Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = hypersonic boundary layer transition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 10285 KB  
Article
Angle of Attack Effects on Boundary Layer Transition over a Flared Cone–Swept Fin Configuration
by Qingdong Meng, Juanmian Lei, Song Wu, Chaokai Yuan, Jiang Yu and Ling Zhou
Aerospace 2025, 12(9), 824; https://doi.org/10.3390/aerospace12090824 - 12 Sep 2025
Viewed by 447
Abstract
In our previous study, the transition behavior of a flared cone–swept fin configuration was investigated under an angle of attack (AoA) of 0°. To further explore the role of AoA in complex three-dimensional geometries with strong fin–body interactions, wind tunnel experiments [...] Read more.
In our previous study, the transition behavior of a flared cone–swept fin configuration was investigated under an angle of attack (AoA) of 0°. To further explore the role of AoA in complex three-dimensional geometries with strong fin–body interactions, wind tunnel experiments were conducted at Ma = 9.3, Re = 1.36 × 107/m, with AoA ranging from −6° to 6°. Global surface temperature distributions were obtained using temperature-sensitive paint (TSP), while localized heat flux and pressure fluctuations were captured using thin-film thermocouples and high-frequency pressure sensors. The results show that varying AoA shifts the location of high heat flux between the upper and lower surfaces of the flared cone and induces a switch from streamwise to separation vortices. The windward side exhibits stronger disturbance responses than the leeward side. The junction region between the flared cone and the near-horizontal surface is highly sensitive to AoA variations, consistently exhibiting pronounced second-mode instabilities. These findings provide experimental support for understanding transition mechanisms under the combined effects of shock/boundary layer interaction (SBLI), crossflow, and adverse pressure gradients, with implications for transition prediction and thermal protection system design. Full article
Show Figures

Figure 1

17 pages, 11318 KB  
Article
Porous Surface Design with Stability Analysis for Turbulent Transition Control in Hypersonic Boundary Layer
by Youngwoo Kim, Minjae Jeong, Suhun Cho, Donghun Park and Solkeun Jee
Aerospace 2025, 12(6), 518; https://doi.org/10.3390/aerospace12060518 - 8 Jun 2025
Viewed by 693
Abstract
This study presents a design approach for a uniform porous surface to control laminar-to-turbulent transition in hypersonic boundary layers. The focus is on suppressing the Mack second mode, which is a dominant instability in hypersonic boundary layers. The Mack second mode is acoustic-wave-like [...] Read more.
This study presents a design approach for a uniform porous surface to control laminar-to-turbulent transition in hypersonic boundary layers. The focus is on suppressing the Mack second mode, which is a dominant instability in hypersonic boundary layers. The Mack second mode is acoustic-wave-like in the ultrasonic frequency range and can be effectively attenuated by porous surfaces. Previous studies have explored porous surfaces, either by targeting a specific frequency or by adopting geometrically complex configurations for various frequencies. In contrast, the present study proposes a porous surface design that effectively stabilizes the Mack second mode over a wide frequency range, while maintaining structural simplicity. In addition, this porous surface design incorporates constraints associated with practical fabrication to enhance manufacturability. The absorption characteristics of porous surfaces are evaluated with an acoustic impedance model, and the stabilization performance is assessed with linear stability theory. The proposed porous surface design is compared with a conventional design method that focuses on the Mack second mode with a single frequency. Consequently, the proposed design methodology demonstrates robust and consistent suppression of the Mack second mode in a broad frequency range. This approach improves both stabilization performance and manufacturability with a uniform porous surface, contributing to its practical application in high-speed vehicles. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

15 pages, 5537 KB  
Article
An Analysis of the Factors Influencing Dual Separation Zones on a Plate
by Jiarui Zou, Xiaoqiang Fan and Bing Xiong
Appl. Sci. 2025, 15(8), 4569; https://doi.org/10.3390/app15084569 - 21 Apr 2025
Viewed by 378
Abstract
The shock wave/boundary layer interaction phenomenon in hypersonic inlets, affected by background waves, may induce the formation of multiple separation zones. Existing theories prove insufficient in explaining the underlying flow mechanisms behind complex phenomena arising from multi-separation zone interactions, which necessitates further investigation. [...] Read more.
The shock wave/boundary layer interaction phenomenon in hypersonic inlets, affected by background waves, may induce the formation of multiple separation zones. Existing theories prove insufficient in explaining the underlying flow mechanisms behind complex phenomena arising from multi-separation zone interactions, which necessitates further investigation. To clarify the governing factors in multi-separation zone interactions, this study developed a simplified dual-separation-zone model derived from inlet flow field characteristics. A series of numerical simulations were conducted under an incoming flow at Mach 3 to systematically analyze the effects of internal contraction ratio, the influencing locations of expansion waves, and incident shock wave intensity on the mergence and re-separation of dual separation zones. The results demonstrate that both the expansion wave impingement position and incident shock intensity significantly influence specific transition points in dual-separation-zone flow states, though they do not fundamentally alter the evolutionary patterns governing the merging/re-separating processes. Furthermore, increasing incident shock intensity leads to the expansion of separation zone scales and prolongation of the dual-separation-zone merging distance. Full article
(This article belongs to the Special Issue Advances in Fluid Mechanics Analysis)
Show Figures

Figure 1

28 pages, 6126 KB  
Article
Gas Kinetic Scheme Coupled with High-Speed Modifications for Hypersonic Transition Flow Simulations
by Chengrui Li, Wenwen Zhao, Hualin Liu, Youtao Xue, Yuxin Yang and Weifang Chen
Entropy 2024, 26(2), 173; https://doi.org/10.3390/e26020173 - 18 Feb 2024
Cited by 1 | Viewed by 1869
Abstract
The issue of hypersonic boundary layer transition prediction is a critical aerodynamic concern that must be addressed during the aerodynamic design process of high-speed vehicles. In this context, we propose an advanced mesoscopic method that couples the gas kinetic scheme (GKS) with the [...] Read more.
The issue of hypersonic boundary layer transition prediction is a critical aerodynamic concern that must be addressed during the aerodynamic design process of high-speed vehicles. In this context, we propose an advanced mesoscopic method that couples the gas kinetic scheme (GKS) with the Langtry–Menter transition model, including its three high-speed modification methods, tailored for accurate predictions of high-speed transition flows. The new method incorporates the turbulent kinetic energy term into the Maxwellian velocity distribution function, and it couples the effects of high-speed modifications on turbulent kinetic energy within the computational framework of the GKS solver. This integration elevates both the transition model and its high-speed enhancements to the mesoscopic level, enhancing the method’s predictive capability. The GKS-coupled mesoscopic method is validated through a series of test cases, including supersonic flat plate simulation, multiple hypersonic cone cases, the Hypersonic International Flight Research Experimentation (HIFiRE)-1 flight test, and the HIFiRE-5 case. The computational results obtained from these cases exhibit favorable agreement with experimental data. In comparison with the conventional Godunov method, the new approach encompasses a broader range of physical mechanisms, yielding computational results that closely align with the true physical phenomena and marking a notable elevation in computational fidelity and accuracy. This innovative method potentially satisfies the compelling demand for developing a precise and rapid method for predicting hypersonic boundary layer transition, which can be readily used in engineering applications. Full article
(This article belongs to the Special Issue Kinetic Theory-Based Methods in Fluid Dynamics, 2nd Edition)
Show Figures

Figure 1

16 pages, 7773 KB  
Article
Real Gas Effects on Receptivity to Roughness in Hypersonic Swept Blunt Flat-Plate Boundary Layers
by Yanxin Yin, Ruiyang Lu, Jianxin Liu and Zhangfeng Huang
Aerospace 2024, 11(1), 58; https://doi.org/10.3390/aerospace11010058 - 7 Jan 2024
Cited by 2 | Viewed by 2152
Abstract
Temperatures within the boundary layers of high-enthalpy hypersonic flows can soar to thousands or even tens of thousands of degrees, leading to significant real gas phenomena. Although there has been significant research on real gas effects on hypersonic boundary layer stability, their impact [...] Read more.
Temperatures within the boundary layers of high-enthalpy hypersonic flows can soar to thousands or even tens of thousands of degrees, leading to significant real gas phenomena. Although there has been significant research on real gas effects on hypersonic boundary layer stability, their impact on the boundary layer’s receptive stage is still poorly understood. Most aerodynamic boundary layers in flight vehicles are three-dimensional. Because of complex geometry and significant crossflow effects, the crossflow mode in three-dimensional boundary layers is crucial in hypersonic vehicle design. In this study, a linear stability analysis (LST) accounting for chemical nonequilibrium effects (CNE) and its adjoint form (ALST) is developed to investigate the real gas effects on the stability and receptivity of stationary crossflow modes. The results indicate that real gas effects significantly influence the receptivity of stationary crossflow modes. Specifically, chemical nonequilibrium effects destabilize the crossflow modes but reduce the receptivity coefficients of the stationary crossflow modes. The Mach number effect was also investigated. It was found that increasing the Mach number stabilizes the stationary crossflow modes, but the receptivity coefficients increase. As the Mach number progressively rises, these effects alternately dominate, leading to a non-monotonic shift in the transition position. Full article
Show Figures

Figure 1

14 pages, 5191 KB  
Article
The Experiments and Stability Analysis of Hypersonic Boundary Layer Transition on a Flat Plate
by Yanxin Yin, Yinglei Jiang, Shicheng Liu and Hao Dong
Appl. Sci. 2023, 13(24), 13302; https://doi.org/10.3390/app132413302 - 16 Dec 2023
Cited by 4 | Viewed by 2490
Abstract
Experimental and linear stability theory (LST) investigation of boundary layer transition on a flat plate was conducted with a flow of Mach number 5. The temperature distributions and second-mode disturbances on the flat plate surface at different unit Reynolds number (Reunit [...] Read more.
Experimental and linear stability theory (LST) investigation of boundary layer transition on a flat plate was conducted with a flow of Mach number 5. The temperature distributions and second-mode disturbances on the flat plate surface at different unit Reynolds number (Reunit) values were captured by infrared thermography and PCB technology, respectively, which revealed the transition location of the flat-plate boundary layer. The PCB sensors successfully captured the second-mode disturbances within the boundary layer initially at a frequency of about 100 kHz, with a gradually expanding frequency range as the distance travelled downstream increased. The evolution characteristics of the second-mode instabilities were also investigated by LST and obtained for the second mode, ranging from 100 to 250 kHz. The amplitude amplification factor (N-factor) of the second-mode instabilities was calculated by the eN method. The N-factor of the transition location in the wind tunnel experiment predicted by LST is about 0.98 and 1.25 for Reunit = 6.38 × 106 and 8.20 × 106, respectively. Full article
(This article belongs to the Topic Fluid Mechanics)
Show Figures

Figure 1

20 pages, 8118 KB  
Article
Numerical Investigation of Hypersonic Flat-Plate Boundary Layer Transition Subjected to Bi-Frequency Synthetic Jet
by Xinyi Liu, Zhenbing Luo, Qiang Liu, Pan Cheng and Yan Zhou
Aerospace 2023, 10(9), 766; https://doi.org/10.3390/aerospace10090766 - 29 Aug 2023
Cited by 2 | Viewed by 2008
Abstract
Transition delaying is of great importance for the drag and heat flux reduction of hypersonic flight vehicles. The first mode, with low frequency, and the second mode, with high frequency, exist simultaneously during the transition through the hypersonic boundary layer. This paper proposes [...] Read more.
Transition delaying is of great importance for the drag and heat flux reduction of hypersonic flight vehicles. The first mode, with low frequency, and the second mode, with high frequency, exist simultaneously during the transition through the hypersonic boundary layer. This paper proposes a novel bi-frequency synthetic jet to suppress low- and high-frequency disturbances at the same time. Orthogonal table and variance analyses were used to compare the control effects of jets with different positions (USJ or DSJ), low frequencies (f1), high frequencies (f2), and amplitudes (a). Linear stability analysis results show that, in terms of the growth rate varying with the frequency of disturbance, an upstream synthetic jet (USJ) with a specific frequency and amplitude can hinder the growth of both the first and second modes, thereby delaying the transition. On the other hand, a downstream synthetic jet (DSJ), regardless of other parameters, increases flow instability and accelerates the transition, with higher frequencies and amplitudes resulting in greater growth rates for both modes. Low frequencies had a significant effect on the first mode, but a weak effect on the second mode, whereas high frequencies demonstrated a favorable impact on both the first and second modes. In terms of the growth rate varying with the spanwise wave number, the control rule of the same parameter under different spanwise wave numbers was different, resulting in a complex pattern. In order to obtain the optimal delay effect upon transition and improve the stability of the flow, the parameters of the bi-synthetic jet should be selected as follows: position it upstream, with f1 = 3.56 kHz, f2 = 89.9 kHz, a = 0.009, so that the maximum growth rate of the first mode is reduced by 9.06% and that of the second mode is reduced by 1.28% compared with the uncontrolled state, where flow field analysis revealed a weakening of the twin lattice structure of pressure pulsation. Full article
(This article belongs to the Special Issue Flow Control and Drag Reduction)
Show Figures

Figure 1

10 pages, 837 KB  
Article
Numerical Solution of Transition to Turbulence over Compressible Ramp at Hypersonic Velocity
by Jiří Holman
Mathematics 2023, 11(17), 3684; https://doi.org/10.3390/math11173684 - 26 Aug 2023
Cited by 2 | Viewed by 1211
Abstract
This work deals with the numerical solution of hypersonic flow of viscous fluid over a compressible ramp. The solved case involves very important and complicated phenomena such as the interaction of the shock wave with the boundary layer or the transition from a [...] Read more.
This work deals with the numerical solution of hypersonic flow of viscous fluid over a compressible ramp. The solved case involves very important and complicated phenomena such as the interaction of the shock wave with the boundary layer or the transition from a laminar to a turbulent state. This type of problem is very important as it is often found on re-entry vehicles, engine intakes, system and sub-system junctions, etc. Turbulent flow is modeled by the system of averaged Navier–Stokes equations, which is completed by the explicit algebraic model of Reynolds stresses (EARSM model) and further enhanced by the algebraic model of bypass transition. The numerical solution is obtained by the finite volume method based on the rotated-hybrid Riemann solver and explicit multistage Runge–Kutta method. The numerical solution is then compared with the results of a direct numerical simulation. Full article
(This article belongs to the Special Issue Mathematical Dynamic Flow Models)
Show Figures

Figure 1

19 pages, 11540 KB  
Article
Aerodisk Effect on Hypersonic Boundary Layer Transition and Heat Transfer of HIFiRE-5 Vehicle
by Yatian Zhao, Zhiyuan Shao and Hongkang Liu
Aerospace 2022, 9(12), 742; https://doi.org/10.3390/aerospace9120742 - 23 Nov 2022
Cited by 1 | Viewed by 3237
Abstract
The substantial aerodynamic drag and severe aerothermal loads, which are closely related to boundary layer transition, challenge the design of hypersonic vehicles and could be relieved by active methods aimed at drag and heat flux reduction, such as aerodisk. However, the research of [...] Read more.
The substantial aerodynamic drag and severe aerothermal loads, which are closely related to boundary layer transition, challenge the design of hypersonic vehicles and could be relieved by active methods aimed at drag and heat flux reduction, such as aerodisk. However, the research of aerodisk effects on transitional flows is still not abundant. Based on the improved k-ω-γ transition model, this study investigates the influence of the aerodisk with various lengths on hypersonic boundary layer transition and surface heat flux distribution over HIFiRE-5 configuration under various angles of attack. Certain meaningful analysis and results are obtained: (i) The existence of aerodisk is found to directly trigger separation-induced transition, moving the transition onset near the centerline upstream and widening the transition region; (ii) The maximum wall heat flux could be effectively reduced by aerodisk up to 52.1% and the maximum surface pressure can even be reduced up to 80.4%. The transition shapes are identical, while the variety of growth rates of intermittency are non-monotonous with the increase in aerodisk length. The dilation of region with high heat flux boundary layer is regarded as an inevitable compromise to reducing maximum heat flux and maximum surface pressure. (iii) With the angle of attack rising, first, the transition is postponed and subsequently advanced on the windward surface, which is in contrast to the continuously extending transition region on the leeward surface. This numerical study aims to explore the effects of aerodisk on hypersonic boundary layer transition, enrich the study of hypersonic flow field characteristics and active thermal protection system considering realistic boundary layer transition, and provide references for the excogitation and utilization of hypersonic vehicle aerodisk. Full article
(This article belongs to the Special Issue Hypersonics: Emerging Research)
Show Figures

Figure 1

19 pages, 7340 KB  
Article
Experimental Investigation of a Roughness Element Wake on a Hypersonic Flat Plate
by Junhao Han, Lin He, Xiwang Xu and Zhengbang Wu
Aerospace 2022, 9(10), 574; https://doi.org/10.3390/aerospace9100574 - 2 Oct 2022
Cited by 3 | Viewed by 2308
Abstract
An experimental investigation was performed on the wake flow field of an isolated roughness element of a flat plate at Mach 6 by employing the nanoparticle-based planar laser scattering (NPLS) approach. The three-dimensional features and causes of the flow field structure were scrutinized [...] Read more.
An experimental investigation was performed on the wake flow field of an isolated roughness element of a flat plate at Mach 6 by employing the nanoparticle-based planar laser scattering (NPLS) approach. The three-dimensional features and causes of the flow field structure were scrutinized by transient flow field images of roughness elements on various planes. The time-resolved NPLS technique was implemented to examine the time evolution characteristics of the wake flow field of roughness elements. In the following, the process of dynamic evolution of large-scale vortex structures in the wake flow field was methodically assessed. Additionally, the influences of roughness element heights on the wake vortex structure were evaluated and the obtained results were compared. Full article
Show Figures

Figure 1

25 pages, 11227 KB  
Article
Simulations of Hypersonic Boundary-Layer Transition over a Flat Plate with the Spalart-Allmaras One-Equation BCM Transitional Model
by Yu Chen and Nick Gibbons
Mathematics 2022, 10(19), 3431; https://doi.org/10.3390/math10193431 - 21 Sep 2022
Cited by 1 | Viewed by 3084
Abstract
Transitional flow has a significant impact on vehicles operating at supersonic and hypersonic speeds. An economic way to simulate this problem is to use computational fluid dynamics (CFD) codes. However, not all CFD codes can solve transitional flows. This paper examines the ability [...] Read more.
Transitional flow has a significant impact on vehicles operating at supersonic and hypersonic speeds. An economic way to simulate this problem is to use computational fluid dynamics (CFD) codes. However, not all CFD codes can solve transitional flows. This paper examines the ability of the Spalart–Allmaras one-equation BCM (SA-BCM) transitional model to solve hypersonic transitional flow, implemented in the open-source CFD code Eilmer. Its performance is validated via existing wind tunnel data. Eight different hypersonic flow conditions are applied. A flat plate model is built for the numerical tests. The results indicate that the existing SA-BCM model is sensitive to the freestream turbulence intensity and the grid size. It is not accurate in all the test cases, though the transitional length can be matched by tuning the freestream intensity. This is likely due to the intermittency term of the SA-BCM model not being appropriately calibrated for high-velocity flow, though if the model can be recalibrated it may be able to solve the general high-velocity flows. Although the current SA-BCM model is only accurate under certain flow conditions after one calibration process, it remains attractive to CFD applications. As a one-equation model, the SA-BCM model runs much faster than multiple-equation flow models. Full article
Show Figures

Figure 1

15 pages, 1532 KB  
Article
On Energy Redistribution for the Nonlinear Parabolized Stability Equations Method
by Arham Amin Khan, Tony Liang, Armani Batista and Joseph Kuehl
Fluids 2022, 7(8), 264; https://doi.org/10.3390/fluids7080264 - 3 Aug 2022
Cited by 5 | Viewed by 2195
Abstract
We identify and quantify a seemingly overlook mechanism for energy transfer between adjacent frequency disturbances in the Nonlinear Parabolized Stability Equations method. Physically, this energy transfer results from the finite-bandwidth nature of actual disturbance spectrums versus the common numerical assumption of a discrete [...] Read more.
We identify and quantify a seemingly overlook mechanism for energy transfer between adjacent frequency disturbances in the Nonlinear Parabolized Stability Equations method. Physically, this energy transfer results from the finite-bandwidth nature of actual disturbance spectrums versus the common numerical assumption of a discrete spectrum representation. Both quiet wind tunnel and flight conditions are considered and it is found that, for Mack’s second-mode instability, the mechanism is most significant in the 0.1–1% disturbance amplitude range (based on normalized pressure) and is responsible for a 15–30% increase in predicted disturbance amplitude. Full article
Show Figures

Figure 1

23 pages, 8660 KB  
Article
Thermomechanical Performance of Bio-Inspired Corrugated-Core Sandwich Structure for a Thermal Protection System Panel
by Vinh Tung Le and Nam Seo Goo
Appl. Sci. 2019, 9(24), 5541; https://doi.org/10.3390/app9245541 - 16 Dec 2019
Cited by 29 | Viewed by 6534
Abstract
A skin structure for thermal protection is one of the most interesting components that needs to be considered in the design of a hypersonic vehicle. The thermal protection structure, if a dense structure is used, is heavy and has a large heat conduction [...] Read more.
A skin structure for thermal protection is one of the most interesting components that needs to be considered in the design of a hypersonic vehicle. The thermal protection structure, if a dense structure is used, is heavy and has a large heat conduction path. Thus, a lightweight, high strength structure is preferable. Currently, for designing a lightweight structure with high strength, natural materials are of great interest for achieving low density, high strength, and toughness. This paper presents bio-inspired lightweight structures that ensure high strength for a thermal protection system (TPS). A sinusoidal shape inspired by the microstructure of the dactyl club of Odontodactylus scyllarus, known as the peacock mantis shrimp, is presented with two different geometries, a unidirectionally corrugated core sandwich structure (UCS) and a bidirectionally corrugated core sandwich structure (BCS). Thermomechanical analysis of the two corrugated core structures is performed under simulated aerodynamic heating, and the total deflection and thermal stress are presented. The maximum deflection of the present sandwich structure throughout a mission flight was 1.74 mm for the UCS and 2.04 mm for the BCS. Compared with the dense structure used for the skin structure of the TPS, the bio-inspired corrugated core sandwich structures achieved about a 65% weight reduction, while the deflections still satisfied the limits for delaying the hypersonic boundary layer transition. Moreover, we first fabricated the BCS to test the thermomechanical behaviors under a thermal load. Finally, we examined the influence of the core thickness, face-sheet thickness, and emittance in the simulation model to identify appropriate structural parameters in the TPS optimization. The present corrugated core sandwich structures could be employed as a skin structure for metallic TPS panels instead of the honeycomb sandwich structure. Full article
(This article belongs to the Special Issue Selected Papers from the ICMR 2019)
Show Figures

Graphical abstract

Back to TopTop