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Abstract: Transition delaying is of great importance for the drag and heat flux reduction of hypersonic
flight vehicles. The first mode, with low frequency, and the second mode, with high frequency, exist
simultaneously during the transition through the hypersonic boundary layer. This paper proposes a
novel bi-frequency synthetic jet to suppress low- and high-frequency disturbances at the same time.
Orthogonal table and variance analyses were used to compare the control effects of jets with different
positions (USJ or DSJ), low frequencies (f 1), high frequencies (f 2), and amplitudes (a). Linear stability
analysis results show that, in terms of the growth rate varying with the frequency of disturbance, an
upstream synthetic jet (USJ) with a specific frequency and amplitude can hinder the growth of both the
first and second modes, thereby delaying the transition. On the other hand, a downstream synthetic
jet (DSJ), regardless of other parameters, increases flow instability and accelerates the transition,
with higher frequencies and amplitudes resulting in greater growth rates for both modes. Low
frequencies had a significant effect on the first mode, but a weak effect on the second mode, whereas
high frequencies demonstrated a favorable impact on both the first and second modes. In terms of the
growth rate varying with the spanwise wave number, the control rule of the same parameter under
different spanwise wave numbers was different, resulting in a complex pattern. In order to obtain
the optimal delay effect upon transition and improve the stability of the flow, the parameters of the
bi-synthetic jet should be selected as follows: position it upstream, with f 1 = 3.56 kHz, f 2 = 89.9 kHz,
a = 0.009, so that the maximum growth rate of the first mode is reduced by 9.06% and that of the
second mode is reduced by 1.28% compared with the uncontrolled state, where flow field analysis
revealed a weakening of the twin lattice structure of pressure pulsation.

Keywords: hypersonic boundary layer transition; transition delay; bi-frequency synthetic jet; flow
control; linear stability theory

1. Introduction

In the design of hypersonic vehicles, the study of boundary layer transition holds
significant importance. This is due to the fact that turbulent boundary layers typically
exhibit friction drag and heat flux levels that are 3–5 times higher than those of laminar
boundary layers [1]. By delaying the transition process, it becomes possible to significantly
reduce the friction drag and heat flux of a boundary layer. This, in turn, results in a
reduction in the weight of the thermal protection system and an enhancement in both the
flight range and payload capacity.

It is generally believed that transition is caused by the evolution of the instability
of disturbance over time and space. The process of transition is different depending on
the initial disturbance [2,3]. For the different stages of transition, the relevant theories are
linear stability theory, nonlinear theory, the receptivity problem [4–6], etc. For hypersonic
boundary layer transition, in addition to the first mode with low frequency, the second
mode with high frequency usually plays a dominant role [7].
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Up to now, factors that affect the hypersonic boundary layer transition have been
understood to include pressure gradient, surface shape, roughness, wall temperature,
total pressure and compressibility [8–10]. Transition-delaying control methods are usually
divided into passive ones and active ones. The former do not require external energy and
do not increase energy consumption, whereas the latter change the flow field through active
energy input, which is more efficient.

Common passive transition control methods include vortex generation [11,12], rough-
ness [13–17], wavy wall [17], flexible coating [18], and porous coating [19,20]. The vortex
generator has been successfully applied to the air inlet of high supersonic aircraft such
as X-43. Paredes [11] studied a vortex generator that delayed transition in a hypersonic
boundary dominated by Mack-mode instabilities by inducing streaks. Schneider’s [13]
paper outlines three or more modes of transition affected by roughness and indicates that at
high hypersonic edge Mach numbers, a very large roughness height is required to influence
transition. Fedorov’s [14] study found that the amplitude of the second mode wave is
strongest when the two-dimensional roughness is arranged near the synchronization point.
The effect of the wavy wall on transition was first studied by Fujii [17], who found that
a wavy wall with a wavelength of twice the thickness of the boundary layer arranged in
the upstream of the transition region had the effect of delaying transition. Gaponov [18]
found that a flexible coating can determine the direction and the degree of the vortex
waves of the first mode and the acoustic waves of the second mode. Morozov’s [19] study
indicates that under all angles of attack and cone bluntness, the passive porous coating can
effectively suppress disturbances in the hypersonic boundary layer on both the windward
and leeward sides of the cone.

The active control methods of transition include gas injection [21–23], the wall-normal
jet [24–26], wall heating/cooling [27,28], etc. Germain and Hornung [21] found through
wind tunnel experiments that compared with nitrogen and air, carbon dioxide injection has
a more significant effect on transition delay. Orlik’s [24] research shows that a low-pressure
normal jet is sufficient to effectively inhibit transition, and a non-pulsed jet is more efficient
than a pulsed jet. Zhao Rui [27] studied a narrow cooling zone placed upstream of the
synchronization point and found its stabilization effect in mode S.

In recent years, active flow control based on synthetic jets has attracted more attention.
A synthetic jet with frequency modulation can produce two peaks of low frequency and
high frequency, and is referred to as a bi-frequency synthetic jet. It has the advantages
of being adjustable and controllable, escaping the shortcomings of passive flow control.
Compared to other active control methods, the bi-frequency synthetic jet has a smaller me-
chanical structure and does not require an additional air source. For hypersonic boundary
layer transition, previous methods can only suppress one mode of the disturbance wave,
whereas bi-frequency synthetic jets can possess low-frequency and high-frequency control,
with the potential to control both the first and second modes simultaneously. This paper
describes our attempts to control the first mode with the low-frequency part and the second
mode with the high-frequency part of a hypersonic boundary layer based on a proposed
bi-frequency synthetic jet. Meanwhile, we employed the orthogonal experiment and analy-
sis of variance to investigate the influences of different frequencies and amplitudes on the
transition control effect.

2. Simulation Model
2.1. Freestream Conditions and Numerical Settings

The parameters of the incoming flow described in this paper are consistent with the
parameters of the FD-07 wind tunnel at the China Academy of Aerospace Aerodynamics.
The Mach number of the incoming flow was 6, the temperature was 54.9 K, and the unit
Reynolds number was 1.0 × 107/m. Adiabatic wall conditions were used to simulate the
boundary layer of an Ma 6 plate. The model was a sharp plate with a length of 200 mm, as
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shown in Figure 1. Unsteady blowing and suction disturbance were applied at x = (10 mm,
15 mm). The disturbance form is as follows:

qw = ε sin(2π
x− x1

x− x2
) sin(2π f t)

The amplitude ε was 0.0001 and the frequency f was 142.54 kHz. The disturbance was
added upstream of the flat plate, shown in Figure 1.
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Figure 1. Schematic model of flat plate with disturbance and control.

For this disturbance, the position of the synchronization point could be calculated by
the following formula [29]:

x∗s =
(wrs/ f )2

Re2
∞

Therefore, the position of the synchronization point was x = 134.4 mm. Note that we
used the boundary layer thickness of x = 100 mm as the reference. From the subsequent sim-
ulation results, the boundary layer thickness at this location was found to be δref = 2.07 mm.
Therefore, the dimensionless position of the synchronization point was at 64.93 δref.

The simulation was conducted using the OpenCFD direct numerical simulation codes
developed by Li [30]. The codes use the finite volume method for discretization, the fifth-
order WENO [31] scheme to solve the inviscid term, the sixth-order central difference
scheme to solve the viscous term, and AUSM [32] to decompose the vector flux. The
implicit time step was used to solve the undisturbed laminar boundary layer at first. Then,
the disturbance was introduced. The implicit double-time step method was adopted at
first, and then the third-order Runge–Kutta method was used to obtain the stable solution
with sufficient time accuracy. A grid of 2420 × 401 was used, with grid refinement near
the wall, shown in Figure 2. The accuracy of the code and the corresponding mesh and
boundary layer velocity profiles have been verified by our team [29].
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The bi-frequency synthetic jet can be expressed as follows:

vj = a1 sin(2π f1t) + a2 sin(2π f2t)

The low frequency is denoted as f 1, the high frequency as f 2, and the amplitudes as a1
and a2. f 1 and f 2 are dimensionless frequencies, obtained by dividing the actual frequency
by 890.89 kHz. Similarly, a1 and a2 represent the dimensionless amplitudes corresponding
to the low and high frequencies, respectively. It is important to note that a1 and a2 should
be less than 0.01. If they are too large, the nonlinearity will become evident, and the flow
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will enter a nonlinear process prematurely. In such cases, linear stability theory cannot be
applied effectively.

2.2. Orthogonal Experimental Design

Orthogonal experimental design is a rapid method used to study the impact of multiple
factors on a given phenomenon [33]. It selects representative combinations of tests from a
larger set, allowing for the acquisition of valuable information in a shorter timeframe and
with fewer tests.

The orthogonal table L25(53) was used in this experiment. The total number of trials
was 25, 3 factors were tested, and each factor tested 5 levels. Without orthogonal tables,
53 = 125 trials would be required to test all combinations of the 3 factors with 5 levels, but
only 25 times are needed with orthogonal tables. The three factors shown in the table below
are the low frequency, f 1, the high frequency, f 2 and the amplitude, a1 = a2 = a. The test
levels and orthogonal table are shown in Tables 1 and 2.

Table 1. Test level.

Level f 1 f 2 a

1 0.004/3.56 kHz 0.04/35.63 kHz 0.001
2 0.008/7.12 kHz 0.06/53.45 kHz 0.003
3 0.012/10.69 kHz 0.08/71.27 kHz 0.005
4 0.016/14.25 kHz 0.10/89.09 kHz 0.007
5 0.020/17.82 kHz 0.12/106.91kHz 0.009

Table 2. Orthogonal table.

Case f 1 f 2 a

1 0.004/3.56 kHz 0.04/35.63 kHz 0.001
2 0.004/3.56 kHz 0.06/53.45 kHz 0.007
3 0.004/3.56 kHz 0.08/71.27 kHz 0.003
4 0.004/3.56 kHz 0.10/89.09 kHz 0.009
5 0.004/3.56 kHz 0.12/106.91 kHz 0.005
6 0.008/7.12 kHz 0.04/35.63 kHz 0.007
7 0.008/7.13 kHz 0.06/53.45 kHz 0.003
8 0.008/7.14 kHz 0.08/71.27 kHz 0.009
9 0.008/7.14 kHz 0.10/89.09 kHz 0.005
10 0.008/7.14 kHz 0.12/106.91 kHz 0.001
11 0.012/10.69 kHz 0.04/35.63 kHz 0.003
12 0.012/10.69 kHz 0.06/53.45 kHz 0.009
13 0.012/10.69 kHz 0.08/71.27 kHz 0.005
14 0.012/10.69 kHz 0.10/89.09 kHz 0.001
15 0.012/10.69 kHz 0.12/106.91 kHz 0.007
16 0.016/14.25 kHz 0.04/35.63 kHz 0.009
17 0.016/14.25 kHz 0.06/53.45 kHz 0.005
18 0.016/14.25 kHz 0.08/71.27 kHz 0.001
19 0.016/14.25 kHz 0.10/89.09 kHz 0.007
20 0.016/14.25 kHz 0.12/106.91 kHz 0.003
21 0.020/17.82 kHz 0.04/35.63 kHz 0.005
22 0.020/17.82 kHz 0.06/53.45 kHz 0.001
23 0.020/17.82 kHz 0.08/71.27 kHz 0.007
24 0.020/17.82 kHz 0.10/89.09 kHz 0.003
25 0.020/17.82 kHz 0.12/106.91 kHz 0.009

According to the different positions of the synthetic jet (upstream: 110–120 mm,
denoted by USJ; downstream: 150–160 mm, denoted by DSJ, with synchronization point at
x = 134.4 mm), two orthogonal tests were carried out, respectively, and the parameters of
the orthogonal tables of the two tests were the same; only the position was different. In
addition, it was also necessary to calculate the case under the uncontrolled condition.
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Multi-factor variance analysis was employed to examine whether a dependent variable
was influenced by multiple factors. Additionally, one-way analysis of variance (ANOVA)
was utilized to determine the impacts of different levels of an independent factor on the
dependent variable. Traditional methods of studying the effect of a factor by fixing the
levels of other factors and only changing the level of the factor under investigation are
susceptible to the fixed levels of other factors. However, in one-way analysis of variance,
the test cases in the orthogonal table are uniform and organized, allowing for more test
cases at the same level as the factors being studied, including all levels of other factors.
This enables the average value to eliminate the influence of other factors.

For instance, if we need to study the influence of f 1 = 3.56 kHz, we can consider the
first to fifth test cases in the orthogonal table where f 1 = 3.56 kHz. The f 2 of these cases
range from 35.63 kHz to 106.91 kHz and their a range from 0.001 to 0.009. By uniformly
covering all levels of f 2 and a, we can calculate the average value of the test results from
cases 1 to 5 to obtain the influence of f 1 = 3.56 kHz. This approach helps to avoid the
influence of specific values of f 2 and a.

2.3. Linear Stability Theory

Linear stability theory is a systematic theory for the study of flow transition [34]. It
relies on the assumption of parallel flow and small disturbances to analyze the temporal and
spatial evolution of small perturbation waves. These disturbances are typically represented
in the form of a wave function:

q′(x, y, z, t) = q̂(x, y, z, t) exp[i(αx + βz−ωt)]

where α and β represent the wave numbers in the flow direction and spanwise direction,
respectively, and ω denotes the frequency. In the spatial mode, the imaginary part of the
flow direction wave number αi indicates the growth or attenuation of the disturbance,
with αi < 0 indicating growth. For the sake of clarity, this paper adopts the notation −αi to
denote the growth rate, where −αi > 0 signifies perturbation growth, leading to a decrease
in flow stability. The objective of this study was to identify a synthetic jet with specific
parameters that can effectively control the growth rate −αi, ensuring it is lower than that
observed in the uncontrolled state, so as to suppress the growth of unstable disturbances
and enhance flow stability.

To calculate the disturbance, the flow field needs to be decomposed into the sum of
average flow and disturbance:

q(x, y, z, t) = q(x, y, z, t) + q′(x, y, z, t)

The parallel flow hypothesis was introduced, which holds that the change of the
variable in the flow direction is small and negligible, that is:

ρ = u = T = f (y)

v = u = 0

By incorporating disturbance and the parallel flow hypothesis into the governing equa-
tion and simplifying it, we obtained the linear perturbation equation, or O-S equation [35].
The numerical solution of this equation is referred to as the T-S wave, and the process of
solving the O-S equation and analyzing the solution is known as linear stability analysis.

For this paper, we conducted linear stability analysis on cases with different param-
eters, as well as the uncontrolled case; then, the unstable mode growth rate −αi of each
case with variations in the frequency ωr and the spanwise wave number βr were obtained.
Finally, the results were tested by multi-factor and one-way ANOVA to find the control
rules of low frequency, high frequency, amplitude and position.
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3. Variation in Growth Rate with Frequency

Figure 3 shows the growth rate −αi varying with frequency ωr in the uncontrolled
case. It is worth noting that the actual frequency is expressed as ωr × 141.79 kHz. The
figure displays two prominent peaks: the first mode (around 63.8 kHz) with a maximum
growth rate of 0.00276, and the second mode (around 119.10 kHz) with a higher maximum
growth rate of 0.02108. Notably, the second mode emerged as the dominant unstable mode
within the hypersonic boundary layer.
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3.1. Results of Synthetic Jet Arranged Upstream of Synchronization Point

The maximum growth rates of the first mode and the second mode of each test case
with a bi-synthetic jet arranged upstream (USJ) are shown in the second and third columns
of Table 3. The fourth and fifth columns are the percentages of promotion or suppression
of the first and second modes relative to the uncontrolled case. Positive values represent
promotion and negative values represent suppression. It is evident that certain cases
promote both modes, some suppress both, and some promote the second mode while
suppressing the first mode.

Table 3. Test results of each case of USJ.

Case
Maximum Growth Rate Percentage of Control

First Mode Second Mode First Mode Second Mode

1 0.00286 0.02123 3.62% 0.71%
2 0.00286 0.02113 3.62% 0.24%
3 0.00276 0.02118 0.00% 0.47%
4 0.00251 0.02081 −9.06% −1.28%
5 0.00264 0.02125 −4.35% 0.81%
6 0.00286 0.02126 3.62% 0.85%
7 0.00281 0.02124 1.81% 0.76%
8 0.00257 0.02108 −6.88% 0.00%
9 0.00262 0.02096 −5.07% −0.57%

10 0.00278 0.02119 0.72% 0.52%
11 0.00283 0.02122 2.54% 0.66%
12 0.00286 0.02128 3.62% 0.95%
13 0.00269 0.02116 −2.54% 0.38%
14 0.00278 0.02115 0.72% 0.33%
15 0.00256 0.02130 −7.25% 1.04%
16 0.00294 0.02136 6.52% 1.33%
17 0.00284 0.02126 2.90% 0.85%
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Table 3. Cont.

Case
Maximum Growth Rate Percentage of Control

First Mode Second Mode First Mode Second Mode

18 0.0028 0.02119 1.45% 0.52%
19 0.00261 0.02096 −5.43% −0.57%
20 0.00274 0.02129 −0.72% 1.00%
21 0.00288 0.02126 4.35% 0.85%
22 0.00282 0.02121 2.17% 0.62%
23 0.00268 0.02125 −2.90% 0.81%
24 0.00271 0.02107 −1.81% −0.05%
25 0.00244 0.02119 −11.59% 0.52%

Among all the cases of the USJ, case 16 exhibited the most pronounced promotion
effects on both the first and second modes, with increases of 6.52% and 1.33%, respectively.
Conversely, case 4 demonstrated the strongest suppressing effects on both the first and
second modes, with reductions of −9.06% and −1.28%, respectively. Notably, the 15th case
suppressed the first mode by −7.25%, while simultaneously promoting the second mode
by 1.04%, as shown in Figure 4.
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Table 4 presents the results of the multi-factor variance analysis, examining the con-
trolling effect of the USJ on the first and second modes. In both modes, the p-value for f 2 is
less than 0.05, indicating a significant difference among the effects of the levels of f 2 [33].
However, the differences observed among f 1 and a are relatively small.

Table 4. Multivariate ANOVA results of the first and second mode of the USJ.

Source of Variance
p

First Mode Second Mode

f 1 0.593 0.316
f 2 0.003 0.005
a 0.132 0.845

One-way ANOVA was conducted to analyze the first-mode growth rates as the fre-
quency changed, controlled by the low frequency, high frequency and amplitude of the USJ,
as shown in Figure 5. For this section, the spanwise wave number βr was fixed at βr = 0.
For the first mode, when the low frequency, f 1, was too low or too high, the growth rate
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was lower compared to the uncontrolled state. Additionally, as f 2 increased and a became
larger, the first-mode growth rate decreased. These observations reveal enhanced flow
stability and a delay in the transition process.
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Figure 5. One-way ANOVA for the first-mode growth rates varying with frequency, controlled by
the low frequency, high frequency and amplitude of USJ. (a) First-mode growth rate varying with
frequency, controlled by the low frequency of USJ. (b) First-mode maximum growth rate varying
with low frequency of USJ. (c) First-mode growth rate varying with frequency, controlled by the
high frequency of USJ. (d) First-mode maximum growth rate varying with high frequency of USJ.
(e) First-mode growth rate varying with frequency, controlled by the amplitude of USJ. (f) First-mode
maximum growth rate varying with amplitude of USJ.
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Figure 6 shows the one-way ANOVA results for the second-mode growth rates varying
with frequency. For the second mode, only when f 1 = 17.82 kHz, f 2 = 89.9 kHz, a = 0.009,
was the growth rate lower than the uncontrolled state, which increased the stability of flow.
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Figure 6. One-way ANOVA for the second-mode growth rates varying with frequency, controlled
by the low frequency, high frequency and amplitude of USJ. (a) Second-mode growth rate varying
with frequency, controlled by the low frequency of USJ. (b) Second-mode maximum growth rate
varying with low frequency of USJ. (c) Second-mode growth rate varying with frequency, controlled
by the high frequency of USJ. (d) Second-mode maximum growth rate varying with high frequency
of USJ. (e) Second-mode growth rate varying with frequency, controlled by the amplitude of USJ.
(f) Second-mode maximum growth rate varying with amplitude of USJ.
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3.2. Results of Synthetic Jet Arranged Downstream of Synchronization Point

Table 5 is the results of each case of the DSJ. It can be seen that the DSJ plays a
role in promoting transition, with the growth rate of all cases being larger than in the
uncontrolled state.

Table 5. Test results of each case of DSJ.

Case
Maximum Growth Rate Percentage of Control

First Mode Second Mode First Mode Second Mode

1 0.00280 0.02117 1.45% 0.43%
2 0.00291 0.02121 5.43% 0.62%
3 0.00287 0.02120 3.99% 0.57%
4 0.00329 0.02128 19.22% 0.95%
5 0.00301 0.02158 9.04% 2.36%
6 0.00290 0.02123 5.15% 0.72%
7 0.00280 0.02117 1.60% 0.43%
8 0.00302 0.02128 9.52% 0.95%
9 0.00308 0.02122 11.52% 0.68%
10 0.00285 0.02126 3.37% 0.85%
11 0.00285 0.02120 3.23% 0.55%
12 0.00301 0.02131 8.94% 1.10%
13 0.00297 0.02128 7.67% 0.94%
14 0.00287 0.02119 4.08% 0.51%
15 0.00311 0.02172 12.72% 3.03%
16 0.00297 0.02128 7.53% 0.94%
17 0.00292 0.02124 5.74% 0.78%
18 0.00283 0.02118 2.54% 0.47%
19 0.00321 0.02124 16.46% 0.77%
20 0.00297 0.02145 7.49% 1.77%
21 0.00291 0.02124 5.29% 0.77%
22 0.00283 0.02119 2.55% 0.51%
23 0.00302 0.02129 9.54% 1.01%
24 0.00298 0.02120 7.95% 0.56%
25 0.00320 0.02185 16.01% 3.67%

Case 4 exhibited the most significant promotional impact on the first mode, achieving a
nearly 20% increase. Similarly, case 25 demonstrated the strongest promotional effect on the
second mode, with an increase of 3.67%. These findings are represented in Figure 7 below.
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Table 6 presents the results of the multi-factor variance analysis of the DSJ on the first
and second modes. In both modes, the p-value for f 2 and a is less than 0.05, indicating a
significant difference [33], whereas the differences observed among f 1 are small.

Table 6. Results of multivariate variance analysis of the first and second modes of the DSJ.

Source of Variance
p

First Mode Second Mode

f 1 0.496 0.181
f 2 0.0001 0.0002
a 0.0003 0.013

One-way ANOVA was conducted to examine the growth rates of the first mode
varying with frequency, controlled by the low frequency, high frequency, and amplitude of
the DSJ, as shown in Figure 8. These figures illustrate the control mechanism of the DSJ on
the first mode.

At the five levels of f 1, the growth rate was approximately 7% higher compared to the
uncontrolled state. As the f 2 increased, the growth rate of the first mode also rose until it
reached f 2 = 89.89 kHz. At this point, the promotion effect on the first mode reached its
peak at 11.59%, resulting in an earlier transition. Moreover, a larger value of a corresponded
to a higher growth rate of the first mode, which also led to increased flow instability.
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Figure 8. One-way ANOVA for the first-mode growth rates varying with frequency, controlled by
the low frequency, high frequency and amplitude of DSJ. (a) First-mode growth rate varying with
frequency, controlled by the low frequency of DSJ. (b) First-mode maximum growth rate varying
with low frequency of DSJ. (c) First-mode growth rate varying with frequency, controlled by the
high frequency of DSJ. (d) First-mode maximum growth rate varying with high frequency of DSJ.
(e) First-mode growth rate varying with frequency, controlled by the amplitude of DSJ. (f) First-mode
maximum growth rate varying with amplitude of DSJ.

Figure 9 presents the results of the one-way ANOVA for the growth rates of the second
mode in relation to the DSJ. In the case of the second mode, the growth rate was only about
1% higher than that of the uncontrolled state at the five levels of f 1, which is not particularly
significant. However, at levels of f 2, the growth rate of the second mode reached as high as
2.28%, resulting in increased flow instability. The influence of parameter a on the control
effect was minimal, but the growth rate did increase with higher values of a.
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Figure 9. One-way ANOVA for the second-mode growth rates varying with frequency, controlled
by the low frequency, high frequency and amplitude of DSJ. (a) Second-mode growth rate varying
with frequency, controlled by the low frequency of DSJ. (b) Second-mode maximum growth rate
varying with low frequency of DSJ. (c) Second-mode growth rate varying with frequency, controlled
by the high frequency of DSJ. (d) Second-mode maximum growth rate varying with high frequency
of DSJ. (e) Second-mode growth rate varying with frequency, controlled by the amplitude of DSJ.
(f) Second-mode maximum growth rate varying with amplitude of DSJ.

Based on the aforementioned analysis, it is evident that under specific parameters,
a USJ can hinder the growth of both the first and second modes, thereby delaying the
transition. The case with optimal transition delaying effect was case 4: f 1 = 3.56 kHz,
f 2 = 89.9 kHz, a = 0.009, wherein the maximum growth rate of the first mode was reduced
by 9.06% and that of the second mode was reduced by 1.28%. On the other hand, the DSJ,
regardless of the parameters, increased flow instability and accelerated the transition, with
higher frequencies and amplitudes resulting in greater growth rates for both modes. High
frequency demonstrated significant differences for both the USJ and DSJ, followed by low
frequency and amplitude. The low frequency had a favorable effect on the first mode,
whereas the high frequency exhibited a great impact on both first and second modes.

4. Variation in Growth Rate with Spanwise Wave Number

In the previous section, the growth rate variation with frequency ω was examined
while the spanwise wave number was kept fixed at βr = 0. However, this approach did not
provide insights into how the growth rate changes with βr. In this section, we describe our
investigation into the relationship between the growth rate and the spanwise wave number
for the first mode (ω = 0.45) and second mode (ω = 0.84).
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Figure 10 illustrates the first- and second-mode growth rates varying with spanwise
wave number βr in the uncontrolled state. As βr increased, the growth rate of the first
mode gradually rose and reached its peak at approximately 0.0062, whereas the second-
mode growth rate gradually decreased. This indicates that the most unstable first mode
is the three-dimensional unstable wave, and the most unstable second mode is the two-
dimensional wave.
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Figure 10. First- and second-mode growth rates varying with the spanwise wave number in the un-
controlled case. (a) First-mode growth rate varying with spanwise wave number in the uncontrolled
state. (b) Second-mode growth rate varying with spanwise wave number in the uncontrolled state.

4.1. Results of Synthetic Jet Arranged Upstream of Synchronization Point

Figure 11 presents the results of the one-way ANOVA conducted for the growth rates
of the first and second modes as the spanwise wave number changed, controlled by the
low frequency, high frequency, and amplitude of the USJ. The control rule of the parameter
varied under different βr, resulting in a complex pattern. However, it is worth noting that
case 4, with f 1 = 3.56 kHz, f 2 = 89.9 kHz, a = 0.009, could effectively reduce the growth
rate compared to the uncontrolled state across a wide range of βr. This demonstrates its
potential for inhibiting the transition process.
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Figure 11. The first- and second-mode growth rates varying with spanwise wave number, controlled
by the low frequency, high frequency and amplitude of USJ. (a) The first-mode growth rate varying
with spanwise wave number, controlled by the low frequency of USJ. (b) The second-mode growth
rate varying with spanwise wave number, controlled by the low frequency of USJ. (c) The first-mode
growth rate varying with spanwise wave number, controlled by the high frequency of USJ. (d) The
second-mode growth rate varying with spanwise wave number, controlled by the high frequency of
USJ. (e) The first-mode growth rate varying with spanwise wave number, controlled by the amplitude
of USJ. (f) The second-mode growth rate varying with spanwise wave number, controlled by the
amplitude of USJ.

4.2. Results of Synthetic Jet Arranged Downstream of Synchronization Point

Figure 12 illustrates the results of the one-way ANOVA conducted on the growth rates
with varying spanwise wave numbers controlled by the DSJ. The findings reveal that, for
the first mode, the control rule remained consistent across all spanwise wave numbers. The
growth rate at all levels of frequency and amplitude was higher than in the uncontrolled
state, resulting in the promotion of the transition process. On the other hand, for the second
mode, a suppressing effect was observed at certain levels under the intermediate spanwise
wave number, where the growth rate was lower than in the uncontrolled state.
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Figure 12. The first- and second-mode growth rates varying with spanwise wave number, controlled
by the low frequency, high frequency and amplitude of DSJ. (a) The first-mode growth rate varying
with spanwise wave number, controlled by the low frequency of DSJ. (b) The second-mode growth
rate varying with spanwise wave number, controlled by the low frequency of DSJ. (c) The first-mode
growth rate varying with spanwise wave number, controlled by the high frequency of DSJ. (d) The
second-mode growth rate varying with spanwise wave number, controlled by the high frequency of
DSJ. (e) The first-mode growth rate varying with spanwise wave number, controlled by the amplitude
of DSJ. (f) The second-mode growth rate varying with spanwise wave number, controlled by the
amplitude of DSJ.
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5. Flow Field Structure Analysis

Pressure disturbance, also known as pressure pulsation, is obtained by subtracting the
average flow field pressure from the instantaneous flow field pressure.

p′(x, y, z, t) = p(x, y, z, t)− p(x, y, z, t)

Figure 13 shows the pressure pulsation diagram of the uncontrolled flow field. It is
evident that an oblique shock wave forms at the leading edge of the plate, followed by a
double cell structure of pressure pulsation, which gradually increases along the boundary
layer. This structure intensifies along the boundary layer, with the twin-cell pattern growing
and becoming increasingly unstable downstream. As a result, the boundary layer gradually
loses stability.
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It can be observed that the bi-frequency synthetic jet generated weak expansion and
compression waves upstream. However, beyond the wave system, the twin-cell structure of
pressure pulsation was relatively smaller compared to the uncontrolled state. This indicates
that the flow tends to stabilize, leading to the suppression of transition.

Figure 15 displays the pressure pulsation diagram of the flow field with promoted
transition, specifically case 19 of the DSJ. It is evident that beyond the wave system, the
twin-cell structure of pressure pulsation further intensified until it merged with the wave
system structure, indicating increased flow instability and transition promotion.
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6. Disturbance Temperature Eigenfunction Analysis

Figure 16 shows the disturbance temperature eigenfunction of case 4 of the USJ, which
exhibited the best transition suppression effect. It can be observed that although case 4 has
a suppressing effect on both the first and second modes, the peak values of the disturbance
temperature eigenfunctions for both modes are larger compared to the uncontrolled state.
The suppression effect on the first mode was better than that on the second mode, and
the increase in the peak value of the temperature eigenfunction was also greater for the
first mode compared to the second mode. This phenomenon has also been observed in
the study by Liu [29] on synthetic jets and wall blowing/suction for transition control.
This finding suggests that the suppression of unstable modes may be achieved through
temperature modification. Arthur Poulain [36] pointed out that the control mechanism of
wall blowing/suction for transition is its modification of the momentum in the boundary
layer. The temperature modification discovered in this study may be related to the velocity–
temperature coupling mechanism in hypersonic flows.

Aerospace 2023, 10, x FOR PEER REVIEW 18 of 20 
 

 

Figure 14. Pressure pulsation diagram with transition suppressed. 

Figure 15 displays the pressure pulsation diagram of the flow field with promoted 
transition, specifically case 19 of the DSJ. It is evident that beyond the wave system, the 
twin-cell structure of pressure pulsation further intensified until it merged with the wave 
system structure, indicating increased flow instability and transition promotion. 

 
Figure 15. Pressure pulsation diagram with transition promoted. 

6. Disturbance Temperature Eigenfunction Analysis 
Figure 16 shows the disturbance temperature eigenfunction of case 4 of the USJ, 

which exhibited the best transition suppression effect. It can be observed that although 
case 4 has a suppressing effect on both the first and second modes, the peak values of the 
disturbance temperature eigenfunctions for both modes are larger compared to the 
uncontrolled state. The suppression effect on the first mode was better than that on the 
second mode, and the increase in the peak value of the temperature eigenfunction was 
also greater for the first mode compared to the second mode. This phenomenon has also 
been observed in the study by Liu [29] on synthetic jets and wall blowing/suction for 
transition control. This finding suggests that the suppression of unstable modes may be 
achieved through temperature modification. Arthur Poulain [36] pointed out that the 
control mechanism of wall blowing/suction for transition is its modification of the 
momentum in the boundary layer. The temperature modification discovered in this study 
may be related to the velocity–temperature coupling mechanism in hypersonic flows. 

  
(a) (b) 

Figure 16. Pressure pulsation diagram with transition promoted. (a) The disturbance temperature 
eigenfunction of the first mode. (b) The disturbance temperature eigenfunction of the second mode. 

  

Figure 16. Pressure pulsation diagram with transition promoted. (a) The disturbance temperature
eigenfunction of the first mode. (b) The disturbance temperature eigenfunction of the second mode.

7. Conclusions

This paper proposes a novel transition-delaying control method of hypersonic bound-
ary layer transition based on a bi-frequency synthetic jet. Orthogonal table and multi-
factor/one-way ANOVA were used to study the control effects of the three parameters
of the bi-frequency synthetic jet located in the upstream and downstream of the synchro-
nization point. Effects were studied of low frequency, high frequency and amplitude on
the growth rates of unstable modes, and are reflected in the change in the growth rate
with frequency and the change in the growth rate with the spanwise wave number. Linear
stability theory was adopted to analyze the control effect.
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In terms of the growth rate varying with frequency, results show that a USJ can hinder
the growth of both the first and second modes under specific parameters, thereby delaying
the transition, whereas a DSJ increases flow instability and accelerates the transition regard-
less of frequency or amplitude. For the low frequency, high frequency and amplitude of
a USJ, specific levels of f 1 can suppress the first mode. The higher the f 2 was, the lower
was the growth rate of the first mode, with the suppression effect limited to f 2 = 89.09 kHz
for the second mode. Increasing a led to a lower growth rate for both the first and second
modes, resulting in a more pronounced suppression effect. Conversely, for f 1, f 2, a of the
DSJ, as the levels of these three parameters increased, the growth rate of unstable modes
also increased, leading to an increase in flow instability. In terms of the growth rate varying
with the spanwise wave number, the control rule of the same parameter varied under
different βr, resulting in a complex pattern.

The optimal delay effect on transition is case 4 of the USJ, with f 1 = 3.56 kHz,
f 2 = 89.9 kHz, a = 0.009, so that the maximum growth rate of the first mode was reduced by
9.06% and that of the second mode was reduced by 1.28% compared with the uncontrolled
state. Also, the low-field analysis reveals a weakening of the twin lattice structure of
pressure pulsation, thus improving the stability of the flow.
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