.34 94.69 98.13 84.88 96.58 97.96 97.03 97.87 98.17
5 95.38 97.69 99.21 94.77 98.06 98.67 96.43 97.38 99.92
6 80.66 93.14 92.36 71.54 94.60 98.85 98.10 97.72 98.30
7 49.13 73.06 69.35 31.77 93.18 96.95 19.18 96.50 100.0
8 73.15 79.98 73.36 65.54 76.61 87.65 81.82 87.34 95.29
9 97.93 98.71 97.39 73.40 91.45 97.81 50.00 98.98 99.46

OA 82.06 89.12 90.71 80.69 90.98 95.32 86.36 96.96 98.59
AA 79.21 87.69 87.91 69.02 91.02 95.20 76.19 96.48 98.58

KAPPA× 100 75.43 85.44 87.38 73.45 87.87 93.77 81.52 95.97 98.13
Trian time — — 401.5 s 933.8 s 26.0 s 82.4 s 83.0 s 54.9 s 140.8 s 76.9 s
Test time — — 12.3 s 25.2 s 7.4 s 39.4 s 39.8 s 45.6 s 41.1 s 6.9 s

Table 10. Classification results of different methods on SV dataset.

Class SVM SSRN FDSSC CDCNN DBMA DBDA DTAN FECNet Proposed

1 99.42 99.53 99.96 68.15 99.98 99.68 99.45 100.0 100.0
2 98.79 99.53 98.90 73.63 99.20 98.88 99.61 99.95 99.57
3 87.98 94.22 96.91 75.56 97.65 97.94 99.39 98.41 95.18
4 97.54 96.98 94.54 92.79 92.64 94.89 92.65 95.85 95.17
5 95.09 98.84 99.16 92.90 98.79 98.40 99.81 99.64 99.77
6 99.89 99.87 99.82 96.25 98.49 99.92 99.53 99.89 100.0
7 95.59 98.21 98.16 93.76 98.41 98.46 93.10 99.40 100.0
8 71.66 86.20 91.72 74.03 90.72 90.87 89.98 94.79 95.75
9 98.08 99.14 99.53 94.72 99.61 99.24 99.62 99.67 99.48
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Table 10. Cont.

Class SVM SSRN FDSSC CDCNN DBMA DBDA DTAN FECNet Proposed

10 85.39 97.99 97.61 76.65 92.23 97.62 99.29 98.01 97.45
11 86.97 94.48 95.70 69.32 93.10 94.92 94.90 97.18 95.15
12 94.20 98.53 98.16 80.43 99.24 99.54 99.59 99.55 100.0
13 93.43 98.28 98.35 69.55 98.56 99.76 99.52 99.94 100.0
14 92.03 96.05 96.21 87.22 96.56 96.66 88.16 96.51 97.15
15 71.02 81.04 89.07 63.71 88.27 90.48 92.25 93.68 96.13
16 97.81 99.48 99.77 98.38 99.68 99.83 99.98 100.0 100.0

OA(%) 86.97 92.51 95.91 80.67 94.77 95.74 96.25 97.49 97.88
AA(%) 91.55 96.32 97.49 81.69 96.45 97.41 97.36 98.01 98.17

KAPPA× 100 85.45 91.67 95.45 78.35 94.18 95.26 95.86 97.21 97.63
Trian time — — 531.9 s 1212.3 s 59.7 s 246.1 s 247.2 s 130.7 s 310.5 s 182.0 s
Test time — — 27.4 s 56.1 s 9.5 s 91.7 92.1 s 58.6 s 96.9 s 9.6 s

Table 11. Classification results of different methods on KSC dataset.

Class SVM SSRN FDSSC CDCNN DBMA DBDA DTAN FECNet Proposed

1 92.42 98.67 99.56 94.53 99.96 99.91 50.70 99.97 100.0
2 87.14 93.49 94.69 72.91 92.06 96.97 43.07 98.28 99.09
3 72.46 91.10 85.99 53.64 87.01 93.40 14.46 94.06 100.0
4 54.45 81.73 82.92 42.40 76.56 83.97 69.25 88.95 90.65
5 64.10 77.45 74.32 25.00 70.60 79.76 0.000 94.26 97.77
6 65.23 95.85 96.67 64.45 93.22 97.65 13.25 97.94 100.0
7 75.49 91.96 96.48 49.77 82.73 92.73 20.00 97.94 93.62
8 87.33 98.24 99.39 71.63 95.31 99.57 73.33 99.9 99.74
9 87.94 98.11 99.91 80.68 96.76 99.91 55.29 98.11 100.0
10 97.01 99.81 100.0 81.92 98.40 99.89 87.17 100.0 100.0
11 96.02 99.06 99.07 98.49 99.01 99.46 100.0 98.93 100.0
12 93.76 99.76 99.73 92.56 99.01 99.41 89.80 99.62 99.34
13 99.72 100.0 100.0 99.10 100.0 100.0 99.07 100.0 100.0

OA(%) 87.95 96.35 96.42 81.24 95.07 97.55 70.32 98.14 99.19
AA(%) 82.54 94.26 94.52 71.31 92.68 95.59 55.03 97.53 98.48

KAPPA× 100 86.59 95.93 96.01 79.08 94.51 97.27 66.24 97.93 99.10
Trian time — — 504.7 s 1159.6 s 30.49 s 196.5 s 198.5 s 86.4 s 259.7 s 166.9 s
Test time — — 2.05 s 4.34 s 0.88 s 7.2 s 7.2 s 5.0 s 7.3 s 3.6 sRemote Sens. 2023, 15, 2367 25 of 32 
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Figure 12. Classification maps on UP dataset, (a) ground truth, (b) SVM, (c) SSRN, (d) FDSSC, (e) 
CDCNN, (f) DBMA, (g) DBDA, (h) DTAN, (i) FECNet, (j) proposed. 
Figure 12. Classification maps on UP dataset, (a) ground truth, (b) SVM, (c) SSRN, (d) FDSSC,
(e) CDCNN, (f) DBMA, (g) DBDA, (h) DTAN, (i) FECNet, (j) proposed.
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CDC_ MDAA can show far higher classification accuracy than other methods. For SV 
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It is worth noting that on the KSC with a total sample size of only 5211, CDC_ MDAA 
can still achieve the best classification results. It is proved that the proposed method is 
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works fluctuates greatly under different training sample numbers. However, the 
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The classification results of all methods with different training sample numbers on four
data sets are shown in Figure 15. It can be seen from Figure 15a that no matter how many
training samples are used in the IN, the CDC_MDAA network is superior to other networks.
The advantages of CDC_MDAA are more prominent in the case of smaller training samples.
For example, when the training sample is only 1% of the total sample, CDC_ MDAA can
show far higher classification accuracy than other methods. For SV and UP with a large
number of samples, CDC_ MDAA can also maintain its advantages. It is worth noting
that on the KSC with a total sample size of only 5211, CDC_ MDAA can still achieve the
best classification results. It is proved that the proposed method is more conducive to
the classification of hyperspectral images with small samples. In addition, it can be seen
from Figure 15 that the classification performance of other networks fluctuates greatly
under different training sample numbers. However, the CDC_MDAA can show stable
classification performance in all cases. This further proves the powerful generalization of
CDC_ MDAA. For the classification of hyperspectral images, the CDC_ MDAA can provide
superior classification performance, surpassing other current mainstream methods when
the number of training samples is small.

In order to verify the feature extraction performance of the proposed method, this
paper uses t-distributed stochastic neighbor embedding (T-SNE) [53] to visually analyze
the feature maps extracted by different methods. As shown in Figures 16 and 17, four
more competitive methods (including DBDA, FECNet, FDSSC, and DTAN) are chosen
to compare with CDC_MDAA on SV and UP. In general, for SV and UP, all methods can
realize feature clustering. However, HSIC is a multi-classification problem, and simple
clustering is unable to meet the requirements of high-performance classification. It can be
seen from Figure 16 that the other four methods cannot clearly divide the adjacent classes
on SV, shown by “Grapes-u” and “VIN-yard-v-t”. Compared with the other four methods,
the method proposed in this paper can better distinguish the two classes. It proves CDC_
MDAA has excellent feature extraction capability. In addition, CDC_ MDAA enhances
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the separability of features by DAA, making it easier for the network to extract important
features more conducive to classification and avoiding the interference of adjacent classes.
The same conclusion can be reached on the UP dataset.
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4. Conclusions

In this paper, a novel CDC_MDAA network is proposed, which can effectively classify
hyperspectral images. The CDC_ MDAA first extracts spectral and spatial features through
double branches, then spectral attention and spatial attention mechanisms are utilized to
focus on the extracted spatial and spectral features, respectively. Then, a spatial spectral
attention fusion method is followed. Specifically, on the spatial branch, a CDC method is
proposed to extract spatial features, and a SPA_MDAA module is designed to focus on
spatial features. On the spectral branch, after feature extraction, a SPE_MDAA module
is constructed to focus on spectral features. Finally, the double branches are fused and
classified. CDC_ MDAA can achieve high classification accuracy in the case of small
samples. This provides a new idea to solve the small sample problem of hyperspectral
image classification. A large number of experimental results show that CDC_ MDAA can
provide classification performance that is superior to some state-of-the-art methods, and it
has good generalization.
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