Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (890)

Search Parameters:
Keywords = hydrothermal degradation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1647 KiB  
Article
Application of Iron Oxides in the Photocatalytic Degradation of Real Effluent from Aluminum Anodizing Industries
by Lara K. Ribeiro, Matheus G. Guardiano, Lucia H. Mascaro, Monica Calatayud and Amanda F. Gouveia
Appl. Sci. 2025, 15(15), 8594; https://doi.org/10.3390/app15158594 (registering DOI) - 2 Aug 2025
Abstract
This study reports the synthesis and evaluation of iron molybdate (Fe2(MoO4)3) and iron tungstate (FeWO4) as photocatalysts for the degradation of a real industrial effluent from aluminum anodizing processes under visible light irradiation. The oxides [...] Read more.
This study reports the synthesis and evaluation of iron molybdate (Fe2(MoO4)3) and iron tungstate (FeWO4) as photocatalysts for the degradation of a real industrial effluent from aluminum anodizing processes under visible light irradiation. The oxides were synthesized via a co-precipitation method in an aqueous medium, followed by microwave-assisted hydrothermal treatment. Structural and morphological characterizations were performed using X-ray diffraction, field-emission scanning electron microscopy, Raman spectroscopy, ultraviolet–visible (UV–vis), and photoluminescence (PL) spectroscopies. The effluent was characterized by means of ionic chromatography, total organic carbon (TOC) analysis, physicochemical parameters (pH and conductivity), and UV–vis spectroscopy. Both materials exhibited well-crystallized structures with distinct morphologies: Fe2(MoO4)3 presented well-defined exposed (001) and (110) surfaces, while FeWO4 showed a highly porous, fluffy texture with irregularly shaped particles. In addition to morphology, both materials exhibited narrow bandgaps—2.11 eV for Fe2(MoO4)3 and 2.03 eV for FeWO4. PL analysis revealed deep defects in Fe2(MoO4)3 and shallow defects in FeWO4, which can influence the generation and lifetime of reactive oxygen species. These combined structural, electronic, and morphological features significantly affected their photocatalytic performance. TOC measurements revealed degradation efficiencies of 32.2% for Fe2(MoO4)3 and 45.3% for FeWO4 after 120 min of irradiation. The results highlight the critical role of morphology, optical properties, and defect structures in governing photocatalytic activity and reinforce the potential of these simple iron-based oxides for real wastewater treatment applications. Full article
(This article belongs to the Special Issue Application of Nanomaterials in the Field of Photocatalysis)
Show Figures

Figure 1

18 pages, 3060 KiB  
Article
Unveiling the Impact of Climatic Factors on the Distribution Patterns of Caragana spp. in China’s Three Northern Regions
by Weiwei Zhao, Yujia Liu, Yanxia Li, Chunjing Zou and Hideyuki Shimizu
Plants 2025, 14(15), 2368; https://doi.org/10.3390/plants14152368 - 1 Aug 2025
Viewed by 79
Abstract
Understanding the impacts of climate change on species’ geographic distributions is fundamental for biodiversity conservation and resource management. As a key plant group for ecological restoration and windbreak and sand fixation in arid and semi-arid ares in China’s Three Northern Regions (Northeast, North, [...] Read more.
Understanding the impacts of climate change on species’ geographic distributions is fundamental for biodiversity conservation and resource management. As a key plant group for ecological restoration and windbreak and sand fixation in arid and semi-arid ares in China’s Three Northern Regions (Northeast, North, and Northwest China), Caragana spp. exhibit distribution patterns whose regulatory mechanisms by environmental factors remain unclear, with a long-term lack of climatic explanations influencing their spatial distribution. This study integrated 2373 occurrence records of 44 Caragana species in China’s Three Northern Regions with four major environmental variable categories. Using the Biomod2 ensemble model, current and future climate scenario-based suitable habitats for Caragana spp. were predicted. This study innovatively combined quantitative analyses with Kira’s thermal indexes (warmth index, coldness index) and Wenduo Xu’s humidity index (HI) to elucidate species-specific relationships between distribution patterns and hydrothermal climatic constraints. The main results showed that (1) compared to other environmental factors, climate is the key factor affecting the distribution of Caragana spp. (2) The current distribution centroid of Caragana spp. is located in Alxa Left Banner, Inner Mongolia. In future scenarios, the majority of centroids will shift toward lower latitudes. (3) The suitable habitats for Caragana spp. will expand overall under future climate scenarios. High-stress scenarios exhibit greater spatial changes than low-stress scenarios. (4) Hydrothermal requirements varied significantly among species in China’s Three Northern Regions, and 44 Caragana species can be classified into five distinct types based on warmth index (WI) and humidity index (HI). The research findings will provide critical practical guidance for ecological initiatives such as the Three-North Shelterbelt Program and the restoration and management of degraded ecosystems in arid and semi-arid regions under global climate change. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

19 pages, 4697 KiB  
Article
The Delamination Behaviour of Basalt Fibre-Reinforced In Situ-Polymerisable Acrylic and Epoxy Composites: A Sustainable Solution for Marine Applications
by Mohamad Alsaadi, Tomas Flanagan, Daniel P. Fitzpatrick and Declan M. Devine
Sustainability 2025, 17(15), 6967; https://doi.org/10.3390/su17156967 (registering DOI) - 31 Jul 2025
Viewed by 171
Abstract
This research paper employed novel sustainable alternative materials to reduce the environmental impact of thermoset/synthetic fibre composites. The effect of seawater hydrothermal ageing at 45 °C for 45 and 90 days on the physical and interlaminar fracture toughness (mode I and mode II) [...] Read more.
This research paper employed novel sustainable alternative materials to reduce the environmental impact of thermoset/synthetic fibre composites. The effect of seawater hydrothermal ageing at 45 °C for 45 and 90 days on the physical and interlaminar fracture toughness (mode I and mode II) of a semi-unidirectional non-crimp basalt fibre (BF)-reinforced acrylic matrix and epoxy matrix composites was investigated. Optical and scanning electron microscopes were used to describe the fracture and interfacial failure mechanisms. The results show that the BF/Elium composite exhibited higher fracture toughness properties compared to the BF/Epoxy composite. The results of the mode I and mode II interlaminar fracture toughness values for the BF/Elium composite were 1280 J/m2 and 2100 J/m2, which are 14% and 56% higher, respectively, than those of the BF/Epoxy composite. The result values for both composites were normalised with respect to the density of each composite laminate. The saturated moisture content and diffusion coefficient values of seawater-aged samples at 45 °C and room temperature for the BF/Elium and BF/Epoxy composites were analysed. Both composites exhibited signs of polymer matrix decomposition and fibre surface degradation under the influence of seawater hydrothermal ageing, resulting in a reduction in the mode II interlaminar fracture toughness values. Enhancement was observed in mode I fracture toughness under hydrothermal ageing, particularly for the BF/Epoxy composite, due to matrix plasticisation and fibre bridging. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

19 pages, 17315 KiB  
Article
Development and Mechanical Characterization of Environmentally Friendly PLA/Crop Waste Green Composites
by Karolina Ewelina Mazur, Tomasz Wacław Witko, Alicja Kośmider and Stanisław Tadeusz Kuciel
Materials 2025, 18(15), 3608; https://doi.org/10.3390/ma18153608 (registering DOI) - 31 Jul 2025
Viewed by 179
Abstract
This study presents the fabrication and characterization of sustainable polylactic acid (PLA)-based biocomposites reinforced with bio-origin fillers derived from food waste: seashells, eggshells, walnut shells, and spent coffee grounds. All fillers were introduced at 15 wt% into a commercial PLA matrix modified with [...] Read more.
This study presents the fabrication and characterization of sustainable polylactic acid (PLA)-based biocomposites reinforced with bio-origin fillers derived from food waste: seashells, eggshells, walnut shells, and spent coffee grounds. All fillers were introduced at 15 wt% into a commercial PLA matrix modified with a compatibilizer to improve interfacial adhesion. Mechanical properties (tensile, flexural, and impact strength), morphological characteristics (via SEM), and hydrolytic aging behavior were evaluated. Among the tested systems, PLA reinforced with seashells (PLA15S) and coffee grounds (PLA15C) demonstrated the most balanced mechanical performance, with PLA15S achieving a tensile strength increase of 72% compared to neat PLA. Notably, PLA15C exhibited the highest stability after 28 days of hydrothermal aging, retaining ~36% of its initial tensile strength, outperforming other systems. In contrast, walnut-shell-filled composites showed the most severe degradation, losing over 98% of their mechanical strength after aging. The results indicate that both the physicochemical nature and morphology of the biofiller play critical roles in determining mechanical reinforcement and degradation resistance. This research underlines the feasibility of valorizing agri-food residues into biodegradable, semi-structural PLA composites for potential use in sustainable packaging or non-load-bearing structural applications. Full article
Show Figures

Graphical abstract

17 pages, 2736 KiB  
Article
Controlled Formation of α- and β-Bi2O3 with Tunable Morphologies for Visible-Light-Driven Photocatalysis
by Thomas Cadenbach, María Isabel Loyola-Plúa, Freddy Quijano Carrasco, Maria J. Benitez, Alexis Debut and Karla Vizuete
Molecules 2025, 30(15), 3190; https://doi.org/10.3390/molecules30153190 - 30 Jul 2025
Viewed by 181
Abstract
Water pollution caused by increasing industrial and human activity remains a serious environmental challenge, especially due to the persistence of organic contaminants in aquatic systems. Photocatalysis offers a promising and eco-friendly solution, but in the case of bismuth oxide (Bi2O3 [...] Read more.
Water pollution caused by increasing industrial and human activity remains a serious environmental challenge, especially due to the persistence of organic contaminants in aquatic systems. Photocatalysis offers a promising and eco-friendly solution, but in the case of bismuth oxide (Bi2O3) there is still a limited understanding of how structural and morphological features influence photocatalytic performance. In this work, a straightforward hydrothermal synthesis method followed by controlled calcination was developed to produce phase-pure α- and β-Bi2O3 with tunable morphologies. By varying the hydrothermal temperature and reaction time, distinct structures were successfully obtained, including flower-like, broccoli-like, and fused morphologies. XRD analyses showed that the final crystal phase depends solely on the calcination temperature, with β-Bi2O3 forming at 350 °C and α-Bi2O3 at 500 °C. SEM and BET analyses confirmed that morphology and surface area are strongly influenced by the hydrothermal conditions, with the flower-like β-Bi2O3 exhibiting the highest surface area. UV–Vis spectroscopy revealed that β-Bi2O3 also has a lower bandgap than its α counterpart, making it more responsive to visible light. Photocatalytic tests using Rhodamine B showed that the flower-like β-Bi2O3 achieved the highest degradation efficiency (81% in 4 h). Kinetic analysis followed pseudo-first-order behavior, and radical scavenging experiments identified hydroxyl radicals, superoxide radicals, and holes as key active species. The catalyst also demonstrated excellent stability and reusability. Additionally, Methyl Orange (MO), a more stable and persistent azo dye, was selected as a second model pollutant. The flower-like β-Bi2O3 catalyst achieved 73% degradation of MO at pH = 7 and complete removal under acidic conditions (pH = 2) in less than 3 h. These findings underscore the importance of both phase and morphology in designing high-performance Bi2O3 photocatalysts for environmental remediation. Full article
(This article belongs to the Special Issue Green Catalysis Technology for Sustainable Energy Conversion)
Show Figures

Figure 1

21 pages, 11816 KiB  
Article
The Dual Effects of Climate Change and Human Activities on the Spatiotemporal Vegetation Dynamics in the Inner Mongolia Plateau from 1982 to 2022
by Guangxue Guo, Xiang Zou and Yuting Zhang
Land 2025, 14(8), 1559; https://doi.org/10.3390/land14081559 - 29 Jul 2025
Viewed by 137
Abstract
The Inner Mongolia Plateau (IMP), situated in the arid and semi-arid ecological transition zone of northern China, is particularly vulnerable to both climate change and human activities. Understanding the spatiotemporal vegetation dynamics and their driving forces is essential for regional ecological management. This [...] Read more.
The Inner Mongolia Plateau (IMP), situated in the arid and semi-arid ecological transition zone of northern China, is particularly vulnerable to both climate change and human activities. Understanding the spatiotemporal vegetation dynamics and their driving forces is essential for regional ecological management. This study employs Sen’s slope estimation, BFAST analysis, residual trend method and Geodetector to analyze the spatial patterns of Normalized Difference Vegetation Index (NDVI) variability and distinguish between climatic and anthropogenic influences. Key findings include the following: (1) From 1982 to 2022, vegetation cover across the IMP exhibited a significant greening trend. Zonal analysis showed that this spatial heterogeneity was strongly regulated by regional hydrothermal conditions, with varied responses across land cover types and pronounced recovery observed in high-altitude areas. (2) In the western arid regions, vegetation trends were unstable, often marked by interruptions and reversals, contrasting with the sustained greening observed in the eastern zones. (3) Vegetation growth was primarily temperature-driven in the eastern forested areas, precipitation-driven in the central grasslands, and severely limited in the western deserts due to warming-induced drought. (4) Human activities exerted dual effects: significant positive residual trends were observed in the Hetao Plain and southern Horqin Sandy Land, while widespread negative residuals emerged across the southern deserts and central grasslands. (5) Vegetation change was driven by climate and human factors, with recovery mainly due to climate improvement and degradation linked to their combined impact. These findings highlight the interactive mechanisms of climate change and human disturbance in regulating terrestrial vegetation dynamics, offering insights for sustainable development and ecosystem education in climate-sensitive systems. Full article
Show Figures

Figure 1

21 pages, 4597 KiB  
Article
Preparation of Non-Covalent BPTCD/g-C3N4 Heterojunction Photocatalysts and Photodegradation of Organic Dyes Under Solar Irradiation
by Xing Wei, Gaopeng Jia, Ru Chen and Yalong Zhang
Nanomaterials 2025, 15(14), 1131; https://doi.org/10.3390/nano15141131 - 21 Jul 2025
Viewed by 277
Abstract
In this study, the BPTCD/g-C3N4 heterojunction photocatalyst was successfully prepared by the hydrothermal method. BPTCD (3,3′,4,4′-benzophenone tetracarboxylic dianhydride) is immobilised on the surface of g-C3N4 by non-covalent π-π stacking. The BPTCD/g-C3N4 heterojunction photocatalyst is [...] Read more.
In this study, the BPTCD/g-C3N4 heterojunction photocatalyst was successfully prepared by the hydrothermal method. BPTCD (3,3′,4,4′-benzophenone tetracarboxylic dianhydride) is immobilised on the surface of g-C3N4 by non-covalent π-π stacking. The BPTCD/g-C3N4 heterojunction photocatalyst is an all-organic photocatalyst with significantly improved photocatalytic performance compared with g-C3N4. BPTCD/g-C3N4-60% was able to effectively degrade MO solution (10 mg/L) to 99.9% and 82.8% in 60 min under full spectrum and visible light. The TOC measurement results indicate that MO can ultimately be decomposed into H2O and CO2 through photocatalytic action. The photodegradation of methyl orange by BPTCD/g-C3N4 composite materials under sunlight is mainly attributed to the successful construction of the heterojunction structure and its excellent π-π stacking effect. Superoxide radicals (O2) were found to be the main active species, while OH and h+ played a secondary role. The synthesised BPTCD/g-C3N4 also showed excellent stability in the activity of photodegradation of MO in wastewater, with the performance remaining above 90% after three cycles. The mechanism of the photocatalytic removal of MO dyes was also investigated by the trap agent experiments. Additionally, BPTCD/g-C3N4-60% demonstrated exceptional photodegradation performance in the degradation of methylene blue (MB). BPTCD/g-C3N4 heterojunctions have great potential to degrade organic pollutants in wastewater under solar irradiation conditions. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

22 pages, 7389 KiB  
Article
FeCo-LDH/CF Cathode-Based Electrocatalysts Applied to a Flow-Through Electro-Fenton System: Iron Cycling and Radical Transformation
by Heng Dong, Yuying Qi, Zhenghao Yan, Yimeng Feng, Wenqi Song, Fengxiang Li and Tao Hua
Catalysts 2025, 15(7), 685; https://doi.org/10.3390/catal15070685 - 15 Jul 2025
Viewed by 328
Abstract
In this investigation, a hierarchical FeCo-layered double hydroxide (FeCo-LDH) electrochemical membrane material was prepared by a simple in situ hydrothermal method. The prepared material formed a 3D honeycomb-structured FeCo-LDH-modified carbon felt (FeCo-LDH/CF) catalytic layer with uniform open pores on a CF substrate with [...] Read more.
In this investigation, a hierarchical FeCo-layered double hydroxide (FeCo-LDH) electrochemical membrane material was prepared by a simple in situ hydrothermal method. The prepared material formed a 3D honeycomb-structured FeCo-LDH-modified carbon felt (FeCo-LDH/CF) catalytic layer with uniform open pores on a CF substrate with excellent catalytic activity and was served as the cathode in a flow-through electro-Fenton (FTEF) reactor. The electrocatalyst demonstrated excellent treatment performance (99%) in phenol simulated wastewater (30 mg L−1) under the optimized operating conditions (applied voltage = 3.5 V, pH = 6, influent flow rate = 15 mL min−1) of the FTEF system. The high removal rate could be attributed to (i) the excellent electrocatalytic oxidation performance and low interfacial charge transfer resistance of the FeCo-LDH/CF electrode as the cathode, (ii) the ability of the synthesized FeCo-LDH to effectively promote the conversion of H2O2 to •OH under certain conditions, and (iii) the flow-through system improving the mass transfer efficiency. In addition, the degradation process of pollutants within the FTEF system was additionally illustrated by the •OH dominant ROS pathway based on free radical burst experiments and electron paramagnetic resonance tests. This study may provide new insights to explore reaction mechanisms in FTEF systems. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Figure 1

17 pages, 2964 KiB  
Article
Seawater Ageing Effects on the Mechanical Performance of Basalt Fibre-Reinforced Thermoplastic and Epoxy Composites
by Mohamad Alsaadi, Tomas Flanagan and Declan M. Devine
J. Compos. Sci. 2025, 9(7), 368; https://doi.org/10.3390/jcs9070368 - 15 Jul 2025
Viewed by 333
Abstract
This research paper employed the recently developed Elium thermoplastic resin and basalt fabrics as an alternative to thermoset/synthetic fibre composites to reduce their environmental impact. Elium® 191 XO/SA and Epoxy PrimeTM 37 resin were reinforced with mineral-based semi-unidirectional basalt fibre (BF). [...] Read more.
This research paper employed the recently developed Elium thermoplastic resin and basalt fabrics as an alternative to thermoset/synthetic fibre composites to reduce their environmental impact. Elium® 191 XO/SA and Epoxy PrimeTM 37 resin were reinforced with mineral-based semi-unidirectional basalt fibre (BF). Physical, chemical, tensile, and flexural performance was investigated under the effect of hydrothermal seawater ageing at 45 °C for 45 and 90 days. The results show that the BF/Elium composite exhibited superior tensile and flexural strength, as well as good stiffness, compared with the BF/Epoxy composite. Digital images and scanning electron microscope images were used to describe the fracture and failure mechanisms. The tensile and flexural strength values of the BF/Elium composite were 1165 MPa and 1128 MPa, greater than those of the BF/Epoxy composite by 33% and 71%, respectively. The tensile and flexural modulus values of the BF/Elium composite were 44.1 GPa and 38.2 GPa, which are 30% and 12% greater than those of the BF/Epoxy composite. The result values for both composites were normalised with respect to the density of each composite laminate. Both composites exhibited signs of resin decomposition and fibre surface degradation under the influence of seawater ageing, resulting in a more recognisable reduction in flexural properties than in tensile properties. Full article
(This article belongs to the Special Issue Advances in Continuous Fiber Reinforced Thermoplastic Composites)
Show Figures

Figure 1

20 pages, 1759 KiB  
Article
Chromium Ferrite Supported on Activated Carbon from Olive Mill Solid Waste for the Photo-Fenton Degradation of Pollutants from Wastewater Using LED Irradiation
by Malak Hamieh, Sireen Al Khawand, Nabil Tabaja, Khaled Chawraba, Mohammad Hammoud, Sami Tlais, Tayssir Hamieh and Joumana Toufaily
AppliedChem 2025, 5(3), 15; https://doi.org/10.3390/appliedchem5030015 - 11 Jul 2025
Viewed by 279
Abstract
In this study, chromium ferrite (FeCr; CrFe2O4) nanoparticles supported on activated carbon (AC), obtained from agricultural olive mill solid waste, were synthesized via a simple hydrothermal process. The structural, morphological, optical, and chemical properties of the FeCr/AC composite were [...] Read more.
In this study, chromium ferrite (FeCr; CrFe2O4) nanoparticles supported on activated carbon (AC), obtained from agricultural olive mill solid waste, were synthesized via a simple hydrothermal process. The structural, morphological, optical, and chemical properties of the FeCr/AC composite were characterized using XRD, SEM, EDX, DRS, BET, and FTIR techniques. The FeCr/AC composite was applied as a heterogeneous photo-Fenton catalyst for the degradation of methylene blue (MB) dye in an aqueous solution under 25 W visible-light LED irradiation. Critical operational factors, such as FeCr/AC dosage, pH, MB concentration, and H2O2 levels, were optimized. Under optimal conditions, 97.56% of MB was removed within 120 min of visible-light exposure, following pseudo-first-order kinetics. The composite also exhibited high efficiency in degrading methyl orange dye (95%) and tetracycline antibiotic (88%) within 180 min, with corresponding first-order rate constants of 0.0225 min−1 and 0.0115 min−1, respectively. This study highlights the potential of FeCr/AC for treating water contaminated with dyes and pharmaceuticals, in line with the Sustainable Development Goals (SDGs) for water purification. Full article
Show Figures

Graphical abstract

22 pages, 6102 KiB  
Review
Current Developments in Ozone Catalyst Preparation Techniques and Their Catalytic Oxidation Performance
by Jiajia Gao, Siqi Chen, Yun Gao, Wenquan Sun, Jun Zhou, Kinjal J. Shah and Yongjun Sun
Catalysts 2025, 15(7), 671; https://doi.org/10.3390/catal15070671 - 10 Jul 2025
Viewed by 390
Abstract
Through the use of heterogeneous catalysts, catalytic ozone oxidation technology, an effective and eco-friendly advanced oxidation process (AOP), facilitates the breakdown of ozone into reactive oxygen species (like ·OH) and greatly increases the mineralization efficiency of pollutants. This study examines the development of [...] Read more.
Through the use of heterogeneous catalysts, catalytic ozone oxidation technology, an effective and eco-friendly advanced oxidation process (AOP), facilitates the breakdown of ozone into reactive oxygen species (like ·OH) and greatly increases the mineralization efficiency of pollutants. This study examines the development of heterogeneous ozone catalysts through a critical evaluation of the five primary preparation techniques: ion exchange, sol–gel, coprecipitation, impregnation, and hydrothermal synthesis. Each preparation method’s inherent qualities, benefits, drawbacks, and performance variations are methodically investigated, with an emphasis on how they affect the breakdown of different resistant organic compounds. Even though heterogeneous catalysts are more stable and reusable than homogeneous catalysts, they continue to face issues like active component leaching, restricted mass transfer, and ambiguous mechanisms. In order to determine the key paths for catalyst selection in catalytic ozone treatment going forward, the main goal of this review is to provide an overview of the accomplishments in the field of the heterogeneous ozone catalyst treatment of wastewater that is difficult to degrade. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Figure 1

15 pages, 11349 KiB  
Article
Three-Dimensional Bi-Enriched Bi2O3/Bi2MoO6 Z-Scheme Heterojunction: Augmented Photocatalytic Phenol Degradation
by Congyu Cai, Shuwen Wang, Pingping Wan, Haoying Cai, Minhui Pan and Weiwei Wang
Inorganics 2025, 13(7), 227; https://doi.org/10.3390/inorganics13070227 - 6 Jul 2025
Viewed by 445
Abstract
A three-dimensional Bi-enriched Bi2O3/Bi2MoO6 Z-scheme heterojunction photocatalyst was successfully synthesized via a facile one-step hydrothermal method for efficient phenol degradation under visible light. Structural and morphological characterizations (SEM, TEM, and XRD) confirmed the formation of a [...] Read more.
A three-dimensional Bi-enriched Bi2O3/Bi2MoO6 Z-scheme heterojunction photocatalyst was successfully synthesized via a facile one-step hydrothermal method for efficient phenol degradation under visible light. Structural and morphological characterizations (SEM, TEM, and XRD) confirmed the formation of a nanoflower-like architecture with a high specific surface area of 81.27 m2/g. Optical and electrochemical analyses revealed efficient charge separation and extended visible-light response. Under visible-light irradiation (λ > 420 nm), this heterojunction (Bi2O3:Bi2MoO6 = 3:7) demonstrated exceptional performance, degrading 97.06% of phenol (30 mg/L) within 60 min. XPS analysis confirmed the Z-scheme charge transfer mechanism: Photogenerated electrons in the conduction band of Bi2O3 (−0.59 eV) facilitated the generation of ·O2 radicals, while holes in the valence band of Bi2MoO6 (2.44 eV) predominantly produced ·OH radicals. This synergistic effect resulted in highly efficient mineralization and degradation of phenol. Full article
Show Figures

Graphical abstract

36 pages, 1698 KiB  
Review
Enhancing Bioplastic Degradation in Anaerobic Digestion: A Review of Pretreatment and Co-Digestion Strategies
by Mohamed Shafana Farveen, Raúl Muñoz, Rajnish Narayanan and Octavio García-Depraect
Polymers 2025, 17(13), 1756; https://doi.org/10.3390/polym17131756 - 25 Jun 2025
Viewed by 876
Abstract
The increasing production of bioplastics worldwide requires sustainable end-of-life solutions to minimize the environmental burden. Anaerobic digestion (AD) has been recognized as a potential technology for valorizing waste and producing renewable energy. However, the inherent resistance of certain bioplastics to degradation under anaerobic [...] Read more.
The increasing production of bioplastics worldwide requires sustainable end-of-life solutions to minimize the environmental burden. Anaerobic digestion (AD) has been recognized as a potential technology for valorizing waste and producing renewable energy. However, the inherent resistance of certain bioplastics to degradation under anaerobic conditions requires specific strategies for improvement. Thus, in this review, the anaerobic biodegradability of commonly used bioplastics such as polylactic acid (PLA), polyhydroxybutyrate (PHB), polybutylene adipate-co-terephthalate (PBAT), polybutylene succinate (PBS), polycaprolactone (PCL), and starch- and cellulose-based bioplastics are critically evaluated for various operational parameters, including the temperature, particle size, inoculum-to-substrate ratio (ISR) and polymer type. Special attention is given to process optimization strategies, including pretreatment techniques (mechanical, thermal, hydrothermal, chemical and enzymatic) and co-digestion with nutrient-rich organic substrates, such as food waste and sewage sludge. The combinations of these strategies used for improving hydrolysis kinetics, increasing the methane yield and stabilizing reactor performance are described. In addition, new technologies, such as hydrothermal pretreatment and microbial electrolysis cell-assisted AD, are also considered as prospective strategies for reducing the recalcitrant nature of some bioplastics. While various strategies have enhanced anaerobic degradability, a consistent performance across bioplastic types and operational settings remains a challenge. By integrating key recent findings and limitations alongside pretreatment and co-digestion strategies, this review offers new insights to facilitate the circular use of bioplastics in solid waste management systems. Full article
(This article belongs to the Special Issue Advances in Polymer Composites with Upcycling Waste)
Show Figures

Figure 1

14 pages, 2842 KiB  
Article
Enhancing the Removal Efficiency of Rhodamine B by Loading Pd onto In2O3/BiVO4 Under Visible Light Irradiation
by Yuanchen Zhu, Shivam Parekh, Shiqian Li, Xiangchao Meng and Zisheng Zhang
Processes 2025, 13(7), 1983; https://doi.org/10.3390/pr13071983 - 23 Jun 2025
Viewed by 398
Abstract
A simple method for synthesizing novel Pd-In2O3/BiVO4 composites by using a hydrothermal technique is proposed. The synthesized samples showed a monoclinic phase and featured homogeneously dispersed Pd and BiVO4 dopants on In2O3, as [...] Read more.
A simple method for synthesizing novel Pd-In2O3/BiVO4 composites by using a hydrothermal technique is proposed. The synthesized samples showed a monoclinic phase and featured homogeneously dispersed Pd and BiVO4 dopants on In2O3, as confirmed by XRD, SEM, and XPS analyses. The Pd-In2O3/BiVO4 composite exhibited notable improvements, such as broadened visible-light absorption (up to 596.1 nm) and a narrowed band gap (2.08 eV vs. 2.82 eV for pure In2O3), a more compact and integrated morphology observed by SEM, which are expected to promote improved light harvesting and facilitate charge separation during photocatalysis. Under visible-light irradiation, the optimized 1 wt% Pd-In2O3/BiVO4 achieved 99% degradation of Rhodamine B (10 mg/L) within 40 min, while pure In2O3 showed less than 10% removal after 60 min—highlighting the strong synergistic effect of dual doping. Additionally, the composite demonstrated excellent stability and reusability over multiple cycles. A plausible photocatalytic mechanism for this process is proposed, providing insights into the design of efficient photocatalysts for wastewater treatment. Full article
Show Figures

Figure 1

17 pages, 3361 KiB  
Article
SnS2-TiO2 Heterojunction Designed for Reductive Degradation of Contaminants of Emerging Concern
by Suresh Kumar Pandey, Sandra Romac, Josipa Papac Zjačić, Marijana Kraljić Roković, Marin Kovačić, Hrvoje Kušić, Boštjan Žener, Boštjan Genorio, Urška Lavrenčič Štangar and Ana Lončarić Božić
Nanomaterials 2025, 15(13), 969; https://doi.org/10.3390/nano15130969 - 22 Jun 2025
Viewed by 503
Abstract
Contaminants of emerging concern (CECs), including pharmaceuticals and perfluorinated compounds, pose a growing threat to water quality due to their persistence and resistance to conventional treatment methods. In this context, photocatalytic processes capable of promoting both oxidative and reductive transformations have attracted increasing [...] Read more.
Contaminants of emerging concern (CECs), including pharmaceuticals and perfluorinated compounds, pose a growing threat to water quality due to their persistence and resistance to conventional treatment methods. In this context, photocatalytic processes capable of promoting both oxidative and reductive transformations have attracted increasing attention. This study explores the synthesis and performance of a SnS2-TiO2 heterojunction photocatalyst, designed to facilitate such reactions under solar and UV-A light. The composite was synthesized via the hydrothermal method and thoroughly characterized for its morphological, structural, surface, and semiconducting properties. The results confirmed the formation of a type-II heterojunction with improved visible-light absorption and suppressed charge recombination. Photoelectrochemical measurements indicated enhanced charge separation and favorable band-edge alignment for reductive processes. Photocatalytic experiments with amoxicillin (AMX) and perfluorooctanoic acid (PFOA) revealed distinct degradation behaviors: AMX was predominantly degraded via superoxide-mediated reductive pathways, whereas PFOA exhibited limited transformation, likely proceeding via a combination of oxidative and reductive mechanisms. While overall removal efficiencies were moderate, this study highlights the role of band structure engineering and heterojunction design in tailoring photocatalytic behavior. The SnS2-TiO2 system serves as a promising platform for further development of composite materials to address the challenge of CECs in water treatment. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

Back to TopTop