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Abstract: In recent years, hyperspectral image (HSI) classification (HSIC) methods that use deep
learning have proved to be effective. In particular, the utilization of convolutional neural networks
(CNNs) has proved to be highly effective. However, some key issues need to be addressed when
classifying hyperspectral images (HSIs), such as small samples, which can influence the generalization
ability of the CNNs and the HSIC results. To address this problem, we present a new network that
integrates hybrid pyramid feature fusion and coordinate attention for enhancing small sample HSI
classification results. The innovative nature of this paper lies in three main areas. Firstly, a baseline
network is designed. This is a simple hybrid 3D-2D CNN. Using this baseline network, more robust
spectral-spatial feature information can be obtained from the HSI. Secondly, a hybrid pyramid
feature fusion mechanism is used, meaning that the feature maps of different levels and scales can
be effectively fused to enhance the feature extracted by the model. Finally, coordinate attention
mechanisms are utilized in the network, which can not only adaptively capture the information
of the spectral dimension, but also include the direction-aware and position sensitive information.
By doing this, the proposed CNN structure can extract more useful HSI features and effectively be
generalized to test samples. The proposed method was shown to obtain better results than several
existing methods by experimenting on three public HSI datasets.

Keywords: hyperspectral image classification; convolutional neural network; small sample; hybrid
3D-2D CNN; pyramid feature fusion; coordinate attention mechanism

1. Introduction

Images with high spectral dimension and high spatial resolution are called hyperspec-
tral images (HSIs) [1]. They can characterize the physical, chemical and material properties
of objects. Due to its characteristics, people use HSI to solve problems in a variety of real
situations, such as in precision agriculture [2—4], the military industry [5-7] and environ-
mental monitoring [8-10]. Assigning a category to each pixel in the HSI is a HSIC task.
This task is also a basic task in HSI processing [11].

In previous works of HSI classification tasks, due to the rich spectral feature infor-
mation of hyperspectral images, traditional machine learning algorithms employ spec-
tral information to solve HSIC tasks. This involves the use of support vector machines
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(SVMs) [12], Bayesian models [13], k-nearest neighbor (KNN) [14], etc. Nevertheless, these
methods have common drawbacks, such as always using only spectral information for
computing to assign a class to each pixel. In these methods, ignoring spatial information
may lead to misclassification of pixels to a certain extent. Therefore, researchers have
proposed many methods to exploit spectral feature information and spatial feature infor-
mation to strengthen the presentation of hyperspectral images and raise the accuracy of
classification [15-21]. For example, Markov random field [17], sparse representation [18],
metric learning [15] and compound kernels [16,21]. In hyperspectral images, spectral
information is always redundant, and spectral information belongs to a certain type of
pixel, which is likely to be mixed with other types of information of HSI pixels. There-
fore, in HSI classification, these methods are not effective in extracting discriminative but
robust information. However, the classification effect is not always good. To address
the spectral redundancy problem, some dimensionality reduction techniques focus on
extracting effective features, as well as, for example, the widely used principal component
analysis (PCA) [22], independent component analysis (ICA) [23] and factor analysis (FA)
methods [24].

Recently, HSIC methods that using deep learning have proved to be effective [25-28].
Such methods include stacked autoencoder (SAE), deep belief network (DBN) and con-
volutional neural network (CNN). Chen et al. [29] first used SAE in HSIC. This method,
combined with transfer learning, proposed a new model to fuse spectral-spatial features
to obtain higher classification accuracy. Similarly, Li et al. [30] presented a model to cap-
ture spectral-spatial features for HSIC using a multilayer DBN. To alleviate the neglect of
spatial information by the above methods, methods have been introduced that use CNN
to solve HSI classification tasks [31]. CNN can make good use of the spatial relationships
between images, which is popular in HSIC. Chen et al. [32] only used 3D-CNN to capture
spectral-spatial information to classify HSIs, but the network model is simple and has
limited effect. Therefore, Roy et al. [33] presented a hybrid 3D-2D CNN network that can
obtain spectral-spatial feature information more efficiently. Zhong et al. [34] proposed a
model named spectral-spatial residual network (SSRN). It can promote back-propagation
of gradients while capturing richer spectral features and improving the performance of
the model. Gao et al. [35] proposed a spectral feature enhancement-based sandwich CNN
(SFE-SCNN), which can obtain better prediction results by enhancing the spectral fea-
tures. Hang et al. [36] introduced a multi-task generative adversarial network (MTGAN)
to classify HSIs using the rich information of unlabeled samples.

Although the above methods can enhance the classification effect of HSI with small
sample training, they are still unsatisfactory. In recent years, to further improve clas-
sification performance, attention mechanisms have been extensively employed [37,38].
Researchers have utilized attention mechanisms in HSIC [39], which is also the most recent
mainstream HSI classification method. Mei et al. [40] used a spectral-spatial network with
attention mechanism and achieved good results. Recently, Zhu et al. [41] introduced resid-
ual spectral-spatial attention network (RSSAN) by introducing a spectral-spatial attention
layer to SSRN. Mou et al. [42] proposed a block network called the spectral attention block,
and used a gating mechanism for enhancing the spectral information in HSIC. Ray et al. [43]
proposed A?S?K-ResNet, which could fully acquire the spectral-spatial features in the HSI
cube by using residual 3D convolution, and inserted an attention block to weight the
spectral-spatial features. Wu et al. [44] employed a two-branch spectral-spatial attention
structure to classify HSI, where the two branches of the network focus on extracting spectral-
spatial information, respectively. Although the above-mentioned attention-based methods
for small sample HSI classification have achieved competitive classification performance,
they still do not utilize the spectral-spatial feature information at different levels and scales,
or the direction-aware and position sensitive information of hyperspectral images, which
will have an impact on the classification to some extent.

In this paper, a new network that integrates hybrid pyramid feature fusion and
coordinate attention is proposed to solve HSIC tasks under small sample training condition.
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Firstly, a baseline network is constructed, which is hybrid 3D-2D CNN. Compared with
using 3D CNN or 2D CNN alone, using a hybrid 3D-2D CNN can obtain more useful HSI
features. Secondly, three parallel hybrid 3D-2D CNNss are constructed. Using the hybrid
pyramid feature fusion technology, the spatial information, detail information of different
levels and scales can be fused to effectively complement each other and strengthen the
performance of the model. Finally, the model utilizes a coordinate attention mechanism,
which can not only capture spectral information, but also position sensitive and direction-
aware features and enable the model to locate and identify target regions more accurately.
The innovative nature of this paper lies in three main areas:

1. A network that integrates hybrid pyramid feature fusion and coordinate attention is
introduced for HSIC under small sample training conditions. This model can extract
more robust spectral-spatial feature information during training small samples and
has better classification performance than several other advanced models;

2. A hybrid pyramid feature fusion is proposed, which can fuse the feature informa-
tion of different levels and scales, effectively enhancing the spectral-spatial feature
information and enhancing the performance of the small sample HSIC result;

3. A coordinate attention mechanism is introduced for HSIC, which can not only weight
spectral dimensions, but also capture position sensitive and direction-aware features
in hyperspectral images, in order to enhance feature information extracted from small
sample training.

2. The Proposed Method

In this section we describe the proposed method explicitly, including the data prepro-
cessing, hybrid pyramid feature fusion network, coordinate attention mechanism, residual
attention module and loss function.

2.1. The Framework of Proposed Model

Figure 1 is the overall framework of the proposed model. Firstly, we reduce the di-
mension of the HSI cube via Factor Analysis (FA) and then extract the overlapping 3D
patches from the dimension reduced HSI cube as the input data. Each patch is extracted
around a center pixel and the class of 3D patch is the class of the central pixel. Secondly,
the proposed network model is composed of three parallel hybrid 3D-2D CNNs and a coor-
dinate attention mechanism combined with a hybrid pyramid feature fusion mechanism.
These three parallel networks are pooled through global average pooling and the three
feature maps are fused. Finally, the features generated in the previous steps are classified
through the FC layer to obtain the prediction results. Next, each of the principal steps of
the proposed method are explicitly described.

Neighbourhood g,gp |
Extraction
oordinate Res Attention
Attention Block

Figure 1. The framework of the proposed model.
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2.1.1. Data Preprocessing

The input HSI cube is defined as I € RT*WXC the initial input image is I, the width
is H, the height is W and the spectral dimension is C. The processes of data preprocessing
are described as follows.

Firstly, the dimension of the HSI cube is reduced as P € RH>*W*D by Factor Analysis
(FA), where P is the processed input via FA, the number of spectral bands is D. This
dimension reducing process can decrease the training time by 60% [45]. Using FA as a
pre-processing step in HSIC task is very beneficial because FA can describe the variability
between different correlated and overlapping spectral bands which helps the model to
better classify similar examples. On the other hand, commonly used Principal Component
Analysis (PCA) based reductions do not directly address this goal in HSI classification.
PCA provides an approximation of the required factors, which does not help distinguish
similar examples well. After the FA step, we extracted the 3D patches X € RS*5*P from
P, centered at pixel point (&, 8), covering the spatial size of S x S and the full spectral
dimension D. We can calculate the number of 3D patches from (H —S+1) x (W —S+1).
Therefore, the 3D patch at pixel point (a, §), defined by X(a,p), selects the height from
B—(S—1)/2to p+(S—1)/2, the width froma — (S—1)/2toa+ (S—1)/2and all D
spectral dimensions of P. Overlapping 3D patches of size S X S x D are extracted from the
preprocessed HSI and input into the proposed model. S x S is the sliding window size
for patch extraction. The 3D patch size has been set to 15 x 15 x 30 for the Indian Pines
dataset, 19 x 19 x 20 and 19 x 19 x 30 for the University of Pavia and Salinas scene datasets,
respectively. The size of 3D patch is chosen experimentally to maximize overall accuracy.
The ground-truth of these patches is determined by the class category of the center pixel.

2.1.2. Hybrid Pyramid Feature Fusion Network

The hybrid pyramid feature fusion network consists of three parallel hybrid 3D-2D
CNNs combined with a hybrid pyramid feature fusion. The network architecture can be
seen in Figure 2. Firstly, we present the hybrid 3D-2D CNN, the network structure is shown
in Part 1 of Figure 2. A 3D convolutional layer is employed to obtain spectral-spatial feature
information. The first 2D convolution is used for dimensionality reduction, which can
reduce the amount of computation and model complexity; the second 2D convolution is
used to acquire further abstract spatial feature information. Using Res Block can increase
the network depth, which extracts high-level semantic feature information. It also mitigates
to some extent the problem of gradient explosion and gradient disappearance. The Res
Block architecture is shown in Figure 3. Inputting the features generated in the previous
step into the global average pooling can aggregate the feature information. Using the
global average pooling can enhance computing speed and avoid overfitting. Finally, the
feature maps from the global average pooling are passed to the FC layer for classification.
The hybrid 3D-2D CNN can sufficiently leverage spectral and spatial feature information,
reduce the complexity of the model, prevent overfitting and obtain better prediction results.

However, the HSI cube exhibits the phenomenon that “the same spectral dimensions
may represent different categories and the same categories may represent different spectral
dimensions”. The use of a single level and single scale feature does not reflect well
the characteristic information of the HSI. Therefore, this paper adds a hybrid pyramid
feature fusion mechanism to the above-mentioned hybrid 3D-2D CNN basic structure. This
mechanism is useful for obtaining enriched features under small sample training conditions.
The hybrid pyramid feature fusion network architecture is shown in Figure 2. The three
parallel hybrid 3D-2D CNN structures have different numbers of 3D convolution layers,
which are 1, 2, and 3, respectively. Designing the network structure in this way can extract
spectral-spatial feature information with different scales. This hybrid pyramid feature
fusion method fuses feature maps in two ways. The first method of feature fusion is to fuse
features between different levels. Fusion of the feature map output by the Res Block in Part
1 and the feature map output by the 3D convolution layer in Part 2, and the fusion method
of Part 2 and Part 3 is the same. The second method of feature fusion is to perform feature
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fusion between different scales. Res Block’s feature maps at different scales output in three
parallel 3D-2D hybrid CNNs were fused after global average pooling aggregation. This
design takes full advantage of the strong complementarity and correlation information of
the feature with different levels, effectively fuses the information of the feature at different
scales, obtains the deeper feature of the network during small sample training, and avoids
overfitting. It can effectively improve network generalized ability.

Figure 2. Hybrid Pyramid Feature Fusion Network Architecture.

|
v
2D Conv
BN
Relu
2D Conv
BN
Relu
2D Conv
BN
Relu
3

Figure 3. The Structure of Res Block.

2.1.3. Coordinate Attention Mechanism

Attention mechanisms that tell models “what to pay attention to” and “where to
pay attention to” have been extensively studied [38,46] and are widely used to enhance
the performance of models [37,47-51]. Attention mechanism [37] is inspired from the
way the human eye observes things because the human eye always concentrates on the
most important aspects of things. Likewise, it allows the network to dedicate itself to
the important feature, which is helpful to the accuracy of the network [52]. In the HSIC
task, the accuracy of the classification will be further enhanced by applying the attention
mechanism to the network model. The essence of the attention mechanism is to weight the
feature maps so that the model can focus on the important feature information and improve
the model generalized ability. Figure 4 shows two typical attention mechanism structures.
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‘//

Re-weight | CxHxW
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ChannelPool | 2xHxW
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BN+Sigmoid | 1xHxW

Re-weight CxHxW
Re-weight | CxHxW

. ;

OUTPUT OUTPUT

(a) (b)

Figure 4. Schematic diagrams of two attention blocks. (a) the classic SE channel attention block [47];
(b) CBAM [37] attention block.

SE attention and CBAM are the current most popular attention mechanisms. SE
attention uses 2D global pooling to calculate channel attention weights and weight the
feature information to optimize the model. The structure is shown as Figure 4a. However,
SE attention weights the channel dimension of the feature map, but neglects the spatial
dimension, which is crucial in computer vision tasks [53]. CBAM uses channel pooling and
convolution to weight spatial dimension, as shown in Figure 4b. However, convolution
cannot capture the relevance of long range information, which is critical to the vision
task [51,54].

Therefore, the coordinate attention mechanism [55] is proposed, as shown in Figure 5.
The coordinate attention mechanism can obtain the cross spectral, position sensitive and
direction aware information. It assists the model to concentrate useful feature information.
Global average pooling (GAP) is usually used to calculate channel attention weights and to
globally encode spatial information, and GAP is performed for every spectral feature on
the spatial dimension H x W, the squeeze step y is denoted as follows:

1 H W
Y= ngﬁ;x(a,ﬁ), M)

where x(«, B) is denoted as the value of x at position («, B).
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INPUT

'

Residual | CxHxW

CxHx1 X Avg Pool Y Avg Pool Cx1xW
Concat+Conv2d Clrx Ix(W+H)
BatchNorm+Non-linear C/rx Ix(W+H)
l split l
CxHix1 Conv2d Conv2d Cx1xW
CxHx 1 Sigmoid Sigmoid Cx1xW

Re-weight | CxHxW

!

OUTPUT

Figure 5. Structure diagram of the coordination attention mechanism [55]. X Avg Pool is 1D horizontal
global pooling. Y Avg Pool is 1D vertical global pooling.

However, it calculates channel attention weights by compressing the global spatial
information so that there is a loss of spatial information. Therefore, the 2D global pooling is
decomposed into 1D global pooling in the horizontal and vertical directions to effectively
use both spatial and spectral information. Specifically, encoding of each spectral dimension
in a feature map with spatial extent in (H, 1) and (1, W) occurs using 1D horizontal global
pooling and vertical global pooling. The output y" (1) at height & is denoted as follows:

Y=g ¥ xlna), @

0<a<W

similarly, the output y*(w) at width w is denoted as follows:

P =g ¥ x(pw), ©

0<p<H

these two formulas allow the relevance of long-range information in one spatial direction
to be attained while retaining positional information in the other, which helps the network
to focus on more information that is useful for classification. These two feature maps
generated in the horizontal and vertical directions are then encoded as two attention
weights, each capturing the relevance of long-range information from the feature map of
the input in one spatial direction.

Therefore, the attention weights obtained will retain the location information—specifically,
by concatenating the aggregated feature maps generated by Formulas (2) and (3), and sending
them to convolutional transformation function F; with a convolutional kernel of size 1 x 1 to
obtain f € RE/"*(H+W) which is denoted as follows:

f=3(F(y"y"]), )
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where [e, o] concatenates two feature maps in the spatial dimension, non-linear acti-
vation function ReLU is denoted as J, and the intermediate feature map is defined as
f € RE/m*(H+W) Here, the reduction ratio is 7. The horizontal and vertical spatial informa-
tion are encoded.

Then f"* € RE/7™ and f* € RE/"*" are obtained by splitting f and transforming f"
and f® by using two 1 x 1 convolutions F, and F; to obtain:

g" = o (R ("), ®)
§¥ = o (Fu(f)), ©6)

where ¢ is the sigmoid activation function, the outputs g" and g are attention weight
maps. Finally, the input feature is multiply weighted with these two attention weight maps.
The formula is as follows:

y=xxg"xg" @)

In this paper, we add a coordinate attention mechanism to the hybrid pyramid feature
fusion network model shown in Figure 2. Using a coordinate attention mechanism not
only adaptively recalibrates the spectral bands, but also captures position sensitive and

direction-aware information to refine the learned spectral-spatial features for enhancing
the classification accuracy.

2.1.4. Residual Attention Block

Resnet [56] is a powerful CNN that handles the vanishing gradient problem well.
The structure of residual blocks (Res Block) is succinct, and it can be embedded into any
existing CNN to gain a deeper level of feature. Adding residual blocks into the network
can deepen the network and extract high-level semantic features, mitigate the gradient
disappearance and explosion and improve the performance of the network. A typical
residual block structure is shown in Figure 3. Replacing a convolution layer in the Res
Block with a coordinate attention block to attain more meaningful spectral-spatial feature
information, and the architecture of the residual attention block can be seen in Figure 6.
By replacing the residual blocks in the model shown in Figure 2 with residual attention
blocks, the network can learn more important spectral and spatial feature information and
enhance the classification ability.

2D Conv
BN
Relu

2D Conv
BN
Relu

Figure 6. Residual attention blocks.

2.2. Loss Function
This experiment uses the cross-entropy loss function. The formula is as follows:
1 M C
Losscg = i Yo ) ytlog(vh), (8)

m=1c=1

where y!' and §" are true and predicted category labels, respectively, M and C are the
overall amount of small batch samples and land cover categories, respectively.

3. Experiments and Analysis

In this section, details of the HSI dataset used for the experiments are presented.
Secondly, we introduce the experimental configuration and parameter analysis. Then,
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the proposed model is subjected to ablation experiments. Finally, the proposed model is
compared with existing methods to evidence the superiority of the proposed model and its
effectiveness under different training samples.

3.1. Data Description

In our experiments we adopt the three commonly used HSI datasets. Specific informa-

tion on these datasets are as follows:

1.

The Indian Pines (IP) dataset contains a hyperspectral image. The spatial size is
145 x 145 and the spectral dimension is 224. The pixels in this image have 16 categories,
of which 10,249 pixels are labeled. This image deleted 24 spectral dimensions and only
used another 200 spectral dimensions to classify. Figure 7a—c are the pseudo-color
composite image, ground-truth image and corresponding color label of the IP dataset,
respectively. The number of samples used for training and testing in the IP dataset is
shown in Table 1.

The University of Pavia (PU) dataset contains a hyperspectral image. The spatial size is
610 x 340 and the spectral dimension is 115. The pixels in this image have 9 categories,
of which 42,776 pixels are labeled. This image deleted 12 spectral dimensions and only
used another 103 spectral dimensions to classify. Figure 8a—c shows the pseudo-color
composite image, ground-truth image and corresponding color label of the PU dataset,
respectively. The number of samples used for training and testing in the PU dataset is
shown in Table 2.

The Salinas (SA) dataset contains a hyperspectral image that has a spatial size of
512 x 217 and a spectral dimension of 224. The pixels in this image have 16 categories,
of which 54,129 pixels are labeled. This image deleted 20 spectral dimensions that and
only used another 204 spectral dimensions to classify. Figure 9a—c are the pseudo-color
composite image, ground-truth image and corresponding color label of the SA dataset,
respectively. The number of samples used for training and testing in the SA dataset is
shown in Table 3.

(b)

EE Unknown BB Alfalfa B8 Corn-notill EEE Corn-mintill Corn HEM Grass-pasture Grass-trees
BN Grass-pasture-mowed Bl Hay-windrowed BBl Oats [ Soybean-notill B Soybean-mintill

B Soybean-clean BB Wheat MM Woods MEM Buildings-Grass-Trees-Drives @l Stone-Steel-Towers

(c)

Figure 7. The Indian Pines Dataset. (a) The pseudo-color composite image. (b) The ground-truth

map. (c) The corresponding color labels.
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(b)

N Unknown BB Asphalt B Meadows HEM Gravel Trees WM Painted metal sheets Bare Soil
B Bitumen BB Self-Blocking Bricks WM Shadows

(c)

Figure 8. The University of Pavia Dataset. (a) The pseudo-color composite image. (b) The ground-
truth map. (c) The corresponding color labels.

(b)

EE Unknown EEE Brocoli_green_weeds_1 WM Brocoli_green weeds 2 B Fallow Fallow_rough_plow EEE Fallow_smooth
Stubble HEM Celery BB Grapes_untrained HEM Soil_vinyard develop BBl Corn_senesced_green weeds B Lettuce_romaine_dwk
Bl Lettuce_romaine 5wk HEM Lettuce_romaine_6wk M Lettuce_romaine_7wk I Vinyard_untrained B Vinyard_vertical_trellis

(c)

Figure 9. The Salinas Dataset. (a) The pseudo-color composite image. (b) The ground-truth map.
(c) The corresponding color labels.
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Table 1. The number of samples used for training and testing in the IP dataset.

Class Name Train Samples  Test Samples  Total Samples
1 Alfalfa 5 41 46
2 Corn-no till 5 1423 1428
3 Corn-min till 5 825 830
4 Corn 5 232 237
5 Grass-pasture 5 478 483
6 Grasstrees 5 725 730
7 Grass-pasture-mowed 5 23 28
8 Background 5 473 478
9 Oats 5 15 20
10 Soybean-no till 5 967 972
11 Soybean-min till 5 2450 2455
12 Soybean-clean 5 588 593
13 Wheat 5 200 205
14 Woods 5 1260 1265
15 Buildings-grass-trees-drives 5 381 386
16 Stone-steel-towers 5 88 93

Total 80 10,169 10,249

Table 2. The number of samples used for training and testing in the PU dataset.

Class Name Train Samples  Test Samples  Total Samples
1 Asphalt 5 6626 6631
2 Meadows 5 18,644 18,649
3 Gravel 5 2094 2099
4 Trees 5 3059 3064
5 Painted metal sheets 5 1340 1345
6 Bare soil 5 5024 5029
7 Bitumen 5 1325 1330
8 Self-blocking bricks 5 3677 3682
9 Shadows 5 942 947

Total 45 42,731 42,776

Table 3. The number of samples used for training and testing in the SA dataset.

Class Name Train Samples  Test Samples  Total Samples
1 Brocoli_green_weeds_1 5 2004 2009
2 Brocoli_green_weeds_2 5 3721 3726
3 Fallow 5 1971 1976
4 Fallow rough plow 5 1389 1394
5 Fallow smooth 5 2673 2678
6 Stubble 5 3954 3959
7 Celery 5 3574 3579
8 Grapes untrained 5 11,266 11,271
9 Soil vineyard develop 5 6198 6203
10 Corn senesced green weeds 5 3273 3278
11 Lettuce_romaine_4wk 5 1063 1068
12 Lettuce_romaine_5wk 5 1922 1927
13 Lettuce_romaine_6wk 5 911 916
14 Lettuce_romaine_7wk 5 1065 1070
15 Vineyard untrained 5 7263 7268
16 Vineyard vertical trellis 5 1802 1807

Total 80 54,049 54,129

3.2. Experimental Configuration

The CPU and GPU used for this experiment are the Intel Core i9-10900K 3.70 GHz
and the Nvidia RTX2080TI. The code runs in the Ubuntu20.04 environment. The Compiler
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and deep learning frameworks are the PyTorch1.8.1 and Python 3.8, respectively. We adopt
Adam as the optimizer algorithm, where the learning rate is 0.002, the batch size is 40 and
the training epoch is set to 150. The network configuration of the proposed model by the
example of the IP dataset is shown in Table 4.

Table 4. The network configuration for the proposed model on the IP dataset.

Proposed Network Configuration

Part 1

Part 2 Part 3

Input:(15 x 15 x 30 x 1)

3DConv-(3,3,3,8), stride = 1, pa

3DConv-(3,3,3,8), stride = 1, padding = 0
3DConv-(3,3,3,16), stride = 1, padding = 0
3DConv-(3,3,3,32), stride = 1, padding = 0

3DConv-(3,3,3,8), stride = 1, padding = 0

dding =0 3pCony-(3,3,3,16), stride = 1, padding = 0

Outputl0:(13 x 13 x 28 x 8) Output20:(11 x 11 x 26 x 16) Output30:(9 x 9 x 24 x 32)
Reshape
Outputl1:(13 x 13 x 224) Output21:(11 x 11 x 416) Output31:(9 x 9 x 768)
Concat(Outputl5,Output21) Concat(Output25,0Output31)
2DConv-(1,1,128), stride = 1, padding =0  2DConv-(1,1,128), stride = 1, padding =0 2DConv-(1,1,128), stride = 1, padding = 0
Outputl2:(13 x 13 x 128) Output22:(11 x 11 x 128) Output32:(9 x 9 x 128)
Coordinate Attention Coordinate Attention Coordinate Attention
Outputl3:(13 x 13 x 128) Output23:(11 x 11 x 128) Output33:(9 x 9 x 128)
2DConv-(3,3,64), stride = 1, padding = 0 2DConv-(3,3,64), stride = 1, padding = 0 2DConv-(3,3,64), stride = 1, padding = 0
Outputl4:(11 x 11 x 64) Output24:(9 x 9 x 64) Output34:(7 x 7 x 64)
ResAttentionBlock ResAttentionBlock ResAttentionBlock
Outputl5:(11 x 11 x 64) Output25:(9 x 9 x 64) Output35:(7 x 7 x 64)
Global Average Pooling
Outputl6:(1 x 1 x 64) Output26:(1 x 1 x 64) Output36:(1 x 1 x 64)
Concat(Output16,0Output26,0Output36)
Flatten
FC-(192,16)
Output:(16)

Kappa Coefficient (Kappa), Average Accuracy (AA) and Overall Accuracy (OA) are
adopted to test the effectiveness of each method in the experiment. Kappa can determine
whether the model predictions and actual classification results are consistent. AA is the
average of the classification accuracy for each category. OA is the ratio of the number of
correctly classified category pixels to the total number of pixels.

3.3. Experimental Results
3.3.1. Analysis of Parameters

In this section, we analyze the influence of spatial size and spectral dimension of
different datasets on the classification performance of our proposed model and find out the
suitable spatial size and spectral dimension for this dataset. Analysis of Parameters

Spatial size represents how much spatial information in the extracted 3D patch can be
used to classify the HSI. This paper validates the effect of spatial size on model performance
in three datasets. In the experiment, the spatial size was set to {11 x 11,13 x 13,15 x 15,17 x
17,19 x 19,21 x 21}, and the spectral dimension was uniformly set to 30. It can be seen from
Figure 10 that for IP, PU and SA datasets, the most suitable spatial sizes for the proposed
model were 15 x 15,19 x 19 and 19 x 19, respectively.
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Figure 10. OA of the proposed model using different spatial size in three HSI datasets.

The spectral dimension represents how much spectral information in the extracted 3D
patch can be used to classify the HSI. This paper validates the effect of spectral dimension
on model performance on three datasets. In the experiment, the spectral dimension was set
to {20, 25, 30, 35, 40, 45}, and the spatial size of the three datasets of IP, PU and SA were set
to 15 x 15,19 x 19, 19 x 19, respectively. As can be seen from Figure 11, for IP, PU and SA
datasets, the most suitable spectral dimensions for the proposed model were 30, 20 and

30, respectively.
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Figure 11. OA of the proposed model using different spectral dimension in three HSI datasets.
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Based on the above parameter analysis, Table 5 lists the optimal spatial size and
spectral dimension for the proposed model.

Table 5. The optimal spatial size and spectral dimension of the proposed model on three HSI datasets.

Dataset Spatial Size Spectral Dimension
r 15 x 15 30
PU 19 x 19 20
SA 19 x 19 30

3.3.2. Ablation Studies

To evidence the superiority of the hybrid pyramid feature fusion mechanism and
coordinate attention mechanism, we designed the ablation experiments. The results are
shown in Table 6.

Table 6. Results of ablation studies.

P PU SA
Methods
OA (%) AA (%) OA (%) AA (%) OA (%) AA (%)
Baseline 79.59 86.62 86.33 84.65 95.52 97.65
Baseline + hybrid pyramid feature fusion 82.48 88.04 87.51 86.27 95.72 97.73
Baseline + coordinate attention 82.76 87.44 88.15 85.85 95.91 97.68
proposed 84.58 89.68 89.00 87.37 97.26 97.80

The baseline indicates that the hybrid pyramid feature fusion mechanism and coor-
dinate attention mechanism are not added. The baseline network structure is as follows,
as shown in Part 1 of the network architecture in Figure 2. Only the hybrid 3D-2D CNN
is used to classify hyperspectral images under small sample conditions. Next, a hybrid
pyramid feature fusion mechanism is added into the baseline, but the coordinate attention
mechanism is not added. The network structure is shown in Figure 2. The experimental
results of these three datasets show that the hybrid pyramid feature fusion mechanism can
be applied to small samples because it can effectively fuse feature information at different
levels and scales. It can provide complementary and relevant information for classification,
thus making the model easier to converge under small-sample conditional training. Then,
after applying the coordinate attention mechanism to the baseline, the Res block is replaced
by the Res Attention Block. Table 6 represents that when the coordinate attention is added,
the mechanism can significantly improve the model’s performance. As a result, OA and
AA are improved on the three datasets. This is because the coordinate attention mecha-
nism can emphasize spectral-spatial features that are beneficial for classification, capture
long-range dependency information, and suppress less useful features during network
training. Finally, the coordinate attention mechanism is added on the basis of baseline +
hybrid pyramid feature fusion, and the Res block is replaced by the Res Attention Block,
which is the proposed model. The model structure is shown in Figure 1.

Table 6 illustrates that adding hybrid pyramid feature fusion and a coordinate attention
mechanism into the baseline can greatly improve the model’s performance. In IP datasets,
compared with the baseline, OA and AA increased by 4.99% and 3.06% respectively. It
was also optimized to a certain extent on the PU and SA datasets. From the results of
the ablation experiments, the proposed model can also obtain more meaningful spectral-
spatial features under the condition of small sample training, thereby enhancing the final
classification results.

3.3.3. Comparison with Other Methods

To validate the superiority of the proposed model, we compare the proposed model
with other representative hyperspectral image classification methods including 3D-CNN [32];
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HybridSN [33]; SSRN [34]; MCNN-CP [57]; A%2S?K-ResNet [43]; and Oct-MCNN-HS [58].
To obtain the spectral-spatial feature, 3D-CNN only used 3D convolution. HybridSN used
both 3D convolution and 2D convolution to extract spectral-spatial feature information for
increasing the classification result. Based on 3D convolution, SSRN used residual connec-
tions to deepen the network depth, extracted richer feature information, and alleviated
overfitting. MCNN-CP added a covariance pooling based on HybridSN and the covariance
pooling was applied to fully obtain the second-order information from the spectral-spatial
feature. A252K-ResNet used residual 3D convolution to acquire spectral-spatial features,
and an attention mechanism was added to adaptively weight the spectral-spatial features.
Oct-MCNN-HS designed a 3D octave and 2D vanilla mixed CNN and used the homology
shifting operation to aggregate the information of the same spatial location along the channel
direction to ensure more compact features.

Tables 7-9 describe the classification results for each method on IP, UP and SA. The
proposed model reaches the best results in terms of OA, AA and Kappa on the three
datasets. Compared with the best OA achieved by other models on IP, PU and SA datasets,
the proposed model increases by 4.49%, 4.88% and 2.79%, respectively, AA and Kappa also
achieve different degrees of growth. This is because the proposed model improves some of
the shortcomings of the above models.

The proposed model integrates hybrid pyramid feature fusion and a coordinate atten-
tion mechanism. The hybrid pyramid feature fusion mechanism can fuse feature informa-
tion at different levels and scales so that the model can acquire abundant spectral-spatial
feature information under the condition of small sample training. The coordinate attention
mechanism can adaptively weight the spectral-spatial feature information and capture
position sensitive and direction-aware information, which allows the model to focus on the
information that is useful for classification. Generally speaking, the proposed model in this
paper can obtain more robust and discriminative spectral-spatial feature information while
using small sample training, alleviate the overfitting problem of the model in the absence
of samples, and reach better classification results.

Table 7. The classification accuracy of different methods on the IP dataset.

Class 3D-CNN  HybridSN SSRN MCNN-CP A?S?K-ResNet Oct-MCNN-HS Proposed

1 95.12 100.00 97.56 100.00 100.00 97.56 100.00

2 46.38 54.60 35.98 51.09 35.49 70.41 68.10

3 44.48 56.97 64.24 69.09 47.03 77.58 86.30

4 78.02 64.66 82.76 75.00 90.95 74.14 85.34

5 67.99 68.20 62.97 73.43 69.25 84.10 91.63

6 82.21 93.24 81.93 85.93 80.28 97.52 95.93

7 100.00 100.00 100.00 100.00 100.00 100.00 100.00

8 44.19 87.95 97.89 99.79 95.35 100.00 100.00

9 100.00 100.00 100.00 100.00 100.00 100.00 100.00

10 43.33 74.97 37.54 55.02 59.46 52.74 57.70

11 43.88 39.22 83.63 62.53 75.88 79.63 88.82

12 45.07 21.09 58.16 62.07 51.02 56.46 74.49

13 94.50 98.50 98.00 100.00 98.50 100.00 100.00

14 61.75 68.73 92.14 75.56 90.71 96.90 96.98

15 87.14 23.10 97.38 76.64 58.79 98.69 98.43

16 100.00 100.00 100.00 76.14 100.00 90.91 93.18
OA (%) 54.69 58.64 71.20 68.21 68.18 80.09 84.58
AA (%) 70.88 71.95 80.64 78.89 78.29 86.04 89.68
Kappa x 100 49.47 53.68 86.71 64.02 63.86 77.32 82.36
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Table 8. The classification accuracy of different methods on the PU dataset.

Class 3D-CNN  HybridSN SSRN MCNN-CP  A2?S2K-ResNet Oct-MCNN-HS Proposed

1 36.69 43.40 65.88 81.54 83.25 80.44 88.03

2 74.51 76.15 80.19 85.36 87.12 86.20 92.58

3 82.71 74.07 94.22 60.17 75.21 60.08 96.51

4 91.27 74.47 86.99 38.57 88.62 89.47 74.83

5 99.93 100.00 100.00 100.00 99.93 100.00 100.00

6 52.81 75.80 96.14 71.10 56.33 79.60 86.58

7 100.00 97.58 100.00 95.92 88.68 88.45 100.00

8 54.12 58.69 60.62 77.92 50.97 90.37 81.15

9 38.43 58.70 79.19 69.00 88.96 75.69 66.67
OA (%) 66.73 70.33 80.51 78.29 79.80 84.12 89.00
AA (%) 70.05 73.21 84.80 75.51 79.90 83.37 87.37
Kappa x 100 58.07 62.32 75.38 71.48 73.36 79.37 85.56

Table 9. The classification accuracy of different methods on the SA dataset.
Class 3D-CNN  HybridSN SSRN MCNN-CP  A2S?K-ResNet Oct-MCNN-HS Proposed

1 100.00 99.80 98.50 99.15 99.80 98.60 97.75

2 99.87 98.82 99.73 100.00 96.69 100.00 100.00

3 96.09 91.83 24.71 98.22 75.14 100.00 99.95

4 78.62 94.74 98.85 89.20 99.86 96.33 100.00

5 97.19 95.96 96.07 85.82 88.89 98.73 94.50

6 98.43 99.72 94.66 98.99 95.17 100.00 99.67

7 100.00 99.16 99.94 94.80 99.94 100.00 99.55

8 95.97 78.80 82.53 73.64 60.18 83.66 93.91

9 97.76 99.82 99.79 98.52 99.84 100.00 99.98

10 75.65 73.60 59.98 86.95 77.51 91.90 92.33

11 100.00 100.00 99.81 100.00 97.37 100.00 100.00
12 97.97 99.38 90.69 87.67 99.32 90.11 93.13
13 99.78 99.01 100.00 93.96 98.13 98.90 100.00
14 94.84 99.62 87.04 99.72 99.62 97.28 97.56
15 63.13 99.37 45.93 71.25 94.78 92.70 98.18
16 77.91 97.00 94.78 98.17 95.17 99.33 98.34
OA (%) 90.60 92.53 82.44 87.58 87.29 94.47 97.26
AA (%) 92.08 95.23 85.81 92.25 92.34 96.72 97.80
Kappa x 100 89.51 91.73 80.44 86.25 85.92 93.86 96.95

Figures 12-14 visualize the ground-truth maps corresponding to the three datasets
and the classification results of the comparison experiments. The classification reduction
maps of these classical methods have some dot noises in some categories and show more
misclassifications. The proposed model produces more accurate classification maps with
smoother boundaries and edges than other classical methods, which fully demonstrates
the superiority of this method under the condition of small sample training.

3.3.4. Performance Comparison of Different Training Samples

To prove the effectiveness of the proposed model under different training samples
we set up three sets of comparative experiments. The number of training samples in each
group of comparison experiments was different, and 1, 5 and 10 samples were chosen from
each category, respectively. The Oct-MCNN-HS model with the best effect was selected
from the above comparison experiments for comparison with our model. The experimental
results are shown in Figure 15a—c, which are the OA curves on the IP, PU and SA datasets,
respectively. On the IP dataset, when the training sample of each class is 1, our model can
obtain 58.15% OA, while Oct-MCNN-HS only obtains 50.94%, and OA increases by 7.21%.
When the training samples of each class are 5 and 10, the OA of our model also increases by
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4.49% and 2.08%, respectively, compared with Oct-MCNN-HS. On PU and SA datasets, our
model outperforms Oct-MCNN-HS when trained with other small sample sizes. This fully
demonstrates that our proposed model can extract more robust features and is superior
under small sample training.

Figure 12. Classification maps for IP dataset. (a) Ground-truth map; (b) 3D-CNN; (c) HybridSN; (d)
SSRN; (e) MCNN-CP; (f) A%2S?K-ResNet; (g) Oct-MCNN-HS; (h) proposed method.

(d)

(h)

Figure 13. Classification maps for PU dataset. (a) Ground-truth map; (b) 3D-CNN; (c) HybridSN;
(d) SSRN; (e) MCNN-CP; (f) A2S?K-ResNet; (g) Oct-MCNN-HS; (h) proposed method.
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Figure 14. Classification maps for SA dataset. (a) Ground-truth map; (b) 3D-CNN; (c) HybridSN;
(d) SSRN; (¢) MCNN-CP; (f) A2S?*K-ResNet; (g) Oct-MCNN-HS; (h) proposed method.
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Figure 15. OA curves for different methods with different numbers of training samples on different
training dataset. (a) OA curves on IP dataset; (b) OA curves on PU dataset; (c¢) OA curves on

SA dataset.
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4. Discussion
4.1. The Influence of Different Dimensionality Reduction Method

We compared the FA and PCA dimensionality reduction methods. The experimental
results are shown in Figure 16. On the IP dataset, the OA can reach 84.58% when using
the FA dimensionality reduction method, which is 0.72% higher than the OA obtained
by using the PCA dimensionality reduction method. On the PU and SA datasets, the OA
also increased by 0.47 and 0.78% when using the FA dimensionality reduction method,
compared to that when using the PCA dimensionality reduction method, respectively. The
experimental results illustrate that using FA to dimensionally reduce HSI images helps to
strengthen the classification accuracy of the model. This is because FA can describe the
variations between different correlated and overlapping spectral bands, which helps the
model to better classify similar examples. Therefore, using FA as a pre-processing step in
the HSI classification task is very beneficial.

100.0

97.5 | == FA

95.0 4
92.5 4
90.0 4

87.5 4

Overall Accuracy(%)

85.0 1

- -'
80.0 -

Indian pines PaviaU Salinas
Datasets

Figure 16. The influence of different dimensionality reduction method.

4.2. The Influence of the Hybrid Pyramid Feature Fusion Method

On IP, PU and SA datasets, the impact of the proposed hybrid pyramid feature fusion
method on the classification performance is analyzed. Figure 17 shows the experimental
results. The blue histogram represents that the hybrid pyramid feature fusion mechanism
is not added, and the orange histogram represents that the hybrid pyramid feature fusion
mechanism is added. The use of a hybrid pyramid feature fusion mechanism in the model
can greatly enhance the performance of the model under small sample training. On the IP
dataset, the OA can reach 84.58% when the hybrid pyramid feature fusion is used in the
model, which is an increase of 1.82% compared to when the hybrid pyramid feature fusion
is not used. On the PU and SA datasets, the OA also increases by 0.85% and 1.35%.

100.0

Emm Without hybrid pyramid feature fusion
97.5 | - With hybrid pyramid feature fusion

95.0 4
92.5 1
90.0 1

87.5 4

Overall Accuracy(%)

85.0 4

82.5 4

80.0 -

Indian pines PaviaU Salinas
Datasets

Figure 17. The influence of the hybrid pyramid feature fusion mechanism.

On the three datasets, using the hybrid pyramid feature fusion mechanism can signifi-
cantly boost the overall accuracy of the model. Low-level features have more location and
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detail information due to the high resolution, but they are noisier due to less convolution.
High-level features have low resolution and poor perception of detail but have stronger
semantic information. Feature information at different levels and scales are different. Using
hybrid pyramid feature fusion, spatial information and detail information at different
levels and different scales can be fused to effectively complement each other. When using
small sample training, the feature information extracted by the proposed model can be
more robust, avoid overfitting, and provide complementary and relevant information for
classification, thereby significantly improving model performance.

4.3. The Influence of the Different Attention Modules

We compare the coordinate attention mechanism with SE attention and CBAM, two
classic attention mechanisms, and Figure 18 is the experimental result. On the IP dataset,
the OA can reach 82.48% when the attention mechanism is not used. Adding the attention
mechanism to the model can augment the OA of the model. The OA increases by 2.1% when
the coordinate attention mechanism is added. Similarly, on the PU and SA datasets, the OA
of the model also increases the most when using the coordinate attention mechanism. From
the above experimental analysis, it is clear that the classification performance improves the
most by the coordinate attention mechanism, and the classification performances improved
by SE attention and CBAM are not obvious. This is because the position information
encoding method proposed by coordinate attention has two advantages over SE attention
and CBAM. Firstly, SE attention does not weight the spatial information, and the spectral
dimension is compressed when calculating spatial attention weights in CBAM, leading to a
certain degree of information loss. However, the coordinate attention mechanism invokes
a reduction rate in the model to diminish the size of the channels in the bottleneck and
reduce the loss of information. Secondly, CBAM encodes spatial information by using a
larger convolution kernel, but coordinate attention encodes global information by using
reciprocal 1D horizontal global pooling and 1D vertical global pooling operations. The
use of coordinate attention mechanisms captures long-range dependencies between spatial
information, which is essential for HSI classification tasks. Therefore, inserting a coordinate
attention mechanism into the model can extract richer spectral-spatial feature information
and augment the classification accuracy.

100.0
None

97.5 4
CBAM

1l

95.0

92.5 4

90.0 4

87.5 4

Overall Accuracy(%)

85.0 1

82.54

80.0 -
Indian pines PaviaU Salinas
Datasets

Figure 18. The influence of the different attention modules.

5. Conclusions

In this paper, a network that integrates hybrid pyramid feature fusion and coordinate
attention for small sample his classification is proposed. The proposed model first uses fac-
tor analysis to cut the redundancy of spectral dimensions. Then, it uses hybrid 3D-2D CNN
to jointly gain spectral-spatial features and adds a hybrid pyramid feature fusion mecha-
nism to effectively fuse different levels and scales features, thereby using the different levels
and different scales’ feature information. A coordinate attention mechanism is inserted into
the hybrid pyramid feature fusion network to capture the direction-aware and position
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sensitive information of HSI, and weighting the spectral-spatial feature information, thus
significantly improving the classification performance. To evidence the superiority of the
proposed method, we conducted experiments that compared with some existing methods
on three commonly used HSI datasets. The proposed model can attain more beneficial
spectral-spatial features when trained with small samples and the classification accuracy
on the three datasets is significantly better than other methods. In the future, we will
concentrate our research on how to optimize the attention mechanism and apply it to HSI
classification tasks with small sample training to further enhance classification ability.
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