Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (166)

Search Parameters:
Keywords = hydrothermal Mn oxide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3880 KiB  
Article
Sustainable Synthesis of Adipic Acid via MnOx-Catalyzed Electrooxidation of Cyclohexanol in Neutral Electrolyte
by Jiaming Shi, Guiling Zhang, Shiying Yang, Dan Yang, Yuguang Jin, Xiaoyue Wan, Yihu Dai, Yanhui Yang and Chunmei Zhou
Molecules 2025, 30(14), 2937; https://doi.org/10.3390/molecules30142937 - 11 Jul 2025
Viewed by 312
Abstract
Adipic acid (AA), a pivotal precursor for nylon-6,6 and polyurethane, was synthesized via an innovative catalytic electrocatalytic oxidation strategy in this study. Four distinct MnOx/CNT nanocatalysts were prepared by hydrothermal and co-precipitation methods and fabricated into electrodes for the oxidation of [...] Read more.
Adipic acid (AA), a pivotal precursor for nylon-6,6 and polyurethane, was synthesized via an innovative catalytic electrocatalytic oxidation strategy in this study. Four distinct MnOx/CNT nanocatalysts were prepared by hydrothermal and co-precipitation methods and fabricated into electrodes for the oxidation of cyclohexanol (Cy-OH) in a K2SO4 neutral solution. Comprehensive characterization revealed that the catalytic performance depended on both crystalline phase configuration and manganese valence states. MnO(OH) and MnOx were identified as the main active species, with the synergy between MnO species and carbon nanotubes significantly enhancing catalytic activity. Mechanistic investigations demonstrated that under Mn4+-dominant conditions, low-valence manganese species facilitated Cy-OH-to-cyclohexanone (Cy=O) conversion, while an optimal Oads/Olat ratio (≈1) effectively promoted subsequent Cy=O oxidation to AA. Under optimized conditions (1.25 V vs. Ag/AgCl, 80 °C, 15 h), complete Cy-OH conversion was achieved with 56.4% AA yield and exceptional Faradaic efficiency exceeding 94%. This work elucidates manganese-based electrocatalytic oxidation mechanisms, proposes a sequential reaction pathway, and establishes an environmentally benign synthesis protocol for AA, advancing sustainable industrial chemistry. Full article
(This article belongs to the Special Issue Nanomaterials for Catalytic Upcycling/Conversion of Plastics/Biomass)
Show Figures

Figure 1

23 pages, 7080 KiB  
Article
Distribution Characteristics of High-Background Elements and Assessment of Ecological Element Activity in Typical Profiles of Ultramafic Rock Area
by Jingtao Shi, Junjian Liu, Suduan Hu and Jiangyulong Wang
Toxics 2025, 13(7), 558; https://doi.org/10.3390/toxics13070558 - 30 Jun 2025
Viewed by 370
Abstract
This study investigates the weathering crust composite of serpentine, pyroxenite and granite in the Niangniangmiao area, the weathering crusts inside and outside the mining area were compared respectively, systematically revealing the distribution patterns, migration pathways, and ecological element activity characteristics of high-background elements [...] Read more.
This study investigates the weathering crust composite of serpentine, pyroxenite and granite in the Niangniangmiao area, the weathering crusts inside and outside the mining area were compared respectively, systematically revealing the distribution patterns, migration pathways, and ecological element activity characteristics of high-background elements (e.g., chromium (Cr) and nickel (Ni)) through precise sampling, the Tessier five-step sequential extraction method, and a migration coefficient model. Key findings include: (1) Element distribution and controlling mechanisms: The average Cr and Ni contents in the serpentinite profile are significantly higher than those in pyroxenite. However, the semi-weathered pyroxenite layer exhibits an inverted Cr enrichment ratio in relation to serpentinite, 1.8× and 1.2×, respectively, indicating that mineral metasomatic sequences driven by hydrothermal alteration dominate element differentiation; the phenomenon of inverted enrichment of high-background elements occurs in the weathering crust profiles of the two basic rocks. (2) Dual impacts of mining activities on heavy metal enrichment: Direct mining increases topsoil Cr content in serpentinite by 40% by disrupting parent material homology, while indirect activities introduce exogenous Zn and Cd (Spearman correlation coefficients with Cr/Ni are from ρ = 0.58 to ρ = 0.72). Consequently, the bioavailable fraction ratio value of Ni outside the mining area (21.14%) is significantly higher than that within the area (14.30%). (3) Element speciation and ecological element activity: Over 98% of Cr in serpentine exists in residual fractions, whereas the Fe-Mn oxide-bound fraction (F3) of Cr in extra-mining pyroxenite increases to 5.15%. The element activity in ecological systems ranking of Ni in soil active fractions (F1 + F2 = 15%) follows the order: granite > pyroxenite > serpentine. Based on these insights, a scientific foundation for targeted remediation in high-background areas (e.g., prioritizing the treatment of semi-weathered pyroxenite layers) can be provided. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Graphical abstract

32 pages, 7693 KiB  
Article
Genesis and Evolution of the Qieliekeqi Siderite Deposit in the West Kunlun Orogen: Constraints from Geochemistry, Zircon U–Pb Geochronology, and Carbon–Oxygen Isotopes
by Yue Song, Liang Li, Yuan Gao and Yang Luo
Minerals 2025, 15(7), 699; https://doi.org/10.3390/min15070699 - 30 Jun 2025
Viewed by 332
Abstract
The Qieliekeqi siderite deposit, located in the Tashkurgan block of western Kunlun, is a carbonate-hosted iron deposit with hydrothermal sedimentary features. This study integrates whole-rock geochemistry, stable isotopes, and zircon U–Pb–Hf data to investigate its metallogenic evolution. Coarse-grained siderite samples, formed in deeper [...] Read more.
The Qieliekeqi siderite deposit, located in the Tashkurgan block of western Kunlun, is a carbonate-hosted iron deposit with hydrothermal sedimentary features. This study integrates whole-rock geochemistry, stable isotopes, and zircon U–Pb–Hf data to investigate its metallogenic evolution. Coarse-grained siderite samples, formed in deeper water, exhibit average Al2O3/TiO2 ratios of 29.14, δEu of 2.69, and δCe of 0.83, indicating hydrothermal fluid dominance with limited seawater mixing. Banded samples from shallower settings show an average Al2O3/TiO2 of 17.07, δEu of 3.18, and δCe of 0.94, suggesting stronger seawater interaction under oxidizing conditions. Both types are enriched in Mn, Co, and Ba, with low Ti and Al contents. Stable isotope results (δ13CPDB = −6.0‰ to −4.6‰; δ18OSMOW = 16.0‰ to 16.9‰) point to seawater-dominated fluids with minor magmatic and meteoric contributions, formed under open-system conditions at avg. temperatures of 53 to 58 °C. Zircon U–Pb dating yields an age of 211.01 ± 0.82 Ma, with an average εHf(t) of −3.94, indicating derivation from the partially melted ancient crust. These results support a two-stage model involving Late Cambrian hydrothermal sedimentation and Late Triassic magmatic overprinting. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

20 pages, 5439 KiB  
Article
The Efficient Degradation of Oxytetracycline in Wastewater Using Fe/Mn-Modified Magnetic Oak Biochar: Pathways and Mechanistic Investigation
by Yujie Zhou, Yuzhe Fu, Xiaoxue Niu, Bohan Wu, Xinghan Liu, Fu Hao, Zichuan Ma, Hao Cai and Yuheng Liu
Magnetochemistry 2025, 11(6), 49; https://doi.org/10.3390/magnetochemistry11060049 - 6 Jun 2025
Cited by 1 | Viewed by 1106
Abstract
Antibiotic resistance has been recognized as a global threat to human health. Therefore, it is urgent to develop effective strategies to address the contamination of water environments caused by antibiotics. In this study, Fe/Mn bimetallic-modified biochar (FMBC) was synthesized through a one-pot oxidation/reduction-hydrothermal [...] Read more.
Antibiotic resistance has been recognized as a global threat to human health. Therefore, it is urgent to develop effective strategies to address the contamination of water environments caused by antibiotics. In this study, Fe/Mn bimetallic-modified biochar (FMBC) was synthesized through a one-pot oxidation/reduction-hydrothermal co-precipitation method, demonstrating an exceptional photocatalytic-Fenton degradation performance for oxytetracycline (OTC). Characterization techniques including FTIR, SEM, XRD, VSM, and N2 adsorption–desorption analysis confirmed that the Fe/Mn bimetals were successfully loaded onto the surface of biochar in the form of Fe3O4 and MnFe2O4 mixed crystals and exhibited favorable paramagnetic properties that facilitate magnetic recovery. A key innovation is the utilization of biochar’s inherent phenol/quinone structures as reactive sites and electron transfer mediators, which synergistically interact with the loaded bimetallic oxides to significantly enhance the generation of highly reactive ·OH radicals, thereby boosting catalytic activity. Even after five recycling cycles, the material exhibited minimal changes in degradation efficiency and bimetallic crystal structure, indicating its notable stability and reusability. The photocatalytic degradation experiment conducted in a Fenton-like reaction system demonstrates that, under the conditions of pH 4.0, a H2O2 concentration of 5.16 mmol/L, a catalyst dosage of 0.20 g/L, and an OTC concentration of 100 mg/L, the optimal degradation efficiency of 98.3% can be achieved. Additionally, the pseudo-first-order kinetic rate constant was determined to be 4.88 min−1. Furthermore, this study elucidated the detailed degradation mechanisms, pathways, and the influence of various ions, providing valuable theoretical insights and technical support for the degradation of antibiotics in real wastewater. Full article
(This article belongs to the Special Issue Applications of Magnetic Materials in Water Treatment)
Show Figures

Figure 1

26 pages, 7101 KiB  
Article
Enhancement of Electron Transfer Between Fe/Mn Promotes Efficient Activation of Peroxomonosulfate by FeMn-NBC
by Xiaoni Lin, Qiang Ge, Xianbo Zhou, Yan Wang, Congyun Zhu, Kuanyong Liu and Jinquan Wan
Water 2025, 17(11), 1700; https://doi.org/10.3390/w17111700 - 4 Jun 2025
Cited by 1 | Viewed by 693
Abstract
Bimetallic catalysts can effectively enhance the catalytic degradation efficiency of peroxymonosulfate (PMS), which is usually attributed to the enhancement of electron transfer, but currently, there is no clear explanation of the mechanism of how the electron transfer is enhanced. A nitrogen-doped Fe/Mn composite [...] Read more.
Bimetallic catalysts can effectively enhance the catalytic degradation efficiency of peroxymonosulfate (PMS), which is usually attributed to the enhancement of electron transfer, but currently, there is no clear explanation of the mechanism of how the electron transfer is enhanced. A nitrogen-doped Fe/Mn composite biochar (FeMn-NBC) was co-constructed by hydrothermal synthesis and high-temperature calcination. The FeMn-NBC activated PMS more efficiently than the monometallic one due to the enhanced electron transfer between Fe and Mn. The FeMn-NBC/PMS system activated PMS with Mn as the active center, and the high oxidation state of Mn4+ promoted the acceleration of the PMS adsorption of the generation of Mn2+/Mn3+. This gaining effect accelerated the electron cycling between Fe2+/Fe3+ and Mn2+/Mn3+/Mn4+, which enhanced the PMS catalysis to generate free radicals (•OH, SO4•− and •O2) and non-radicals (1O2) for the efficient degradation of diisobutyl phthalate (DIBP). Benefiting from this gaining effect, the degradation rate of DIBP by the FeMn-NBC/PMS system was increased by 2.43 and 3.38 times compared to Fe-NBC and Mn-NBC. The bimetallic-enhanced electron transfer mechanism proposed in this study facilitated the development of efficient catalysts for more efficient and selective removal of organic pollutants. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

24 pages, 70177 KiB  
Article
Geology, Structure, Geochemistry, and Origin of Iron Oxide Deposits in Dehbid, Southwest Iran
by Abdorrahman Rajabi, Reza Nozaem, Sara Momenipour, Shojaedin Niroomand, Shahrokh Rajabpour, Somaye Rezaei, Pura Alfonso, Carles Canet, Ahmad Kazemi Mehrnia, Pouria Mahmoodi, Amir Mahdavi, Mansoor Kazemirad, Omid Laghari Firouzjaei and Mohammad Amini
Minerals 2025, 15(6), 590; https://doi.org/10.3390/min15060590 - 30 May 2025
Viewed by 914
Abstract
The Dehbid region, located in the southern part of the Sanandaj–Sirjan Zone (SSZ), is a significant iron oxide mining district with over 20 iron oxide deposits (IODs) and reserves of up to 50 million tons of iron oxide ores. The region features a [...] Read more.
The Dehbid region, located in the southern part of the Sanandaj–Sirjan Zone (SSZ), is a significant iron oxide mining district with over 20 iron oxide deposits (IODs) and reserves of up to 50 million tons of iron oxide ores. The region features a NW–SE oriented ductile shear zone, parallel to the Zagros thrust zone, experienced significant deformation. Detailed structural studies indicate that the iron mineralization is primarily stratiform to stratabound and hosted in late Triassic to early Jurassic silicified dolomites and schists. These ore deposits consist of lenticular iron oxide orebodies and exhibit various structures and textures, including banded, laminated, folded, disseminated, and massive forms of magnetite and hematite. The Fe2O3 content in the mineralized layers varies from 30 to 91 wt%, whereas MnO has an average of 3.9 wt%. The trace elements are generally low, except for elevated concentrations of Cu (up to 4350 ppm) and Zn (up to 3270 ppm). Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) analysis of magnetite reveals high concentrations of Mg, Al, Si, Mn, Ti, Cu, and Zn, with significant depletion of elements such as Ga, Ge, As, and Nb. This study refutes the hypothesis of vein-like or hydrothermal genesis, providing evidence for a sedimentary origin based on the trace element geochemistry of magnetite and LA-ICP-MS geochemical data. The Dehbid banded iron ores (BIOs) are thought to have formed under geodynamic conditions similar to those of BIOs in back-arc tectonic settings. The combination of anoxic conditions, submarine hydrothermal iron fluxes, and redox fluctuations is essential for the formation of these deposits, suggesting that similar iron–manganese deposits can form during the Phanerozoic under specific geodynamic and oceanographic conditions, particularly in tectonically active back-arc environments. Full article
(This article belongs to the Special Issue Mineralogy and Geochemistry of Polymetallic Ore Deposits)
Show Figures

Figure 1

16 pages, 3992 KiB  
Article
Mixing Approaches in Enhancing the Capacitive Performance of rGO-Based Hybrid Electrodes
by Svetlana Veleva, Delyana Marinova, Sonya Harizanova, Violeta Koleva, Elefteria Lefterova, Maria Shipochka, Ognian Dimitrov, Antonia Stoyanova and Radostina Stoyanova
Materials 2025, 18(11), 2460; https://doi.org/10.3390/ma18112460 - 24 May 2025
Viewed by 439
Abstract
Combining carbon materials with oxides in a hybrid electrode is an effective way to control supercapacitor performance in terms of balancing energy and power density with cycling stability. However, it is still unclear how the mixing method of each component affects the supercapacitor [...] Read more.
Combining carbon materials with oxides in a hybrid electrode is an effective way to control supercapacitor performance in terms of balancing energy and power density with cycling stability. However, it is still unclear how the mixing method of each component affects the supercapacitor performance. In this study, the influence of mixing reduced graphene oxide (rGO) with ilmenite-type nickel-manganese oxide (NiMnO3) on the capacitive behaviour of the resulting composites is investigated. Two preparation methods are compared: mechanical mixing and ultrasonication. The capacitive characteristics were evaluated in hybrid supercapacitors using 6M KOH electrolyte. The bulk, surface, and morphological changes of the composites after long-term cycling were probed by EIS and ex situ XRD, XPS, and SEM analyses. It is established that the composites obtained by mechanical mixing exhibit better performance due to the stable contact between rGO and NiMnO3 particles, favourable surface reactions with KOH and preserved morphology of rGO. These findings indicate that efficient hybrid electrodes can be achieved without relying on costly synthesis techniques such as hydrothermal or ultrasonic treatments. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

16 pages, 3812 KiB  
Article
Formation of Electrode Materials in the Process of Carbothermic Flux Smelting of Ilmenite Concentrate and Hydrothermal Refining of Titanium Slag
by Kuralai Akhmetova, Sergey Gladyshev, Nessipbay Tussupbayev, Bagdaulet Kenzhaliev and Leila Imangaliyeva
Processes 2025, 13(5), 1554; https://doi.org/10.3390/pr13051554 - 17 May 2025
Viewed by 463
Abstract
The present study demonstrates, for the first time, the fundamental possibility of producing electrode materials for sodium-ion batteries through low-temperature carbothermic smelting of ilmenite concentrate fluxed with calcined soda and diatomite, followed by aqueous refining of titanium slag. The primary phase composition of [...] Read more.
The present study demonstrates, for the first time, the fundamental possibility of producing electrode materials for sodium-ion batteries through low-temperature carbothermic smelting of ilmenite concentrate fluxed with calcined soda and diatomite, followed by aqueous refining of titanium slag. The primary phase composition of the slag includes Na2Ti3O7 (48.2%), Na0.23TiO2 (22.0%), Na2TiSiO5 (11%), and Na0.67Al0.1Mn0.9O2 (8.5%), which, upon hydrolysis, transform into a monophase titanium dioxide with intercalated sodium—Na0.23TiO2. Thermodynamic analysis of the heat effects of chemical reactions among raw materials and resulting products substantiates the role of silicon and sodium oxides, carbon, oxygen, and water in the formation of various electrode materials during carbothermic flux conversion and aqueous refining. Insights into the mechanisms of thermochemical formation and hydrothermal phase transformations offer a scientific basis for the development of intercalation systems from abundant and low-cost natural raw materials, bypassing the need for expensive precursor synthesis. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

14 pages, 9035 KiB  
Article
Efficient Regulation of Oxygen Vacancies in β-MnO2 Nanostructures for High-Loading Zinc-Ion Batteries
by Jian-Chun Wu, Yaoyu Yin, Haitao Zhou, Xicheng Shen, Hongquan Gao, Xiaowei Li, Zhiyong Liu, Yihong Deng and Yanxin Qiao
Metals 2025, 15(5), 526; https://doi.org/10.3390/met15050526 - 7 May 2025
Viewed by 498
Abstract
Manganese-based oxides, particularly β-MnO2, have emerged as promising cathode materials for aqueous zinc-ion batteries (ZIBs) due to their high theoretical capacity, low cost, and intrinsic safety. However, their sluggish reaction kinetics, limited active sites, and poor conductivity often lead to suboptimal [...] Read more.
Manganese-based oxides, particularly β-MnO2, have emerged as promising cathode materials for aqueous zinc-ion batteries (ZIBs) due to their high theoretical capacity, low cost, and intrinsic safety. However, their sluggish reaction kinetics, limited active sites, and poor conductivity often lead to suboptimal electrochemical performance. To address these limitations, we propose a facile ethanol-mediated hydrothermal strategy to engineer rod-like β-MnO2 nanostructures with tailored oxygen vacancies. By precisely adjusting ethanol addition (3–5 mL) during synthesis, oxygen vacancy concentrations were optimized to enhance electronic conductivity and active site exposure. The experimental results demonstrate that β-MnOx-2-5 synthesized with 5 mL of ethanol delivers an exceptional areal capacity of 4.87 mAh cm−2 (348 mAh g−1, 469.8 Wh kg−1) at 200 mA cm−2 under a high mass loading of 14 mg cm−2. Further, a hybrid electrode combining oxygen-deficient β-MnO2-x-3 (air-calcined) and structurally stable β-Mn5O8-y-3 (Ar-calcined) achieves a retained capacity of 3.9 mAh cm−2 with stable cycling performance, achieving an optimal equilibrium between high capacity and long-term operational durability. Systematic characterizations (XPS, ESR, XANES, FT-EXAFS) confirm vacancy-induced electronic structure modulation, accelerating ion diffusion and redox kinetics. This scalable vacancy engineering approach, requiring only ethanol dosage control, presents a viable pathway toward industrial-scale ZIB applications. Full article
(This article belongs to the Section Metallic Functional Materials)
Show Figures

Figure 1

10 pages, 2744 KiB  
Article
Facile Synthesis of Polypyrrole/MnO2/Carbon Cloth Composites for Supercapacitor Electrodes
by Yan Chen, Hanyue He, Min Liu, He Xu, Haibo Zhang, Xinghua Zhu and Dingyu Yang
Nanomaterials 2025, 15(9), 641; https://doi.org/10.3390/nano15090641 - 23 Apr 2025
Viewed by 702
Abstract
In the development of flexible smart electronics, fabricating electrodes with optimized architectures to achieve superior electrochemical performance remains a significant challenge. This study presents a two-step synthesis and characterization of a polypyrrole (PPy)-MnO2/carbon cloth (CC) nanocomposite. The MnO2/CC substrate [...] Read more.
In the development of flexible smart electronics, fabricating electrodes with optimized architectures to achieve superior electrochemical performance remains a significant challenge. This study presents a two-step synthesis and characterization of a polypyrrole (PPy)-MnO2/carbon cloth (CC) nanocomposite. The MnO2/CC substrate was first prepared via the hydrothermal method, followed by uniform PPy coating through vapor-phase polymerization in the presence of an oxidizing agent. Electrochemical measurements revealed substantial enhancement in performance, with the specific capacitance increasing from 123.1 mF/cm2 for the MnO2/CC composite to 324.5 mF/cm2 for the PPy/MnO2/CC composite at a current density of 2.5 mA/cm2. This remarkable improvement can be attributed to the synergistic effects between the conductive PPy polymer and MnO2/CC substrate and the formation of additional ion transport channels facilitated by the PPy coating. This work provides valuable insights for designing high-performance electrode materials and advances the development of composite-based energy storage devices. Full article
Show Figures

Figure 1

24 pages, 5572 KiB  
Review
Research Progress on Microwave Synthesis of 3d Transition Metal (Mn, Fe, Co, and Ni) Oxide Nanomaterials for Supercapacitors
by Chengqi Sun, Maosheng Ge, Shuhuang Tan, Yichen Liu, Haowei Wang, Wenhao Jiang, Shoujun Zhang and Yin Sun
Molecules 2025, 30(8), 1843; https://doi.org/10.3390/molecules30081843 - 19 Apr 2025
Cited by 1 | Viewed by 746
Abstract
3d transition metal oxides composed of Mn, Fe, Co, and Ni have emerged as promising candidates for supercapacitor electrode materials due to their high theoretical specific capacitance, abundant redox-active sites, variable oxidation states, environmental friendliness, and low cost. Various synthesis strategies have been [...] Read more.
3d transition metal oxides composed of Mn, Fe, Co, and Ni have emerged as promising candidates for supercapacitor electrode materials due to their high theoretical specific capacitance, abundant redox-active sites, variable oxidation states, environmental friendliness, and low cost. Various synthesis strategies have been developed to fabricate these nanostructures, including hydrothermal/solvothermal methods, sol–gel processing, and microwave-assisted synthesis. Among them, microwave irradiation technology, with its rapid heating characteristics and unique thermal/non-thermal effects, offers significant advantages in controlling crystallinity and particle size distribution, suppressing particle agglomeration, and enhancing material purity. Furthermore, microwave effects facilitate the self-assembly and morphological evolution of transition metal oxides, promote the formation of crystal defects, and strengthen interfacial interactions. These effects enable precise microstructural tuning, leading to an increased specific surface area and a higher density of active sites, ultimately enhancing specific capacitance, rate capability, and cycling stability. In recent years, microwave-assisted synthesis has made significant progress in constructing 3d transition metal oxides and their composites, particularly in the development of single-metal and binary-metal oxides, as well as their hybrids with carbon-based materials (e.g., graphene and carbon nanotubes) and other metal oxides. This review systematically summarizes the research progress on microwave-assisted techniques for 3d transition metal oxide-based nanomaterials, with a particular focus on the role of microwave effects in morphology control, interfacial optimization, and electrochemical performance enhancement. Additionally, key challenges in current research are critically analyzed, and potential optimization strategies are proposed. This review aims to provide new insights and perspectives for advancing microwave-assisted synthesis of 3d transition metal oxides in energy storage applications. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

12 pages, 8366 KiB  
Article
Active Poly(o-phenylenediamine)-Intercalated Layered δ-MnO2 Cathode for High-Performance Aqueous Zinc-Ion Batteries
by Ziqian Yuan, Bosi Yin, Wenhui Mi, Minghui Liu and Siwen Zhang
Polymers 2025, 17(8), 1003; https://doi.org/10.3390/polym17081003 - 8 Apr 2025
Cited by 2 | Viewed by 605
Abstract
Aqueous zinc-ion batteries (ZIBs) represent an emerging energy storage solution that offers significant advantages in terms of safety, cost-effectiveness, and longevity in cycling. Among the various materials available, manganese-based oxides stand out as the most promising options for cathodes due to their impressive [...] Read more.
Aqueous zinc-ion batteries (ZIBs) represent an emerging energy storage solution that offers significant advantages in terms of safety, cost-effectiveness, and longevity in cycling. Among the various materials available, manganese-based oxides stand out as the most promising options for cathodes due to their impressive theoretical specific capacity, suitable operating voltage, and abundant natural availability. In published reports, pre-embedding is frequently used to modify the layered cathode; however, non-electrochemically active molecular embedding often results in a decrease in battery capacity. In this paper, a hydrothermal method is employed to intercalate poly(o-phenylenediamine) (PoPD) into δ-MnO2 (MO) to produce PoPD-MO cathode materials. Here, PoPD serves a dual role in the cathode: (1) PoPD is inserted into the interlayer of MO, providing support within the intercalation layer, enhancing material stability, increasing ionic storage sites, and creating space for more Zn2+ to be embedded, and (2) inserting PoPD into the interlayer structure of MO effectively expands the space between layers, thus allowing for greater ion storage, which in turn enhances the rate and efficiency of electrochemical reactions. Consequently, PoPD-MO shows remarkable cycling durability and adaptability in ZIBs, achieving a specific capacity of 359 mAh g−1 at a current density of 0.1 A g−1, and even under the strain of a high current density of 3 A g−1, it maintains a respectable capacity of 107 mAh g−1. Based on this, PoPD-MO may emerge as a new cathode material with promising applications in the future. Full article
(This article belongs to the Special Issue Polymeric Conductive Materials for Energy Storage)
Show Figures

Figure 1

13 pages, 3866 KiB  
Article
Effect of Mn/Cu Molar Ratios on CO Oxidation Activity of Mn-Cu Bimetallic Catalysts
by Cong Liang, Yingchun Sun, Peiyuan Li, Ye Jiang, Xin Sun and Zhengda Yang
Catalysts 2025, 15(4), 353; https://doi.org/10.3390/catal15040353 - 4 Apr 2025
Cited by 1 | Viewed by 582
Abstract
The steel manufacturing industry is a major source of global air pollution, with sintering processes contributing over 70% of emissions, primarily carbon monoxide (CO), a significant uncontrolled pollutant. This study explores Mn-Cu bimetallic catalysts as a cost-effective and environmentally friendly alternative to noble [...] Read more.
The steel manufacturing industry is a major source of global air pollution, with sintering processes contributing over 70% of emissions, primarily carbon monoxide (CO), a significant uncontrolled pollutant. This study explores Mn-Cu bimetallic catalysts as a cost-effective and environmentally friendly alternative to noble metal-based systems, addressing the urgent need for efficient CO oxidation catalysts. Mn-Cu catalysts with different Mn/Cu molar ratios were synthesized via hydrothermal methods and systematically characterized using XRD, XPS, BET, H2-TPR, etc., to assess their physicochemical properties and catalytic performance. The Mn4Cu1 catalyst demonstrated the highest CO oxidation activity, achieving complete conversion at 175 °C. This performance is attributed to its optimal Mn/Cu molar ratio, high specific surface area, abundant oxygen vacancies, and superior redox properties. The catalyst’s enhanced performance is further supported by its low reduction temperature and high Mn3+ and Cu+ content, which promote efficient electron transfer and oxygen activation. These findings highlight the crucial role of Mn/Cu molar ratios in optimizing catalytic performance and offer valuable insights for designing high-efficiency, low-cost catalysts to reduce CO emissions in industrial applications. Full article
(This article belongs to the Special Issue Advanced Catalysts in Environmental Purification)
Show Figures

Graphical abstract

24 pages, 15632 KiB  
Article
Mineral Chemistry and Iron Isotope Characteristics of Magnetites in Pertek Fe-Skarn Deposit (Türkiye)
by Hatice Kara, Cihan Yalçın, Mehmet Ali Ertürk and Leyla Kalender
Minerals 2025, 15(4), 369; https://doi.org/10.3390/min15040369 - 1 Apr 2025
Cited by 2 | Viewed by 548
Abstract
This study investigates the mineral chemistry and iron isotope composition of the Pertek Fe-skarn deposit in the Eastern Taurides, Turkey, to elucidate skarn formation and ore genesis through chemical and isotopic parameters. The deposit consists of substantial and dispersed magnetite ores formed by [...] Read more.
This study investigates the mineral chemistry and iron isotope composition of the Pertek Fe-skarn deposit in the Eastern Taurides, Turkey, to elucidate skarn formation and ore genesis through chemical and isotopic parameters. The deposit consists of substantial and dispersed magnetite ores formed by the intrusion of a dioritic suite into marbles. Mineral assemblages, including hematite, goethite, andradite garnet, hedenbergite pyroxene, calcite, and quartz, exhibit compositional variations at different depths within the ore body. Magnetite is commonly associated with hematite, goethite, garnet, pyroxene, calcite, and quartz. Extensive LA–ICP–MS analysis of magnetite chemistry reveals elevated trace element concentrations of titanium (Ti), aluminum (Al), vanadium (V), and magnesium (Mg), distinguishing Pertek magnetite from low-temperature hydrothermal deposits. The enrichment of Ti (>300 ppm) and V (>200 ppm), along with the presence of Al and Mg, suggests formation from high-temperature hydrothermal fluids exceeding 300 °C. Discriminant diagrams, such as Al+Mn versus Ti+V, classify Pertek magnetite within the skarn deposit domain, affirming its medium- to high-temperature hydrothermal origin (200–500 °C), characteristic of skarn-type deposits. Magnetite thermometry calculations yield an average formation temperature of 414.53 °C. Geochemical classification diagrams, including Ni/(Cr+Mn) versus Ti+V and TiO2-Al2O3-MgO+MnO, further support the skarn-type genesis of the deposit, distinguishing Pertek magnetite from other iron oxide deposits. The Fe-skarn ore samples display low total REE concentrations, variable Eu anomalies, enrichment in LREEs, and depletion in HREEs, consistent with fluid–rock interactions in a magmatic–hydrothermal system. The δ56Fe values of magnetite range from 0.272‰ to 0.361‰, while the calculated δ56Fe_aq values (0.479‰ to 0.568‰) suggest a magmatic–hydrothermal origin. The δ57Fe values (0.419‰ to 0.530‰) and the calculated 103lnβ value of 0.006397 indicate re-equilibration of the magmatic–hydrothermal fluid during ore formation. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

15 pages, 4886 KiB  
Article
Manganese Phthalocyanine-Based Magnetic Core–Shell Composites with Peroxidase Mimetic Activity for Colorimetric Detection of Ascorbic Acid and Glutathione
by Junchao Qi, Long Tian, Yudong Pang and Fengshou Wu
Molecules 2025, 30(7), 1484; https://doi.org/10.3390/molecules30071484 - 27 Mar 2025
Cited by 1 | Viewed by 540
Abstract
Ascorbic acid (AA) and glutathione (GSH) play a pivotal role in health assessment, drug development, and quality control of nutritional supplements. The development of a new and efficient method for their detection is highly desired. In this work, we fabricated magnetic core–shell nanocomposites [...] Read more.
Ascorbic acid (AA) and glutathione (GSH) play a pivotal role in health assessment, drug development, and quality control of nutritional supplements. The development of a new and efficient method for their detection is highly desired. In this work, we fabricated magnetic core–shell nanocomposites (Fe3O4@MnPc-NDs) by a one-pot hydrothermal method with citric acid and manganese tetraamino phthalocyanine (MnTAPc) as precursors. Fe3O4@MnPc-NDs exhibited enhanced peroxidase activity compared to bare Fe3O4 nanoparticles, enabling catalytic oxidation of colorless 3,3′,5,5′-tetramethylbenzidine (TMB) to blue ox-TMB in the presence of H2O2. Leveraging the antioxidant properties of AA/GSH to reduce ox-TMB, a colorimetric assay achieved a low detection limit of 0.161 μM for AA and 0.188 μM for GSH with broad linear ranges. Moreover, this method displayed high specificity against 12 interfering substances and excellent recyclability (>90% activity after five cycles). Finally, the Fe3O4@MnPc-NDs could act as an efficient colorimetric sensor for accurately detecting AA in genuine VC tablets and GSH in whitening serums with high accuracy. Therefore, Fe3O4@MnPc-NDs exhibited great potential in bioassay applications, benefiting from their outstanding sensitivity and high recycling rate. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Applied Chemistry)
Show Figures

Graphical abstract

Back to TopTop