Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (136)

Search Parameters:
Keywords = hygrothermal modeling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5137 KB  
Article
Thermal and Hygric Behavior of Bio-Based Building Dual Walls
by Kenza Sidqui, Yousra Taouirte, Kaoutar Zeghari, Ionut Voicu, Anne-Lise Tiffonnet, Michael Marion and Hasna Louahlia
Buildings 2026, 16(1), 83; https://doi.org/10.3390/buildings16010083 - 24 Dec 2025
Viewed by 304
Abstract
Biosourced materials made of a combination of raw earth and fibers are attracting increasing interest for low-carbon construction due to their reduced environmental impact and good thermal and hygric performance. This study investigates several soil–fiber composites selected and formulated at different densities to [...] Read more.
Biosourced materials made of a combination of raw earth and fibers are attracting increasing interest for low-carbon construction due to their reduced environmental impact and good thermal and hygric performance. This study investigates several soil–fiber composites selected and formulated at different densities to assess their thermal conductivity, enabling the selection of two complementary materials: a structural earthen mix and a lightweight insulating mix. Experimental measurements were taken under controlled conditions and used to characterize heat and moisture fluxes, and numerical calculations were carried out to evaluate the performance of single and double-layer wall configurations. The results showed that an increase in thermal gradients accelerates vapor migration and alters the internal distribution of moisture. The evaluation of wall configurations demonstrated that placing the earthen insulating layer externally optimizes thermal fluxes and eliminates condensation risks at the interface between materials, while internal insulation can be sensitive to hygrothermal gradients and prone to moisture accumulation. The combined experimental–numerical approach provides new insights into high-performance designs of bio-based earthen envelopes, establishing guidelines for minimizing moisture-related risks in low-carbon building systems. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

23 pages, 2562 KB  
Article
Comparative Analysis of Water Vapor Accumulation and Permeation Diffusion Processes in Asphalt Mixtures
by Chongzhi Tu, Xinjun Hu and Heng Zhang
Appl. Sci. 2025, 15(24), 12920; https://doi.org/10.3390/app152412920 - 8 Dec 2025
Viewed by 259
Abstract
Accumulation-type water vapor transport (hereafter referred to as AT-WVT) and permeation-type water vapor transport (hereafter referred to as PT-WVT) represent two fundamental modes of water vapor diffusion in asphalt mixtures, exerting distinct impacts on asphalt pavement durability. In this study, the diffusion characteristics [...] Read more.
Accumulation-type water vapor transport (hereafter referred to as AT-WVT) and permeation-type water vapor transport (hereafter referred to as PT-WVT) represent two fundamental modes of water vapor diffusion in asphalt mixtures, exerting distinct impacts on asphalt pavement durability. In this study, the diffusion characteristics of AT-WVT and PT-WVT within three core components of asphalt pavement systems—pure asphalt binder, aggregate matrix, and asphalt mixture void structures—were investigated. The corresponding diffusion coefficients for these three materials were determined through a synergistic approach combining laboratory experiments and theoretical modeling. Three typical asphalt materials (50# asphalt, 70# asphalt, SBS-modified asphalt) and two commonly used aggregates (limestone, diabase) were used. The results show that, for all three materials, the water vapor diffusion coefficient for the AT-WVT mechanism is relatively low, whereas the coefficient for the PT-WVT mechanism is approximately four orders of magnitude greater. The tortuosity factor of moisture diffusion paths in asphalt mixtures is substantially elevated during AT-WVT (tortuosity factor > 2000), as water vapor encounters frequent obstacles caused by the complex microstructural architecture (e.g., asphalt–aggregate interfaces and closed pores). In contrast, PT-WVT exhibits a much lower tortuosity factor (12–18), enabling rapid and direct migration through interconnected channels, such as capillary voids and microcracks. Due to its higher transport efficiency, PT-WVT poses a more critical threat to pavement durability by facilitating rapid moisture intrusion and subsequent damage (e.g., stripping, fatigue cracking). This study elucidates the mechanistic differences between AT-WVT and PT-WVT in asphalt binder, aggregate matrix, and asphalt mixtures, providing a foundation for optimizing asphalt mixture design to enhance long-term durability and performance under hygrothermal loading conditions. Full article
Show Figures

Figure 1

22 pages, 3525 KB  
Article
CFRP–Concrete Interfacial Bond Behavior on Circular Concrete Surfaces in Hygrothermal Marine Environments
by Jia-Wei Zhang and Xiao-Hui Wang
J. Mar. Sci. Eng. 2025, 13(12), 2292; https://doi.org/10.3390/jmse13122292 - 2 Dec 2025
Viewed by 335
Abstract
The strengthening performance of carbon-fiber-reinforced polymer (CFRP) in concrete structures primarily depends on the CFRP–concrete interfacial bond behavior. For CFRP-strengthened circular reinforced concrete (RC) pipe piles in marine environments, the interfacial bond behavior is susceptible to hygrothermal conditions. In this study, cylindrical concrete [...] Read more.
The strengthening performance of carbon-fiber-reinforced polymer (CFRP) in concrete structures primarily depends on the CFRP–concrete interfacial bond behavior. For CFRP-strengthened circular reinforced concrete (RC) pipe piles in marine environments, the interfacial bond behavior is susceptible to hygrothermal conditions. In this study, cylindrical concrete specimens were designed and subjected to pull-off tests to evaluate the CFRP–concrete interfacial performance under simulated marine environmental attacks (3 days in a 50 °C salt spray followed by 4 days of seawater immersion). The deterioration mechanism and failure modes of the CFRP–concrete bond behavior in such environments were analyzed, and relationship equations describing the interfacial bond degradation were proposed and validated. Test results indicated that the CFRP–concrete bond strength at circular interfaces is approximately 21% lower than that at planar interfaces. Under hygrothermal marine conditions, the average CFRP–concrete bond strength remained relatively stable in the early stages due to the competing effects of epoxy plasticization and post-curing, while variability increased significantly in later stages. For test specimens in Group A without concrete surface grinding before CFRP wrapping, an initial bond strength of 1.5 MPa was exhibited, while, for test specimens in Group B, with surface grinding, the initial bond strength started at 2.0 MPa. Both groups experienced a significant CFRP–concrete bond strength reduction of 0.4 MPa after the first wet–dry cycle, with the subsequent average strength stabilizing near initial values. Notably, Group B achieved a peak strength of 3.88 MPa at 84 days, attributed to surface grinding, which enhanced bond strength by 33% and delayed bond failure. The overall stable average strength resulted from averaging high-strength and degraded points. A bond degradation model based on averaged strength reduction was proposed: demonstrating a strength loss of 27%–36% after 98 days of accelerated marine environmental exposure. The proposed equations describing the interfacial bond degradation on a circular concrete surface predict well the flexural capacity of CFRP-wrapped RC beams under similar environmental conditions, where the calculated flexural capacity is 0.8 times the experimental value, confirming the model’s conservative and safe design applicability. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

23 pages, 2709 KB  
Article
The Implications of Non-Constant Hygrothermal Parameters on Heat and Moisture Transfer in Rammed Earth Walls Across Diverse Climate Zones
by Jun Mu, Xuechun Ma and Shimeng Hao
Sustainability 2025, 17(22), 10238; https://doi.org/10.3390/su172210238 - 16 Nov 2025
Viewed by 575
Abstract
As an eco-friendly natural building material, rammed earth possesses outstanding hygrothermal performance, which plays a vital role in achieving the goals of sustainable architecture. However, most existing simulations assume constant hygrothermal parameters, resulting in considerable discrepancies between predicted and actual energy performance and [...] Read more.
As an eco-friendly natural building material, rammed earth possesses outstanding hygrothermal performance, which plays a vital role in achieving the goals of sustainable architecture. However, most existing simulations assume constant hygrothermal parameters, resulting in considerable discrepancies between predicted and actual energy performance and consequently underestimating the true passive regulatory potential of rammed earth. To enhance the accuracy of energy consumption predictions in rammed earth buildings, this study integrates experimental measurements with dynamic simulations and experimentally determines both the constant and non-constant hygrothermal parameters of rammed earth. By integrating experimental and simulation approaches, this study reveals a strong positive linear correlation between the thermal conductivity of rammed earth and its moisture content (R2 = 0.9919), increasing from 0.77 W/(m·K) to 1.38 W/(m·K) as moisture content rises from 0% to 14%, whereas the moisture resistance factor decreases exponentially with increasing relative humidity (RH). Subsequently, the two sets of hygrothermal parameters were implemented in the WUFI-Plus simulation platform to conduct annual dynamic simulations across five representative Chinese climate zones (Harbin, Beijing, Nanjing, Guangzhou, and Dali), systematically comparing the performance differences between the “non-constant” and “constant” parameter models. The results show that the non-constant parameter model effectively captures the dynamic hygrothermal regulation of rammed earth, exhibiting superior passive performance. It predicts substantially lower building energy loads, with heating energy reductions most pronounced in Harbin and Beijing (16.9% and 15.5%) and cooling energy reductions most significant in Guangzhou and Nanjing (15.8% and 15.2%). This study confirms that accurately accounting for the dynamic hygrothermal coupling process is fundamental to reliably evaluating the performance of hygroscopic materials such as rammed earth, providing a robust scientific basis for promoting energy-efficient, low-carbon, and climate-responsive sustainable building design. Full article
Show Figures

Figure 1

17 pages, 1515 KB  
Article
Multiphysics Phase-Field Modeling of Corrosion-Induced Degradation in Unsaturated Reinforced Concrete Structure
by Aihua Lu and Yongxing Zhang
Materials 2025, 18(22), 5091; https://doi.org/10.3390/ma18225091 - 9 Nov 2025
Viewed by 887
Abstract
Corrosion-induced cracking poses a significant threat to the longevity of reinforced concrete (RC) structures, yet precisely forecasting its advancement continues to be a considerable scientific obstacle. The principal shortcoming of current numerical models is their excessive simplification, frequently presuming totally saturated conditions and [...] Read more.
Corrosion-induced cracking poses a significant threat to the longevity of reinforced concrete (RC) structures, yet precisely forecasting its advancement continues to be a considerable scientific obstacle. The principal shortcoming of current numerical models is their excessive simplification, frequently presuming totally saturated conditions and disregarding the dynamic interplay between environmental (hygro-thermal) variations and developing mesoscale damage. This study presents a thorough hygro-thermo-electro-chemo-mechanical (HTECM) phase-field model to fill this research need. The model uniquely combines dynamic unsaturated hygro-thermal transport with multi-ion reactive electrochemistry and meso-scale fracture mechanics. A rigorous comparison with published experimental data validates the model’s exceptional accuracy. The anticipated progression of fracture width exhibited remarkable concordance with experimental data, indicating a substantial enhancement in precision compared to uncoupled, saturated-state models. A key finding is the quantification of the damage-induced “transport-corrosion” positive feedback loop: initial corrosion-induced microcracks significantly expedite the transport of local moisture and corrosive agents, leading to nonlinear structural degradation. This work presents a high-fidelity numerical platform that enhances the understanding of linked deterioration in materials science and improves the durability design of reinforced concrete structures. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

22 pages, 7941 KB  
Article
Comparison Between Experimental and Simulated Hygrothermal Response of Chopped-Straw- and Cellulose-Insulated Wood Frame Panels
by Brock Conley and Mark Carver
Buildings 2025, 15(22), 4017; https://doi.org/10.3390/buildings15224017 - 7 Nov 2025
Viewed by 479
Abstract
Achieving a decarbonized built environment in Canada requires proven, resilient, and scalable building envelope assemblies. In 2022, building operations accounted for 18% of Canada’s greenhouse gas (GHG) emissions, with space heating responsible for nearly two-thirds of this total. Alongside operational carbon reductions, embodied [...] Read more.
Achieving a decarbonized built environment in Canada requires proven, resilient, and scalable building envelope assemblies. In 2022, building operations accounted for 18% of Canada’s greenhouse gas (GHG) emissions, with space heating responsible for nearly two-thirds of this total. Alongside operational carbon reductions, embodied carbon emissions—stemming from the production and transport of building materials—must be prioritized during the design phase. Without intervention, construction materials could consume up to half of the remaining global 1.5 °C carbon budget by 2050. This paper highlights NRCan’s prototype, low-carbon, prefabricated panels filled with chopped straw and cellulose insulation under the Prefabricated Exterior Energy Retrofit (PEER) research project. The research advances confidence in performance and durability of biogenic materials by conducting controlled experiments, guarded hot box testing, and hygrothermal modelling. These panels present a promising pathway to drastically lower embodied carbon in the built environment. The validated hygrothermal model, accurate to between 3% and 7, enables assessment of hygrothermal performance across Canadian climates, retrofit scenarios and future climate conditions. This work supports the evidence for low-carbon or bio-based materials as a solution for Canada’s built environment. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

13 pages, 1948 KB  
Article
The Hygric Behaviour of Historic and Newly Fabricated Lime-Based Mortars, Renders and Plasters
by Rosanne Walker, Anna Hofheinz, Caroline Engel Purcell and Oliver Kinnane
Architecture 2025, 5(4), 99; https://doi.org/10.3390/architecture5040099 - 22 Oct 2025
Viewed by 595
Abstract
Lime-based repair mortars, plasters, and renders are widely utilized in the conservation of traditional buildings. Historically, considerable emphasis has been placed on ensuring that new repair mortars are aesthetically compatible with existing historic materials. However, comparatively less focus has been placed on ensuring [...] Read more.
Lime-based repair mortars, plasters, and renders are widely utilized in the conservation of traditional buildings. Historically, considerable emphasis has been placed on ensuring that new repair mortars are aesthetically compatible with existing historic materials. However, comparatively less focus has been placed on ensuring hygric compatibility, which is critical to maintaining the moisture equilibrium of traditional masonry walls and preventing moisture accumulation caused by repair interventions. The FabTrads project examined the hygrothermal properties of newly fabricated quicklime mortars, prepared with binder-to-aggregate ratios of 1:2 and 1:4, alongside a range of historic lime-based mortars, plasters, and renders, sourced from buildings across Ireland. This paper presents a comparative analysis of their hygric behaviour. Experimental results indicate that the capillary absorption of the fabricated mortars correlates well with their historic counterparts. Both fabricated mortars exhibited vapour diffusion resistance factors within the range of the historic samples, albeit towards the higher end. Hygrothermal simulations of vapour and liquid water transport revealed that the moisture behaviour of the fabricated mortars is largely within the range of performance of their historic counterparts. Relative humidity was slightly elevated for the fabricated mortars in the models concerning vapour transfer. Notwithstanding this, the findings provide a reassuring indication that the hygric performance of fabricated quicklime mortars is comparable with that of traditional lime-based materials, supporting their appropriate use in conservation practices without adversely affecting the moisture dynamics of the building fabric. Full article
(This article belongs to the Special Issue Strategies for Architectural Conservation and Adaptive Reuse)
Show Figures

Figure 1

27 pages, 19519 KB  
Article
Low-Carbon Climate-Resilient Retrofit Pilot: Construction Report
by Hamish Pope, Mark Carver and Jeff Armstrong
Buildings 2025, 15(20), 3666; https://doi.org/10.3390/buildings15203666 - 11 Oct 2025
Viewed by 990
Abstract
Deep retrofits are one of the few pathways to decarbonize the existing building stock while simultaneously improving climate resilience. These retrofits improve insulation, airtightness, and mechanical equipment efficiency. NRCan’s Prefabricated Exterior Energy Retrofit (PEER) project developed prefabricated building envelope retrofit solutions to enable [...] Read more.
Deep retrofits are one of the few pathways to decarbonize the existing building stock while simultaneously improving climate resilience. These retrofits improve insulation, airtightness, and mechanical equipment efficiency. NRCan’s Prefabricated Exterior Energy Retrofit (PEER) project developed prefabricated building envelope retrofit solutions to enable net-zero performance. The PEER process was demonstrated on two different pilot projects completed between 2017 and 2023. In 2024, in partnership with industry partners, NRCan developed new low-carbon retrofit panel designs and completed a pilot project to evaluate their performance and better understand resiliency and occupant comfort post-retrofit. The Low-Carbon Climate-Resilient (LCCR) Living Lab pilot retrofit was completed in 2024 in Ottawa, Canada, using low-carbon PEER panels. This paper outlines the design and construction for the pilot, including panel designs, the retrofitting process, and post-retrofit building and envelope commissioning. The retrofitting process included the design and installation of new prefabricated exterior retrofitted panels for the walls and the roof. These panels were insulated with cellulose, wood fibre, hemp, and chopped straw. During construction, blower door testing and infrared imaging were conducted to identify air leakage paths and thermal bridges in the enclosure. The retrofit envelope thermal resistance is RSI 7.0 walls, RSI 10.5 roof, and an RSI 3.5 floor with 0.80 W/m2·K U-factor high-gain windows. The measured normalized leakage area @10Pa was 0.074 cm2/m2. The net carbon stored during retrofitting was over 1480 kg CO2. Monitoring equipment was placed within the LCCR to enable the validation of hygrothermal models for heat, air, and moisture transport, and energy, comfort, and climate resilience models. Full article
Show Figures

Figure 1

32 pages, 3156 KB  
Article
Magneto-Hygrothermal Deformation of FG Nanocomposite Annular Sandwich Nanoplates with Porous Core Using the DQM
by Fatemah H. H. Al Mukahal, Mohammed Sobhy and Aamna H. K. Al-Ali
Crystals 2025, 15(9), 827; https://doi.org/10.3390/cryst15090827 - 20 Sep 2025
Cited by 1 | Viewed by 622
Abstract
This study introduces a novel numerical approach to analyze the axisymmetric bending behavior of functionally graded (FG) graphene platelet (GPL)-reinforced annular sandwich nanoplates featuring a porous core. The nanostructures are exposed to coupled magnetic and hygrothermal environments. The porosity distribution and GPL weight [...] Read more.
This study introduces a novel numerical approach to analyze the axisymmetric bending behavior of functionally graded (FG) graphene platelet (GPL)-reinforced annular sandwich nanoplates featuring a porous core. The nanostructures are exposed to coupled magnetic and hygrothermal environments. The porosity distribution and GPL weight fraction are modeled as nonlinear functions through the thickness, capturing realistic gradation effects. The governing equations are derived using the virtual displacement principle, taking into account the Lorentz force and the interaction with an elastic foundation. To address the size-dependent behavior and thickness-stretching effects, the model employs the nonlocal strain gradient theory (NSGT) integrated with a modified version of Shimpi’s quasi-3D higher-order shear deformation theory (Q3HSDT). The differential quadrature method (DQM) is applied to obtain numerical solutions for the displacement and stress fields. A detailed parametric study is conducted to investigate the influence of various physical and geometric parameters, including the nonlocal parameter, strain gradient length scale, magnetic field strength, thermal effects, foundation stiffness, core thickness, and radius-to-thickness ratio. The findings support the development of smart, lightweight, and thermally adaptive nano-electromechanical systems (NEMS) and provide valuable insights into the mechanical performance of FG-GPL sandwich nanoplates. These findings have potential applications in transducers, nanosensors, and stealth technologies designed for ultrasound and radar detection. Full article
Show Figures

Figure 1

17 pages, 1980 KB  
Article
Digital Twin Model for Predicting Hygrothermal Performance of Building Materials from Moisture Permeability Tests
by Anna Szymczak-Graczyk, Jacek Korentz and Tomasz Garbowski
Materials 2025, 18(18), 4360; https://doi.org/10.3390/ma18184360 - 18 Sep 2025
Cited by 1 | Viewed by 790
Abstract
Moisture transport in building materials significantly influences their durability, mechanical integrity, and thermal performance. This study presents an experimental investigation of moisture permeability in a range of traditional and modern wall elements, including autoclaved aerated concrete (ACC), ceramic blocks, silicate blocks, perlite concrete [...] Read more.
Moisture transport in building materials significantly influences their durability, mechanical integrity, and thermal performance. This study presents an experimental investigation of moisture permeability in a range of traditional and modern wall elements, including autoclaved aerated concrete (ACC), ceramic blocks, silicate blocks, perlite concrete blocks, and concrete units. Both vapor diffusion and capillary transport mechanisms were analyzed under controlled climatic conditions using gravimetric and hygrometric methods. Among the tested materials, autoclaved aerated concrete (AAC) was selected for detailed numerical modeling because of its high porosity, strong capillarity, and widespread use in modern construction, which make it especially vulnerable to moisture-related degradation. Based on the experimental findings, a digital twin was developed to simulate hygrothermal behavior of walls made of ACC under various environmental conditions. The model incorporates advanced moisture transport equations, capturing diffusion and capillary effects while considering real-world variables, such as relative humidity, temperature fluctuations, and wetting–drying cycles. Calibration demonstrated strong agreement with experimental data, enabling reliable predictions of moisture behavior over extended exposure scenarios. This integrated approach provides a robust engineering tool for assessing the long-term material performance of AAC, predicting degradation risks, and optimizing material selection in humid climates. The study illustrates how coupling experimental data with digital modeling can enhance the design of moisture-resistant and durable building envelopes. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

21 pages, 6609 KB  
Article
Eco-Gypsum Panels with Recycled Fishing NET Fibers for Sustainable Construction: Development and Characterization
by Leonardo Lima, Alicia Zaragoza-Benzal, Daniel Ferrández and Paulo Santos
Materials 2025, 18(18), 4305; https://doi.org/10.3390/ma18184305 - 14 Sep 2025
Viewed by 1053
Abstract
Plastic waste is currently a major environmental issue but also plays a key role in the circular economy. Recycled plastics have become suitable for use in several applications, especially in construction, where they can improve the properties of conventional materials to enable sustainable [...] Read more.
Plastic waste is currently a major environmental issue but also plays a key role in the circular economy. Recycled plastics have become suitable for use in several applications, especially in construction, where they can improve the properties of conventional materials to enable sustainable development. This study designed new eco-gypsum composites containing recycled fishing net (FN) fibers and evaluated their mechanical, hygrothermal, fire and environmental performances. All the developed composites achieved the minimum standardized strengths. Regarding the impact hardness test, the composite with 40% recycled FN fibers (FN40%) reached a five times higher energy of rupture than the reference gypsum sample. Indeed, FN40% presented better properties in general, e.g., 33% less water absorption by capillarity, 17% lower thermal conductivity and 40% less environmental impacts. Moreover, the use of these FN40% gypsum composites was modeled in an LSF partition wall, and it was predicted that they increased the thermal resistance by 4.4%, taking traditional gypsum plasterboards (Ref.) with the same thickness as a reference. These promising results allow us to conclude that it is possible to obtain eco-friendly gypsum composite panels by incorporating recycled FN fibers, satisfying the mechanical resistance requirements (flexural and compressive) and even improving their impact hardness, as well as their functional performance regarding their hygrothermal behavior. Full article
(This article belongs to the Special Issue Advances in Sustainable Construction Materials, Third Edition)
Show Figures

Figure 1

23 pages, 7098 KB  
Article
Adaptive Thermal Comfort Assessment in Residential Buildings Under Current and Future Mediterranean Climate Scenarios
by Asmaa Tellache, Youcef Lazri, Abdelkader Laafer and Shady Attia
Buildings 2025, 15(17), 3171; https://doi.org/10.3390/buildings15173171 - 3 Sep 2025
Viewed by 2223
Abstract
This article presents a comparative evaluation of three established thermal comfort models (ISSO 74, ASHRAE 55, and EN 16798-1) in the context of residential buildings in Algiers, under current and projected Mediterranean climate conditions. By combining field measurements, occupant interviews, and dynamic simulations [...] Read more.
This article presents a comparative evaluation of three established thermal comfort models (ISSO 74, ASHRAE 55, and EN 16798-1) in the context of residential buildings in Algiers, under current and projected Mediterranean climate conditions. By combining field measurements, occupant interviews, and dynamic simulations in DesignBuilder, this research analyzes thermal comfort responses using the RCP 8.5 climate scenario. The analysis demonstrates that ISSO 74 is more suitable for temperature adaptation, while EN 16798-1 offers better humidity tolerance in high-moisture environments. Results reveal that indoor thermal discomfort currently affects more than one-third of the annual hours, with summer discomfort projected to dominate by 2100. Bedrooms are identified as the most thermally vulnerable spaces during peak summer weeks. The article identifies a critical mismatch between existing comfort standards and local climatic realities, calling for the development of an adaptive thermal comfort model tailored to the socio-economic and hygrothermal characteristics of North African cities. Passive strategies and mixed-mode ventilation are recommended as essential for enhancing climate resilience and reducing energy demand. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

26 pages, 4296 KB  
Article
Field Monitoring and Modeling of the Hygrothermal Performance of a Cross-Laminated Timber and Wood Fiber-Insulated Building Located in a Cold Climate
by Liam O’Brien, Ling Li, Benjamin Herzog, Jacob Snow and Wilhelm A. Friess
Sustainability 2025, 17(17), 7879; https://doi.org/10.3390/su17177879 - 1 Sep 2025
Viewed by 1641
Abstract
The increased complexity of buildings has led to rigorous performance demands from materials and building envelopes. As markets for low-carbon, renewable construction materials grow, cross-laminated timber and wood fiber insulation have emerged as promising alternatives to meet these rigorous demands. However, an investigation [...] Read more.
The increased complexity of buildings has led to rigorous performance demands from materials and building envelopes. As markets for low-carbon, renewable construction materials grow, cross-laminated timber and wood fiber insulation have emerged as promising alternatives to meet these rigorous demands. However, an investigation into the performance and interaction of materials within high-performance systems is necessary to determine the durability risks associated with increased complexity and the introduction of new materials. This is important in order to ensure that these materials can meet the required functions of the building while taking advantage of their environmental benefits. To do so, this case study investigated a building constructed of cross-laminated timber and wood fiber insulation in a cold climate (Zone 6A) (Belfast, ME, USA). During construction, the building was instrumented with temperature, relative humidity, and moisture content monitoring instrumentation through the envelope, i.e., wall and roof assemblies. The conditions within the envelope were monitored for a two-year period and used to calibrate a hygrothermal model, along with measured material properties. The calibrated model was used to conduct a 5-year simulation and mold risk assessment. Findings demonstrated that there was no moisture or mold risk throughout the monitoring period or simulation. This supports the integration of cross-laminated timber and wood fiber insulation in sustainable building practices, particularly in cold climates where moisture management is critical. Full article
Show Figures

Figure 1

25 pages, 5223 KB  
Article
Microstructure-Driven Hygrothermal Behavior of Mycelium-Based Composites for Bio-Based Insulation
by Sina Motamedi, Daniel R. Rousse and Geoffrey Promis
Energies 2025, 18(11), 2864; https://doi.org/10.3390/en18112864 - 30 May 2025
Cited by 1 | Viewed by 1976
Abstract
This study investigates the coupled hygrothermal behavior of mycelium-based composites (MBCs) as a function of their microstructural organization, governed by fungal species, substrate type, additive incorporation, and treatment method. Eleven composite formulations were selected and characterized using a multi-scale experimental approach, combining scanning [...] Read more.
This study investigates the coupled hygrothermal behavior of mycelium-based composites (MBCs) as a function of their microstructural organization, governed by fungal species, substrate type, additive incorporation, and treatment method. Eleven composite formulations were selected and characterized using a multi-scale experimental approach, combining scanning electron microscopy, dynamic vapor sorption, vapor permeability tests, capillary uptake measurements, and transient thermal conductivity analysis. SEM analysis revealed that Ganoderma lucidum forms dense and interconnected hyphal networks, whereas Trametes versicolor generates looser, localized structures. These morphological differences directly influence water vapor transport and heat conduction. Additive-enriched composites exhibited up to 21.8% higher moisture uptake at 90% RH, while straw-based composites demonstrated higher capillary uptake and free water saturation (up to 704 kg/m3), indicating enhanced moisture sensitivity. In contrast, hemp-based formulations with Ganoderma lucidum showed reduced sorption and vapor permeability due to limited pore interconnectivity. Thermal conductivity varied nonlinearly with temperature and moisture content. Fitting the experimental data with an exponential model revealed a moisture sensitivity coefficient thirty times lower for GHOP compared to VHOP, highlighting the stabilizing effect of a compact microstructure. The distinction between total and effective porosity emerged as a key factor in explaining discrepancies between apparent and functional moisture behavior. These findings demonstrate that hygric and thermal properties in MBCs are governed not by porosity alone, but by the geometry and connectivity of the internal fungal network. Optimizing these structural features enables fine control overheat and mass transfer, laying the groundwork for the development of high-performance, bio-based insulation materials. Full article
(This article belongs to the Special Issue Energy Efficiency of the Buildings: 3rd Edition)
Show Figures

Figure 1

18 pages, 5330 KB  
Article
Impact of Moisture Migration on Heat Transfer Performance at Vertical Joints of ‘One-Line’ Sandwich Insulation Composite Exterior Walls
by Yingjie Chen, Chenyu Mao, Guoxin Chen and Yating He
Buildings 2025, 15(7), 1084; https://doi.org/10.3390/buildings15071084 - 27 Mar 2025
Cited by 1 | Viewed by 1482
Abstract
Due to moisture migration effects, thermal and moisture bridges tend to form at building joints, thereby increasing the thermal conductivity coefficient of construction materials. To examine the influence of moisture transfer on the thermal performance of ‘one-line’ vertical joint walls, this study establishes [...] Read more.
Due to moisture migration effects, thermal and moisture bridges tend to form at building joints, thereby increasing the thermal conductivity coefficient of construction materials. To examine the influence of moisture transfer on the thermal performance of ‘one-line’ vertical joint walls, this study establishes a thermal–humidity coupling numerical model at the vertical joint of sandwich insulation composite walls. This model is employed to analyze the effects of various joint filling materials (aerated blocks, glass wool, concrete), insulation layer thicknesses, and environmental conditions on the thermal transfer properties of the wall joint. The results indicate that when filled with aerated blocks, the joint is most significantly affected by moisture transfer, exhibiting a heat flow loss rate of 8.08%. In high-temperature environments, the thermal transfer performance at the connection of the composite wall is particularly susceptible to humidity, with heat flow loss rates ranging from 6.17% to 8.74%. Furthermore, an increase in the thickness of the insulation layer leads to a reduction in the “heterogeneity” of the sandwich insulation wall, which reduces the wall’s effects to moisture transfer; however, this is accompanied by a rise in the heat loss rate at the connection. After accounting for the effects of hygrothermal bridging, the mean heat transfer corrected coefficient of the wall in areas with hot summers and cold winters ranges from 1.10 to 1.18 during the summer and from 1.12 to 1.16 during the winter. This finding holds significant relevance for aiding researchers in predicting thermal transfer analysis in scenarios involving wall moisture transfer. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

Back to TopTop