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Abstract: Over the past few decades, researchers have shown sustained and robust investment in
exploring methods for hyperspectral image classification (HSIC). The utilization of hyperspectral
imagery (HSI) for crop classification in agricultural areas has been widely demonstrated for its
feasibility, flexibility, and cost-effectiveness. However, numerous coexisting issues in agricultural
scenarios, such as limited annotated samples, uneven distribution of crops, and mixed cropping,
could not be explored insightfully in the mainstream datasets. The limitations within these imprac-
tical datasets have severely restricted the widespread application of HSIC methods in agricultural
scenarios. A benchmark dataset named Heilongjiang (HLJ) for HSIC is introduced in this paper,
which is designed for large-scale crop classification. For practical applications, the HLJ dataset covers
a wide range of genuine agricultural regions in Heilongjiang Province; it provides rich spectral
diversity enriched through two images from diverse time periods and vast geographical areas with
intercropped multiple crops. Simultaneously, considering the urgent demand of deep learning
models, the two images in the HLJ dataset have 319,685 and 318,942 annotated samples, along with
151 and 149 spectral bands, respectively. To validate the suitability of the HLJ dataset as a baseline
dataset for HSIC, we employed eight classical classification models in fundamental experiments on
the HLJ dataset. Most of the methods achieved an overall accuracy of more than 80% with 10% of the
labeled samples used for training. Furthermore, the advantages of the HLJ dataset and the impact
of real-world factors on experimental results are comprehensively elucidated. The comprehensive
baseline experimental evaluation and analysis affirm the research potential of the HLJ dataset as a
large-scale crop classification dataset.

Keywords: hyperspectral image classification; crop classification; benchmark dataset

1. Introduction

Abundant agricultural resources stand as a pivotal cornerstone for the sustenance
of human society [1,2]. Sustaining agricultural resources to meet societal demands is an
exceedingly critical challenge, particularly as human civilization undergoes a significant
shift toward urbanization [3,4]. Crop classification in large-scale cultivation is a pivotal
task within this context. In recent years, with the rapid advancement in hyperspectral
imaging sensors, hyperspectral imagery (HSI) is widely acknowledged in agriculture
for its substantial advantages in acquiring valuable and rich spectral information about
land cover [5]. In particular, HSI excels at capturing the detailed and discriminative
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features essential for crop classification, showcasing unique advantages compared to the
initial methods using multispectral and optical images [6]. Leveraging the significant
achievements in machine learning (ML) and deep learning (DL) for hyperspectral image
classification (HSIC), monitoring large-scale agricultural land and gaining insights into
crop cultivation patterns has become feasible and easy to implement [7–9].

Heilongjiang Province is China’s most significant agricultural province and a major
commodity grain production area [10]. It possesses one of the world’s most fertile black
soils, offering abundant agricultural resources [11]. In contrast to the small and scattered
cropland in other regions, the region is situated in the Sanjiang Plain, featuring extensive
and flat croplands [12,13]. And, in this area, human habitation zones are far less vast than
agriculture regions. It is one of the few areas in China suitable for large-scale mechanized
agricultural cultivation [14]. Nonetheless, the area has grappled with a pressing issue
of diminishing farmland due to population outmigration and soil erosion [15–17]. In
China, with a population exceeding 1.4 billion, food security faces a substantial risk with
the depletion of the non-renewable black resource. To ensure arable land area and food
production, annual agricultural crop planting structure investigation and farmland statistics
are conducted in the region [18]. This typically requires individuals with professional
knowledge to conduct on-site surveys and interpret multiple types of remote sensing
images. Therefore, employing ML and DL for crop classification holds practical value as it
significantly reduces manual annotation costs [19–23].

With the continued efforts of researchers, various ML methods for crop classification
with HSI have been proposed. Rao et al. adopted the approach of constructing a spectral
dictionary that encompasses the main crop types [24]. This method aims to achieve crop
classification by leveraging the unique spectral reflections of crops. However, these methods
are limited due to the influence of numerous unknown factors on crop spectral charac-
teristics. As a result, researchers have turned to simultaneously utilizing the spatial and
spectral information of HSI to assist in classification. Zhang et al. employed both the spatial
texture features and spectral features of crops to construct an optimal feature band set [25].
Classification was achieved through band selection and an object-oriented approach.

In recent years, a plethora of DL methods have been employed to HSIC, yielding re-
markable results [26–29]. Compared to traditional machine learning classification methods,
it can extract more sophisticated and representative spatial–spectral features [30–32]. And
the widely used Indian Pines (IP) dataset is established on agricultural settings. Therefore,
it can be regarded as a subject for in-depth exploration of methods utilizing HSI for crop
classification. As excellent representatives of DL techniques, Hong et al. proposed an
optimized transformer model (SpectralFormer) to extract global and local information for
HSIC [33]; this method can attain an overall classification accuracy of 81.76% on the IP
dataset with only 695 training samples. Le Sun et al. utilized a module composed of a
convolutional neural network (CNN) and transformer to capture both spatial–spectral
features and high-level semantic features (SSFTT). The model achieved an impressive
accuracy of 97.47% on the Indian Pines dataset with the utilization of 1024 labeled sam-
ples during the training phase [34]. It is evident that current mainstream methods have
achieved near-perfect classification results on this dataset. However, this also implies that
the IP dataset has lost its benchmarking ability to measure the performance of classification
methods. Unfortunately, most traditional HSI datasets, such as Salinas and Yellow River
Estuary, face similar issues, with limited labeled samples and ease of fitting constraining
their classification potential.

In order to address practical issues, researchers can only assist their studies by uniquely
designing experiments on these overoptimistic datasets. Actually, agricultural scenarios
offer an optimal subject for them. In other words, the issues that researchers attempt to
simulate are widespread in rural areas. More specifically, in regions with lower human
activity, a multitude of unknown land cover types with extremely uneven distributions
coexist. This not only introduces intricate spatial–spectral information but also results in
chaotic boundary areas [24]. Furthermore, other practical issues can be summarized as
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follows: (1) Mixing of Crops. Different types of crops are planted in neighboring regions
with such similar spectral characteristics that they are hard to differentiate. (2) Complex
Geographic Environment. Variations in the growth status of crops at different locations
result in inconsistent spectral characteristics. Soil types, moisture conditions, and fertilizer
usage also have an impact. (3) Uncertain Crop Growth Stages. Crops exhibit different
spectral characteristics at various growth stages [35,36]. (4) Vegetation Obstruction. Mutual
obstruction between crops or vegetation obstructing crops can result in the loss of spectral
information [37]. In existing datasets, the aforementioned challenges are not usually
encountered simultaneously, and these issues are typically avoided during scene selection
and annotation. This classification scenario contributes significantly to enhancing the
generalization capability of classification methods, providing more effective support for
practical crop classification tasks.

It is crucial to note that, in actual agricultural crop planting structure surveys and
farmland area statistics, the focus of the classification task is to determine the type of crop
over a large area, rather than the growth status of the crops. Researchers in the past have
been dedicated to categorizing these datasets into more numerous and finer classifications.
For instance, corn is divided into ‘corn-notill’ and ‘corn-mintill’ categories in the Indian
Pines dataset. Such requirement makes the already time-consuming and labor-intensive
annotation task even more challenging [38,39]. Therefore, traditional datasets focused on
agricultural areas comprise small-sized images and represent limited actual land areas [40].
However, this contradicts current demands. Benefiting from the hyperspectral imaging
system carried by unmanned aerial vehicles (UAVs), researchers are attempting to address
this contradiction through the use of high spatial resolution HSI [41–43]. As a representative
of this approach, the WHU-Hi dataset has played a crucial role in supporting precise crop
identification. However, utilizing UAVs to monitor the agricultural resource in a region or
even an entire province will incur substantial costs. As a result, HSI obtained from satellites
continue to be the primary focus of our current research. It provides a cost-effective means
to obtain multitemporal images from the same region and same-temporal images from
large-scale regions.

To assist numerous researchers interested in agricultural scene classification, a large-
scale crop classification HSI dataset referred to as HLJ is introduced in this paper. It
comprises two scenes of HSI, namely HLJ-Raohe and HLJ-Yan, captured from Heilongjiang
Province, China, as depicted in Figure 1. Considering that the core task of crop classification
is to distinguish agricultural areas including several major crops from non-agricultural
areas, these two scene images are intentionally selected from two real rural areas. In this
region, the variety of crop types is limited, including crops, natural vegetation, and artificial
structures, but the cultivation area of these crops is extremely extensive. Given this scenario,
these two images respectively contain seven and eight categories, sufficient to cover the
main land cover types in this region. Crop cultivation in this region depends on the type
of land and topography, leading to the intermixing of different crops and making the
situation quite complex in practice. Therefore, in the annotation process, we emphasized
annotating the boundary segments and obtained accurately labeled ground truth images
through on-site surveys and the integration of multitemporal images. Additionally, as
this dataset is primarily intended for crop classification tasks, and the predominant land
cover in the area is arable land, the proportion of annotated samples emphasizing crops
is quite significant across the entire image. The main contributions of this article can be
summarized as follows:

(1) A large-scale crop classification dataset has been introduced, named the HLJ dataset.
Owing to the diversity of land cover types in agricultural regions, this dataset poses
several practical challenges, such as uneven distribution of crops, uncertain crop
growth stages, mixed planting, etc., and presents an elevated level of complexity
in classification.

(2) This is a large-scale dataset that covers a wide range of rural areas, including a suf-
ficiently representative selection of land cover types in the region. These diverse
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land-cover types contribute to an exceptionally rich set of spectral information. Fur-
thermore, the proposed dataset contains a sufficient and accurate number of labeled
samples, with 319685 and 318942 in the two images, respectively. The reliability of
these samples stems from on-site surveys and comprehensive analysis of multitempo-
ral images.

(3) The comprehensive validation of the HLJ dataset was conducted by employing several
representative methods for basic classification experiments (e.g., SpectralFormer and
SSFTT) and comparing the classification results among different datasets using the
same methods. This process affirmed the research value inherent in the issues en-
compassed by the dataset and its suitability as a benchmark dataset for hyperspectral
image classification.

Heilongjiang Province, China

Figure 1. Study regions of Heilongjiang Province.
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2. Construction of the HLJ Dataset

The HLJ dataset is a satellite-based hyperspectral dataset primarily designed for the
classification of large-scale agricultural crops. It was acquired in Heilongjiang Province,
located in the northeastern region of China, known for its extensive and concentrated
croplands [44]. In this dataset, Raohe County and Yian County in particular have been
selected as representatives. They are significant grain-producing regions in Heilongjiang
province, providing the most authentic depiction of the agricultural characteristics in this
area. Aside from small and concentrated artificial structures, the dataset mainly consists of
large-scale cultivated farmlands and natural vegetation.

The two images in the HLJ dataset were acquired using the Advanced Hyperspectral
Imager (AHSI) sensor. This sensor finely divides the visible near-infrared (VNIR) spectrum
into 76 bands with a spectral resolution of 10 nm. Similarly, the shortwave near-infrared
(SWIR) spectrum is segmented into 90 bands, each with a spectral resolution of 20 nm.
Given the unique spectral characteristics exhibited by crops at various growth stages,
the dataset was captured during the growth and maturity stages, offering a wealth of
distinctive spectral information [45,46].

The construction of the HLJ dataset is divided into four main parts as shown in
Figure 2: data collection, data preprocessing, sample annotation, and experimental agree-
ment. Section 2.1 presents details about the acquisition of the data. In Section 2.2, details
about the preprocessing and the annotation of the proposed dataset are provided. A
comprehensive evaluation experiment of the HLJ dataset is introduced in Section 3.

Construction of the HLJ Dataset

Samples annotation Experimental assessmentData collection Data preprocessing

ZY1-02D

Atmospheric 
Correction

RPC 
Orthorectification

Radiometric 
Calibration Visual 

Interpretation

On-site Survey

Data 
Visualization

Multi-methods 
Classification

Accuracy result

t-SNESpectral Curve

§ Overall Accuracy
§ Average Accuracy
§ Kappa

§ Recall
§ Precision
§ F1-score

Figure 2. Flowchart for the construction of the HLJ dataset.

2.1. The Acquisition of HLJ Dataset

The HLJ-Raohe dataset was captured by the ZY1-02D satellite on 30 September 2022,
in Raohe County. Located in the northeastern part of Heilongjiang Province and adjacent to
the Ussuri River, Raohe County covers an area of 6765 square kilometers (133°2′N–133°9′N,
47°1′E–47°6′E). The average elevation in this area is 149 m, with a minimum elevation
of 45 m and a maximum elevation of 933 m. And the terrain is diverse, including four
main types: mountainous hills, plateaus, plains, and wetlands. The dataset was acquired
during the maturation stage of the crops, at a time when the crops were not yet harvested,
resulting in significant variations in spectral information. The data was captured under
favorable weather conditions with good visibility. The image has a size of 897 × 483 pixels
and contains 151 spectral bands, covering a wavelength range of 400 to 2500 nm. It is
worth noting that the following bands have been removed: Bands 98–102 and 125–132.
The HSI acquired by the satellite has a spatial resolution of 30 m. The land cover types are
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categorized into seven representative classes: Rice, Soybean, Corn, Wetland, River, Built-up
land, and Forest. The pseudocolor image and ground truth map are illustrated in Figure 3.

(a) (b)

Rice Corn Soybean
Artificial 

Structures
RiverForestForest Wetland

Figure 3. Pseudocolor image and ground truth map of HLJ-Raohe dataset. (a) Pseudocolor image.
(b) Ground truth.

The HLJ-Yan dataset was captured by the ZY1-02D satellite on 10 July 2022, in Yian
County. Located in the western part of Heilongjiang Province, Raohe County covers an
area of 3678 square kilometers (124°8′N–125°6′N, 47°3′E–47°7′E). The average elevation
in this area is 205 m, with a minimum elevation of 154 m and a maximum elevation of
308 m. The primary landforms in this area consist of floodplains, mountainous hills, plains,
and wetlands. The dataset was captured during the growth stage of the crops and, at this
time, different crops were in varying stages of growth due to differences in planting times.
The image has a size of 843 × 719 pixels and contains 149 spectral bands after the removal
of broken bands, covering a wavelength range of 400 to 2500 nm. The 17 removed bands
include Bands 98–103, 125–133, 165, and 166. The HSI acquired by the satellite has a spatial
resolution of 30 m. The land cover types are categorized into eight representative classes:
Rice, Soybean, Corn, River, Built-up land, Saline–alkali land, Channel, and Forest. The
pseudocolor image and ground truth map of HLJ-Yan are depicted in Figure 4.

Corn Soybean Grass
Irrigation 

Canals
Saline SoilRiceRice Wetland

(a) (b)

Artificial 

Structures

Figure 4. Pseudocolor image and ground truth map of HLJ-Yan dataset. (a) Pseudocolor image.
(b) Ground truth.



Remote Sens. 2024, 16, 478 7 of 22

2.2. The Data Preprocessing and Annotation Details of the HLJ Dataset

Combining the requirements of the crop structure survey task and the demands of
hyperspectral classification methods, the task-specific annotations on two image are con-
ducted. In HLJ-Raohe and HLJ-Yan, 319,685 and 318,942 pixels were labeled, respectively.
The category information of HLJ dataset is detailed in Tables 1 and 2. Combining the
requirements of the crop structure survey task and the demands of hyperspectral classifica-
tion methods, task-specific annotations on the two images are conducted. In HLJ-Raohe
and HLJ-Yan, 319,685 and 318,942 pixels were labeled, respectively. Due to the requirement
for classification not to be overly detailed in the crop structure survey task, we avoided
further subdivision within the same crop. As a result, the number of categories in the
dataset may be smaller compared to traditional datasets. Additionally, considering the
dataset’s goal of reflecting real planting conditions, we minimized human adjustments
to annotated details, especially at the boundaries. Therefore, the distribution of crops in
the dataset may be uneven and the number of samples for different categories may be
unbalanced. The complete arrangement of the annotation process is as follows: Firstly,
five non-professional volunteers participated in the annotation task. They utilized hy-
perspectral and multispectral images from the same region at different times to perform
initial annotations on different but overlapping areas. Subsequently, a comparative analysis
of the preliminary annotation results was conducted. For areas with discrepancies and
boundary regions, a secondary annotation and discussion were carried out. Additionally,
for areas where determination was challenging, three researchers conducted on-site surveys
to obtain the final reliable results. In HLJ-Yan, due to dense vegetation in certain image
regions causing severe pixel mixing, annotated samples from these areas were excluded.
Therefore, the annotation sample proportion has slightly decreased in HLJ-Yan.

Table 1. The number of labeled samples in the HLJ-Raohe dataset.

Class Name Number of Samples Ratio

1 Forest 46,222 0.1445
2 Rice 139,383 0.4360
3 Corn 50,941 0.1593
4 Soybean 46,382 0.1451
5 Artificial Structures 3467 0.0108
6 Wetland 28,835 0.0901
7 River 4455 0.0139

Total 319,685

Table 2. The number of labeled samples in the HLJ-Yan dataset.

Class Name Number of Samples Ratio

1 Rice 82,711 0.2593
2 Corn 79,158 0.2482
3 Soybean 119,710 0.3753
4 Grass 14,478 0.0453
5 Irrigation Canals 2710 0.0085
6 Wetland 11,180 0.0351
7 Saline Soil 5448 0.0171
8 Artificial Structures 3547 0.0111

Total 318,942

3. Experimental Settings and Results

This section completes a thorough evaluation to validate the suitability of the proposed
dataset as a standard benchmark dataset for HSIC and explores its applicability in a wide
range of crop classification. This assessment predominantly involves the performance of
mainstream classification algorithms applied to this dataset and comparison across the
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related datasets. By conducting extensive experiments on this dataset, encompassing a
diverse range of classification algorithms that include both traditional machine learning
methods and deep learning techniques, the dataset was examined to ascertain its compli-
ance with the prerequisites and objectives of classification tasks. This process aimed to
affirm the dataset’s suitability for research purposes and its value within the research com-
munity. Meanwhile, as a dataset intended for practical large-scale crop classification tasks, it
reveals the obstacles encountered in addressing diversely intricate classification challenges.

All relevant experiments were conducted on hardware with the following specifica-
tions: (1) CPU: Intel Xeon Silver 4210R, (2) GPU: Nvidia GeForce RTX 3090, and (3) RAM
memory: 32GB. The methods involved in this paper were derived from official open-source
projects and were implemented within the official environment.

3.1. Public Datasets

To outline the main differences between the proposed dataset in this paper and exist-
ing publicly available datasets, information about several other public datasets is presented.
These datasets include WHU-HI-LongKou, WHU-HI-HanChuan, Yellow River Estuary, Sali-
nas, and Indian Pines (https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_
Remote_Sensing_Scenes (accessed on 25 October 2023)).

3.1.1. WHU-Hi Dataset

The WHU-Hi dataset is a UAV hyperspectral dataset primarily established for precise
crop classification [47]. It is captured in Hubei Province, located in the southern part of
China. In contrast to the large-scale agriculture in Heilongjiang Province, the cultivated
land is small and fragmented, with numerous villages and human structures. In order
to conduct a comprehensive investigation of agricultural cultivation in diverse regions of
China, two datasets were employed in this paper: the WHU-Hi-HanChuan dataset and
WHU-Hi-LongKou dataset. The pseudocolor image and ground truth map of this dataset
are shown in Figures 5 and 6, respectively.

Corn-notill
Corn-

mintill
Corn

Grass-

pasture
Grass-pasture-

mowed

Hay-

windrowed
Oats

AlfalfaAlfalfa Grass-trees

(a) (b)

Figure 5. Pseudocolor image and ground truth map of WHU-Hi-LongKou dataset. (a) Pseudocolor
image. (b) Ground truth.

WHU-Hi-Longkou represents a UAV hyperspectral dataset obtained in Longkou
City, located in Hubei Province, China. Captured at a flight altitude of 500 m using the
Headwall Nano-Hyperspec imaging sensor, this hyperspectral dataset boasts an impressive
spatial resolution of 0.463 m, rendering images with dimensions of 550 × 400 pixels.

https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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This dataset encompasses 270 spectral bands that span the wavelength range from 400
to 1000 nm. It includes six distinct crop species. The dataset comprises 128,730 labeled
samples, representing nine land cover types.

WHU-Hi-HanChuan is a UAV hyperspectral dataset captured in Hanchuan City,
Hubei Province, China. Using a Headwall Nano-Hyperspec imaging sensor, the UAV
collected hyperspectral data with dimensions of 1217 × 303 at an altitude of 250 m. The
spatial resolution of this image is 0.109 m. This dataset comprises 274 spectral bands
covering a wavelength range of 400 to 1000 nm. The dataset captures 255,930 labeled
samples and is categorized into 16 land cover types, including 7 distinct crop species.

Cowpea

Soybean

Sorghum

Water 

spinach

Greens

Trees

Grass

Red roof

StrawberryStrawberry

Gray roof

Watermelon

Bright object

Plastic

Bare soil

Road

Water

(a) (b)

Figure 6. Pseudocolor image and ground truth map of WHU-Hi-HanChuan dataset. (a) Pseudocolor
image. (b) Ground truth.

3.1.2. YRE Dataset

Yellow River Estuary is a satellite-based hyperspectral dataset captured in the Yellow
River Delta of Shandong Province [48], China. This is a wetland area located in the
northeastern part of Shandong Province. A HSI with dimensions of 1185 × 1342 pixels was
captured at the location of the Yellow River Estuary, which covers an area of 2424 × 103 km2

within the delta. The hyperspectral imager on board the GF-5 acquired 150 spectral bands
within the VNIR wavelength range (400–1000 nm) at a spectral resolution of 5 nm. In
the SWIR wavelength range (1000–2500 nm), it captured 180 spectral bands at a spectral
resolution of 10 nm. After removing the broken bands, a total of 285 bands were retained
for use in this dataset. This dataset comprises 13,648 labeled samples, representing 20
different wetland land cover types. The pseudocolor image is presented in Figure 7.
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Low-tide 

mudflat

High-tide 
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Robina 
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Yellow 

river
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(a) (b)

Figure 7. Pseudocolor image and ground truth map of Yellow River Estuary dataset. (a) Pseudocolor
image. (b) Ground truth.

3.1.3. Indian Pines Dataset

In 1992, the Indian Pines (IP) dataset was captured using airborne visible infrared
imaging spectrometer (AVIRIS) sensors over the Purdue University Agronomy farm and
its surrounding area in the northwest of West Lafayette, Wisconsin [49]. This is the first
hyperspectral image dataset with land cover types focused on natural objects. The imagery
was obtained at a spatial resolution of 20 m and has dimensions of 145 × 145 pixels. A total
of 16 categories, comprising 10,249 samples, were selected from the image for classification
experiments. The spectral information is contained in 200 bands covering the wavelength
range from 400 to 2500 nm, with bands affected by water absorption removed. The dataset
includes 16 distinct land cover categories. The pseudocolor image and ground truth map is
shown in Figure 8.

(a)

Corn-notill
Corn-

mintill
Corn

Grass-

pasture
Grass-pasture-

mowed

Hay-

windrowed
Oats

Soybean-

notill

AlfalfaAlfalfa

Soybean-

mintill

Soybean-

clean
Wheat

Buildings-Grass-

Trees-Drives

Woods

Grass-trees

Stone-Steel-

Towers

(b)

Figure 8. Pseudocolor image and ground truth map of Indian Pines dataset. (a) Pseudocolor image.
(b) Ground truth.
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3.1.4. Salinas Dataset

The Salinas dataset was captured in the Salinas Valley region of California, USA in
1998 [50]. It is a hyperspectral image with dimensions of 512 × 217 pixels, featuring a
spatial resolution of 3.7 m and a spectral resolution of 10 nm, covering the wavelength
range from 400 to 2500 nm. Bands that were affected by water absorption and had low
signal-to-noise ratios were removed within this wavelength range, resulting in 204 bands
available for classification experiments. The dataset comprises a total of 54,174 labeled
samples, categorized into 16 classes. The pseudocolor image and ground truth map is
displayed in Figure 9.

Weeds2

Fallow

Fallow rough 

plow

Fallow 

smooth

Celery

Grapes

Soil

Corn

Weeds1Weeds1

Lettuce 4wk

Stubble

Vinyard 

untrained

Lettuce 5wk

Lettuce 6wk

Lettuce 4wk

Vinyard 

trellis

(a) (b)

Figure 9. Pseudocolor image and ground truth map of Salinas dataset. (a) Pseudocolor image.
(b) Ground truth.

3.2. Classification Experiments of Various Methods on the HLJ Dataset

As a benchmark dataset for HSI classification, its classification effectiveness is the
most critical evaluation criterion. Therefore, fundamental classification experiments follow-
ing the conventional practices were initially conducted. Taking into account the balance
between implementation complexity and classification performance, eight representative
methods were employed for the classification of this dataset, including the classical classifier
SVM, optimized convolutional neural networks, such as the two-dimensional deformable
convolutional neural network (2D-Deform), spectral–spatial residual network [51] (SSRN)
and dual-branch dual-attention networks [52] (DBDA and DBDA-MISH). Additionally,
Vision Transformer [53] (ViT), SpectralFormer [33], and Spectral–Spatial Feature Tokeniza-
tion Transformer [34] (SSFTT) are representative classification approaches leveraging the
transformer structure. The class-specific accuracy (CA), overall accuracy (OA), average
accuracy (AA), precision, recall, F1-score (F1) and kappa are considered as the primary
evaluation metrics for classification performance.

3.2.1. Experimental Settings

Throughout the implementation of the aforementioned methods, to comprehensively
showcase the classification performance of the proposed dataset, this paper adopted the
optimal settings in line with the experimental environment. The specific configurations of
comparative methods are as follows:
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(a) SVM. This serves as the baseline for traditional supervised methods. This method utilizes
the machine learning toolkit scikit-learn, maintaining all parameters at their default
settings. Using the Radial Basis Function kernel, the penalty parameter C is set to 1.

(b) 2D-Deform. A 2D deformable convolution is chosen as a fundamental convolutional
neural network. Stochastic Gradient Descent (SGD) is employed as the optimization
approach. The model was trained for 100 epochs with a fixed learning rate of 0.001.
After comprehensive consideration of the model parameters, the model’s input is
composed of 8 × 8 patches derived from HSI.

(c) SSRN. A modified three-dimensional convolutional neural network with residual
connections is used to capture joint spectral and spatial features in the proposed
dataset. The method also employs the SGD optimizer with a learning rate of 0.001,
trained for 100 epochs. The patch size is 7 × 7.

(d) DBDA. This approach combines attention mechanisms with a convolutional neural
network to strengthen the capability of feature extraction and representation through
a dual-attention dual-branch structure. This method was trained for 100 epochs,
employing a learning rate of 0.001.

(e) DBDA-MISH. In contrast to the DBDA approach, this method incorporates the MISH
function as an activation function, aiming to prevent information loss due to the
increase in the number of layers in deep neural networks and maintain higher training
stability. This method underwent 100 training iterations with a learning rate set at
0.001. Patch size for DBDA and DBDA-MISH is set at 7 × 7.

(f) ViT. This model employs the transformer as the baseline model for image classification.
The unique attention mechanism within the transformer allows for capturing global
and local features from an overall perspective of the image. For the sake of simplicity
in implementation, the ViT method from the open-source project provided in the
article is directly utilized. Both the band patch and patch size are set to a default value
of 1. The optimizer used is Adaptive Moment Estimation (Adam). The training lasted
for 100 epochs.

(g) SpectralFormer. This model focuses on pixel-level HSIC, utilizing the transformer
structure for synchronous extraction of spatial–spectral information, rather than em-
ploying two separate modules. Distinctive design has enhanced the capability of
the transformer-based model to extract local semantic information. Due to memory
constraints, this experiment adopts a pixel-wise configuration with a patch size of 1.
The band patch is set as 3 to explore the spectral differences among different bands.
The model undergoes 100 epochs of training with the Adam optimizer.

(h) SSFTT. This method combines convolutional neural networks and the transformer
by utilizing convolutional layers to model low-level spatial–spectral features into
tokens. These tokens are then treated as high-level semantic features of HSI, which the
transformer excels at handling. In the experiment, PCA is first utilized to reduce the
spectral dimensionality to 30. Considering compatibility between the initial and final
parts of the model, the patch size is set to 13. The model is trained for 100 epochs.

The majority of the unspecified hyperparameter settings remain consistent with the de-
fault configurations mentioned in the reference article, aiming to showcase the fundamental
classification performance of the dataset. The results of all experiments were obtained after
ten repetitions.

3.2.2. Classification Performance

To validate the classification performance of the HLJ dataset, a substantial number
of basic classification experiments were conducted. The classification results of different
methods are presented in Tables 3 and 4, and Figures 10 and 11 illustrate the classification
maps on the dataset.
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Figure 10. Classification maps obtained through various methods for HLJ-Raohe dataset. (a) Ground
truth, (b) SVM, (c) 2D-Deform, (d) SSRN, (e) DBDA, (f) DBDA-MISH, (g) ViT, (h) SpectralFormer,
(i) SSFTT.

Table 3. Classification results of representative methods on HLJ-Raohe dataset.

Class SVM 2D-Deform SSRN DBDA DBDA-
MISH ViT SpectralFormer SSFTT

1 92.94 ± 0.047 98.26 ± 0.22 97.26 ± 0.41 92.79 ± 3.36 96.18 ± 0.26 96.60 ± 0.68 95.52 ± 0.45 96.97 ± 0.71
2 95.90 ± 0.01 99.09 ± 0.12 98.63 ± 0.25 96.36 ± 1.50 97.75 ± 0.19 95.26 ± 0.91 97.31 ± 0.72 98.08 ± 0.17
3 75.16 ± 0.09 94.67 ± 0.43 89.70 ± 0.85 79.68 ± 6.32 78.63 ± 1.17 75.42 ± 0.91 83.14 ± 2.84 92.63 ± 0.83
4 82.55 ± 0.11 93.96 ± 0.36 89.82 ± 0.44 82.52 ± 3.96 82.61 ± 0.72 83.20 ± 1.16 85.68 ± 1.40 88.55 ± 1.28
5 64.91 ± 1.08 95.23 ± 0.31 84.32 ± 0.57 70.22 ± 2.07 44.98 ± 8.53 79.31 ± 1.69 84.52 ± 2.81 93.21 ± 1.66
6 88.52 ± 0.08 99.84 ± 0.03 98.75 ± 0.79 93.24 ± 1.17 95.13 ± 0.50 93.63 ± 2.02 96.88 ± 1.43 99.67 ± 0.13
7 9.165 ± 1.43 98.63 ± 0.57 90.32 ± 3.19 66.42 ± 9.02 25.81 ± 6.84 57.14 ± 10.34 79.76 ± 5.13 95.74 ± 1.69

OA 88.59 ± 0.03 97.54 ± 0.10 95.47 ± 0.15 90.19 ± 0.51 90.46 ± 0.26 89.69 ± 0.72 92.69 ± 0.34 95.72 ± 0.12
AA 72.74 ± 0.35 97.10 ± 0.10 92.69 ± 0.38 83.03 ± 0.87 74.44 ± 1.48 82.94 ± 1.79 88.97 ± 1.07 94.98 ± 0.29

Precision 79.96 ± 0.05 84.47 ± 0.45 83.81 ± 0.22 79.66 ± 0.78 79.08 ± 1.50 85.44 ± 0.77 90.70 ± 0.26 94.84 ± 0.27
Recall 75.62 ± 0.12 84.86 ± 0.19 82.23 ± 0.49 77.72 ± 0.89 76.03 ± 0.73 82.93 ± 1.79 88.05 ± 0.65 94.81 ± 0.41

F1 77.52 ± 0.06 84.66 ± 0.31 82.98 ± 0.29 78.62 ± 0.82 77.77 ± 0.62 83.71 ± 1.16 89.14 ± 0.25 94.81 ± 0.29
Kappa 84.43 ± 0.04 96.65 ± 0.14 93.82 ± 0.21 86.63 ± 0.67 86.95 ± 0.35 85.99 ± 1.02 90.03 ± 0.46 94.18 ± 0.16

Table 4 shows the classification results achieved by training the HLJ-Raohe dataset
with a fixed 10% of samples size per class. With the exception of ViT, the other deep
learning approaches have exhibited impressive classification performance; the overall
accuracy exceeded 90%. In particular, the SSFTT, SSRN, and 2D-Deform methods accurately
classified over 95% of annotated samples; this already represents a significant proportion
within a single image. Even with traditional machine learning approaches, SVM showcases
robust performance on this dataset. The poor performance of the ViT method might be
attributed to the model’s capability to handle single bands, unable to effectively model
the extensive continuous spectral information in HSI. However, the HLJ-Raohe dataset
is not trivial and holds research significance. Observing the table, it is evident that the
classification performance for the third, fourth, and seventh categories is not as ideal
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as for the other categories. Despite being the best performing methods, SSFTT and 2D-
Deform exhibit a clear decrease in accuracy for these specific categories. The observation
shown in Figure 10 indicates that the majority of the third and fourth categories were
concentrated in complex areas, where these two land cover types are intermingled. It
is particularly noticeable in region 1 of the white rectangular box. This means that, in
real agricultural scenes, the planting areas for Corn and Soybeans are very close to each
other. Additionally, for the River and Wetland categories within the yellow rectangular
box region 2, some areas along the riverbank form Wetland during the dry season. But,
during the rainy season, these areas are flooded and transform into the river. This seasonal
transition results in similar spectral characteristics between the River and the Wetland,
posing unknown challenges to the classification models. Figure 12 shows the overall
accuracy change in the SSFTT and SSRN for Corn and Soybean categories with variation in
training samples. It is noticeable that increasing the number of training samples improves
the classification accuracy. However, even with 20% of the training samples, there is no
significant improvement.

(b) (c) (d) (e)

(f) (g) (h) (i)

(a)

Corn

Soybean

Grass

Irrigation 

Canals

Saline Soil

RiceRice

Wetland

Artificial 

Structures

2

1

Figure 11. Classification maps obtained through various methods for HLJ-Yan dataset. (a) Ground
truth, (b) SVM, (c) 2D-Deform, (d) SSRN, (e) DBDA, (f) DBDA-MISH, (g) ViT, (h) SpectralFormer,
(i) SSFTT.

Table 4. Classification results of representative methods on HLJ-Yan dataset.

Class SVM 2D-Deform SSRN DBDA DBDA-
MISH ViT SpectralFormer SSFTT

1 88.93 ± 0.13 96.27 ± 1.32 96.48 ± 0.94 92.41 ± 1.22 93.35 ± 1.15 89.36 ± 0.71 93.26 ± 0.53 97.92 ± 0.56
2 66.96 ± 0.19 73.07 ± 13.9 82.06 ± 4.60 63.94 ± 10.9 67.22 ± 5.94 70.19 ± 3.26 71.56 ± 5.63 86.88 ± 1.97
3 80.15 ± 0.07 81.28 ± 8.49 88.77 ± 1.46 87.39 ± 5.11 80.16 ± 2.28 81.35 ± 3.08 88.60 ± 2.82 90.41 ± 1.31
4 81.23 ± 0.21 95.60 ± 1.48 97.18 ± 1.15 92.18 ± 0.69 94.10 ± 1.42 89.22 ± 3.59 95.05 ± 1.71 98.58 ± 0.37
5 24.12 ± 11.54 93.40 ± 4.31 56.66 ± 20.3 52.28 ± 6.39 86.95 ± 5.47 82.17 ± 2.38 79.45 ± 2.37 97.52 ± 0.96
6 97.40 ± 0.17 99.21 ± 0.48 99.09 ± 0.29 96.15 ± 0.81 98.22 ± 2.03 96.01 ± 1.78 98.72 ± 0.59 99.92 ± 0.05
7 0.87 ± 0.48 92.79 ± 3.14 38.21 ± 37.51 58.13 ± 6.89 75.39 ± 16.87 42.17 ± 7.65 73.17 ± 8.41 95.71 ± 1.81
8 78.35 ± 0.12 88.96 ± 2.94 55.78 ± 44.24 71.20 ± 4.53 83.28 ± 8.34 86.92 ± 2.14 79.06 ± 10.91 98.57 ± 1.60

OA 79.16 ± 0.09 84.79 ± 2.99 88.35 ± 0.88 82.43 ± 1.31 82.22 ± 1.85 80.93 ± 0.89 85.77 ± 0.79 92.41 ± 0.16
AA 64.75 ± 1.49 90.07 ± 1.16 76.78 ± 9.46 76.71 ± 1.96 84.83 ± 3.98 79.67 ± 2.09 84.87 ± 2.68 95.35 ± 0.55

Precision 77.32 ± 0.18 85.72 ± 0.21 84.26 ± 0.26 77.76 ± 0.60 79.49 ± 0.43 76.83 ± 2.51 85.64 ± 0.83 95.36 ± 0.48
Recall 71.82 ± 0.21 85.85 ± 0.08 83.15 ± 0.72 76.06 ± 0.86 69.79 ± 1.78 79.68 ± 1.16 84.53 ± 0.59 95.22 ± 0.52

F1 74.09 ± 0.12 85.78 ± 0.12 83.69 ± 0.47 76.8 ± 0.62 72.70 ± 1.67 76.12 ± 1.92 84.86 ± 0.38 95.27 ± 0.17
Kappa 70.54 ± 0.13 79.15 ± 4.07 83.86 ± 1.25 75.48 ± 2.01 75.01 ± 2.69 73.75 ± 1.24 80.26 ± 1.17 89.54 ± 0.23
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(a) (b)

(c) (d)

Figure 12. The classification performance of Soybean and Corn in different training samples. (a) SSRN
method on HLJ-Raohe, (b) SSFTT method on HLJ-Raohe, (c) SSRN method on HLJ-Yan, (d) SSFTT
method on HLJ-Yan.

Table 4 presents the experimental results on the HLJ-Yan dataset after training with
different methods using 10% of the samples. The SSFTT method achieved the highest
accuracy in the classification across all categories. However, it is also worth noting that
other classification methods still require substantial improvement on this dataset. This
suggests that mainstream methods may encounter certain obstacles in this classification
scenario. Similar to HLJ-Raohe, most methods exhibit higher misclassification rates in the
Corn and Soybean categories. This can be observed in region 1 of the white rectangular
box in Figure 11. This may be attributed to the similar spectral characteristics of Corn and
Soybean, as they are both cultivated in dry fields, while Rice, commonly grown in paddy
fields, exhibits a significant spectral difference compared to most other cultivated lands.
The fifth class is Irrigation Canals; it has an elongated shape and is located among various
types of cultivated land. The misclassification areas are mainly concentrated in regions
where multiple types of land covers intersect, such as region 2 in the yellow rectangular
box. Additionally, due to differences in salt and alkaline content in the soil, Saline Soil
from different regions exhibits inconsistent spectral characteristics, which could deceive
the model. Even directly increasing the number of training samples as shown in Figure 12
cannot fundamental resolve the mutual interference between Corn and Soybean.

Figure 13 displays the classification results achieved by various methods on the HLJ
dataset using different proportions of training samples. As the proportion of training
samples increases, the expected rise in OA is observed. However, beyond a training sample
size larger than 10%, the improvement in accuracy is quite limited. This indicates that
simply applying basic classification methods on the HLJ dataset may not fully capture the
crucial information within the data.
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(a)

(b)

Figure 13. The classification performance of HLJ dataset with different training samples. (a) HLJ-
Raohe, (b) HLJ-Yan.

3.3. Classification Performance on Other Datasets

Tables 5 and 6 present the classification accuracy of the SSFTT method on other relevant
datasets. In order to achieve convergence on them, the training epochs were set to 100. All
other hyperparameters were set with the same configuration. With 10% of the training
samples, this method exhibited superior performance, exceeding 98% accuracy on various
mainstream datasets. Nevertheless, its classification performance experienced a decline
when applied to the HLJ dataset. The category with the highest number of labeled samples,
Rice, also achieved a classification accuracy of 98%. Furthermore, consistent with the
analysis in Section 3.2, severe misclassification occurred for the Corn and Soybean categories
in the HLJ-Yan and HLJ-Raohe datasets, posing a significant classification challenge for the
entire dataset. Although the classification accuracy of the Oats category in the IP dataset
is only 83%, it is important to note that this category has only 20 labeled samples. In the
HLJ dataset, no category achieved perfect or complete classification accuracy. Given the
substantial number of labeled samples in this dataset, even though the overall classification
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accuracy for both images reaches 90%, there are still numerous instances of misclassification.
Moreover, it is evident that categories with lower classification accuracy require further
enhancements in the classification capabilities of the models.

Table 5. Classification results of the 2D-Deform method on WH-LK, HLJ-Yan, and HLJ-Raohe
datasets.

Class WHU-LK HLJ-Yan HLJ-Raohe

1 99.99 ± 0.01 97.92 ± 0.56 96.97 ± 0.71
2 100.00 ± 0.00 86.88 ± 1.97 98.08 ± 0.17
3 100.00 ± 0.00 90.41 ± 1.31 92.63 ± 0.83
4 99.96 ± 0.01 98.58 ± 0.37 88.55 ± 1.28
5 99.60 ± 0.05 97.52 ± 0.96 93.21 ± 1.66
6 99.95 ± 0.04 99.92 ± 0.05 99.67 ± 0.13
7 99.97 ± 0.01 95.71 ± 1.81 95.74 ± 1.69
8 98.98 ± 0.05 98.57 ± 1.60
9 98.74 ± 0.16

OA 99.90 ± 0.01 92.41 ± 0.16 95.72 ± 0.12
AA 99.69 ± 0.02 95.35 ± 0.55 94.98 ± 0.29

Kappa 99.86 ± 0.01 89.54 ± 0.23 94.18 ± 0.16

Table 6. Classification results of the 2D-Deform method on YRE, SA, IP, and WH-HC datasets.

Class YRE SA IP WH-HC

1 100.00 ± 0.00 100.00 ± 0.00 96.10 ± 5.48 99.64 ± 0.13
2 100.00 ± 0.00 100.00 ± 0.00 95.89 ± 0.41 99.34 ± 0.47
3 100.00 ± 0.00 100.00 ± 0.00 99.73 ± 0.35 98.39 ± 2.25
4 100.00 ± 0.00 99.92 ± 0.12 99.81 ± 0.38 99.68 ± 0.16
5 100.00 ± 0.00 99.68 ± 0.16 99.40 ± 0.87 98.80 ± 1.35
6 100.00 ± 0.00 99.97 ± 0.03 99.63 ± 0.34 95.59 ± 1.17
7 99.61 ± 0.78 99.97 ± 0.03 100.00 ± 0.003 99.20 ± 0.40
8 100.00 ± 0.00 100.00 ± 0.00 99.91 ± 0.19 99.22 ± 0.27
9 100.00 ± 0.00 100.00 ± 0.00 83.33 ± 11.65 98.82 ± 0.82

10 100.00 ± 0.00 99.79 ± 0.09 98.17 ± 0.75 99.65 ± 0.11
11 100.00 ± 0.00 99.94 ± 0.05 99.61 ± 0.15 99.66 ± 0.27
12 100.00 ± 0.00 100.00 ± 0.00 97.53 ± 0.72 98.81 ± 1.65
13 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 95.81 ± 1.62
14 100.00 ± 0.00 99.96 ± 0.08 99.91 ± 0.14 99.07 ± 0.82
15 100.00 ± 0.00 99.92 ± 0.04 99.31 ± 0.742 97.99 ± 1.15
16 100.00 ± 0.00 100.00 ± 0.00 90.48 ± 4.94 99.93 ± 0.08
17 100.00 ± 0.00
18 100.00 ± 0.00
19 100.00 ± 0.00
20 100.00 ± 0.00

OA 99.98 ± 0.04 99.95 ± 0.01 98.76 ± 0.22 98.88 ± 1.78
AA 99.98 ± 0.04 99.95 ± 0.01 97.43 ± 0.92 98.69 ± 1.70

Kappa 99.97 ± 0.04 99.94 ± 0.01 98.58 ± 0.25 98.69 ± 2.07

3.4. Visualization of HLJ Dataset

To visually and comprehensively demonstrate the data distribution of the dataset
proposed in this paper, 2D visualization of all labeled samples from the HLJ dataset and
other datasets was performed using the t-distributed stochastic neighbor embedding (t-
SNE) method in this section. The visualization results are shown in Figure 14. Additionally,
by computing the average of the image data for all samples, representative spectral curves
of different categories in the HLJ dataset were obtained, which can be found in Figure 15.
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Figure 14. Visualization of all labeled samples using t-SNE. (a) HLJ-Raohe, (b) HLJ-Yan, (c) WHU-Hi-
LongKou, (d) Yellow River Estuary, (e) Indian Pines, (f) Salinas.

(b) 

(a) 

Figure 15. The spectral curves of HLJ dataset. (a) HLJ-Raohe, (b) HLJ-Yan.

4. Discussion

In this study, a large-scale HSI dataset for crop classification is introduced. By pre-
processing the data and meticulous sample annotation efforts, we established two major
study areas in Heilongjiang Province, located in northeast China. The images in these
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areas have large spatial dimensions, covering distinct growth stages of various crops and
containing abundant spatial–spectral information. And each image in this dataset provides
over 300,000 annotated samples for interpretation. In the fundamental classification experi-
ments, eight classical methods have completed successful classification on the HLJ dataset,
which represents the applicability of this dataset as a benchmark dataset. Simultaneously,
this dataset also poses practical challenges for many HSIC methods with the characteristics
of intensive cultivation and uneven distribution in agricultural scenarios. For instance,
as shown in the HLJ-Raohe classification results presented in Figure 10, most methods
generate significant misclassifications for Corn and Soybeans. Additionally, categories such
as rivers and artificial structures cannot be accurately determined due to their considerably
fewer samples compared to other classes. Addressing these challenges requires specific
enhancements and modifications to existing hyperspectral classification methods.

The results of the data distribution visualization for the HLJ dataset and other related
datasets are presented in Figure 14. In the HLJ dataset, samples within the same category
exhibit close proximity, while different categories intertwine. For example, in the HLJ-
Raohe dataset, Corn and Soybean display overlap, as well as in the HLJ-Yan dataset. This
distribution pattern confirms the suboptimal performance of various classification methods
in categorizing these classes in the classification experiments. It is evident that, in the other
datasets, there is a substantial dispersion among the sample categories, with small intra-
class distances. These datasets are more amenable for modeling due to their characteristics.
As shown in Tables 5 and 6, with the same experimental configuration, the HLJ dataset
maintains a higher classification difficulty compared to the other datasets both overall
and partially.

The results of the spectral curve visualization for the HLJ dataset are given in Figure 15.
Clearly, within specific wavelength ranges, the spectral curves exhibit notable overlap,
with similar data values for peaks and troughs. In these bands, models struggle to extract
distinctive features, especially in those minute yet crucial segments. This places a higher
demand on the model’s ability to maintain precision and sensitivity towards the informative
spectral bands.

The HLJ dataset proposed in this study is primarily designed to meet the demands
of crop structure investigation in the northeast region. This task only requires accurate
classification of major crops such as rice, soybeans, and corn, while maintaining limited
focus on other land covers. Constrained by the difficulty of annotation, the labeling
process did not involve detailed categorization of more varieties, and different varieties of
a single crop were not distinguished. In addition, the impact of more practical factors on
hyperspectral interpretation needs further exploration in future research.

5. Conclusions

In this paper, with the purpose of solving the difficulties encountered in crop structure
investigation for northeast China, a large-scale HSI benchmark dataset for crop classification
is proposed, namely the HLJ dataset. Acquired from the ZY-02D satellite, the dataset reflects
the realistic agricultural characteristics of a vast agricultural region, represented by two
elaborately selected HSIs. By accurately labeling a total of over 600,000 samples within
the entire dataset, including the boundaries of distinct land covers, the limitations of DL
in the development of HSIC due to the absence of sample diversity and inadequacy of
annotated samples are addressed. And this has been validated through visualizing their
features and spectral curves. Additionally, through the basic classification experiments
conducted on eight mainstream classification methods, it is found that the mainstream DL
methods achieved more than 80% classification accuracy using 10% labeled samples for
training. This further confirms the feasibility and research potential of the HLJ dataset as a
benchmark dataset for HSI classification. In parallel, compared with the existing traditional
datasets, the HLJ dataset faces practical problems such as uneven sample distribution,
and intensive and mixed crop cultivation, and their coexistence brings new challenges to
the HSIC technique. The HLJ dataset not only serves as a benchmark for measuring the
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performance of the HSIC algorithm, but is also suitable for serving as a research object
for a wide range of practical tasks, such as crop structure survey, long-tailed distribution
classification, open-set classification, and so on. In the future, a more in-depth interpretation
of this dataset will contribute to enhancing the scientific planning level of agriculture in
China, thereby promoting sustainable agriculture and ensuring global food security.
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