Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,713)

Search Parameters:
Keywords = hydrological region

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 15953 KiB  
Article
Land Use Change and Its Climatic and Vegetation Impacts in the Brazilian Amazon
by Sérvio Túlio Pereira Justino, Richardson Barbosa Gomes da Silva, Rafael Barroca Silva and Danilo Simões
Sustainability 2025, 17(15), 7099; https://doi.org/10.3390/su17157099 - 5 Aug 2025
Abstract
The Brazilian Amazon is recognized worldwide for its biodiversity and it plays a key role in maintaining the regional and global climate balance. However, it has recently been greatly impacted by changes in land use, such as replacing native forests with agricultural activities. [...] Read more.
The Brazilian Amazon is recognized worldwide for its biodiversity and it plays a key role in maintaining the regional and global climate balance. However, it has recently been greatly impacted by changes in land use, such as replacing native forests with agricultural activities. These changes have resulted in serious environmental consequences, including significant alterations to climate and hydrological cycles. This study aims to analyze changes in land use and land covered in the Brazilian Amazon between 2001 and 2023, as well as the resulting effects on precipitation variability, land surface temperature, and evapotranspiration. Data obtained via remote sensing and processed on the Google Earth Engine platform were used, including MODIS, CHIRPS, Hansen products. The results revealed significant changes: forest formation decreased by 8.55%, while agricultural land increased by 575%. Between 2016 and 2023, accumulated deforestation reached 242,689 km2. Precipitation decreased, reaching minimums of 772.7 mm in 2015 and 726.4 mm in 2020. Evapotranspiration was concentrated between 941 and 1360 mm in 2020, and surface temperatures ranged between 30 °C and 34 °C in 2015, 2020, and 2023. We conclude that anthropogenic transformations in the Brazilian Amazon directly impact vegetation cover and the regional climate. Therefore, conservation and monitoring measures are essential for mitigating these effects. Full article
(This article belongs to the Section Sustainable Forestry)
Show Figures

Figure 1

18 pages, 3354 KiB  
Article
Hydrological Modeling of the Chikugo River Basin Using SWAT: Insights into Water Balance and Seasonal Variability
by Francis Jhun Macalam, Kunyang Wang, Shin-ichi Onodera, Mitsuyo Saito, Yuko Nagano, Masatoshi Yamazaki and Yu War Nang
Sustainability 2025, 17(15), 7027; https://doi.org/10.3390/su17157027 - 2 Aug 2025
Viewed by 212
Abstract
Integrated hydrological modeling plays a crucial role in advancing sustainable water resource management, particularly in regions facing seasonal and extreme precipitation events. However, comprehensive studies that assess hydrological variability in temperate river basins remain limited. This study addresses this gap by evaluating the [...] Read more.
Integrated hydrological modeling plays a crucial role in advancing sustainable water resource management, particularly in regions facing seasonal and extreme precipitation events. However, comprehensive studies that assess hydrological variability in temperate river basins remain limited. This study addresses this gap by evaluating the performance of the Soil and Water Assessment Tool (SWAT) in simulating streamflow, water balance, and seasonal hydrological dynamics in the Chikugo River Basin, Kyushu Island, Japan. The basin, originating from Mount Aso and draining into the Ariake Sea, is subject to frequent typhoons and intense rainfall, making it a critical case for sustainable water governance. Using the Sequential Uncertainty Fitting Version 2 (SUFI-2) approach, we calibrated the SWAT model over the period 2007–2021. Water balance analysis revealed that baseflow plays dominant roles in basin hydrology which is essential for agricultural and domestic water needs by providing a stable groundwater contribution despite increasing precipitation and varying water demand. These findings contribute to a deeper understanding of hydrological behavior in temperate catchments and offer a scientific foundation for sustainable water allocation, planning, and climate resilience strategies. Full article
Show Figures

Figure 1

33 pages, 2962 KiB  
Review
Evolution of Data-Driven Flood Forecasting: Trends, Technologies, and Gaps—A Systematic Mapping Study
by Banujan Kuhaneswaran, Golam Sorwar, Ali Reza Alaei and Feifei Tong
Water 2025, 17(15), 2281; https://doi.org/10.3390/w17152281 - 31 Jul 2025
Viewed by 366
Abstract
This paper presents a Systematic Mapping Study (SMS) on data-driven approaches in flood forecasting from 2019 to 2024, a period marked by transformative developments in Deep Learning (DL) technologies. Analysing 363 selected studies, this paper provides an overview of the technological evolution in [...] Read more.
This paper presents a Systematic Mapping Study (SMS) on data-driven approaches in flood forecasting from 2019 to 2024, a period marked by transformative developments in Deep Learning (DL) technologies. Analysing 363 selected studies, this paper provides an overview of the technological evolution in this field, methodological approaches, evaluation practices and geographical distribution of studies. The study revealed that meteorological and hydrological factors constitute approximately 76% of input variables, with rainfall/precipitation and water level measurements forming the core predictive basis. Long Short-Term Memory (LSTM) networks emerged as the dominant algorithm (21% of implementations), whilst hybrid and ensemble approaches showed the most dramatic growth (from 2% in 2019 to 10% in 2024). The study also revealed a threefold increase in publications during this period, with significant geographical concentration in East and Southeast Asia (56% of studies), particularly China (36%). Several research gaps were identified, including limited exploration of graph-based approaches for modelling spatial relationships, underutilisation of transfer learning for data-scarce regions, and insufficient uncertainty quantification. This SMS provides researchers and practitioners with actionable insights into current trends, methodological practices, and future directions in data-driven flood forecasting, thereby advancing this critical field for disaster management. Full article
Show Figures

Figure 1

26 pages, 3711 KiB  
Article
Probability Characteristics of High and Low Flows in Slovakia: A Comprehensive Hydrological Assessment
by Pavla Pekárová, Veronika Bačová Mitková and Dana Halmová
Hydrology 2025, 12(8), 199; https://doi.org/10.3390/hydrology12080199 - 31 Jul 2025
Viewed by 218
Abstract
Frequency analysis is essential for designing hydraulic structures and managing water resources, as it helps assess hydrological extremes. However, changes in river basins can impact their accuracy, complicating the link between discharge and return periods. This study aims to comprehensively assess the probability [...] Read more.
Frequency analysis is essential for designing hydraulic structures and managing water resources, as it helps assess hydrological extremes. However, changes in river basins can impact their accuracy, complicating the link between discharge and return periods. This study aims to comprehensively assess the probability characteristics of long-term M-day maximum/minimum discharges in the Carpathian region of Slovakia. We analyze the long-term data from 26 gauging stations covering 90 years of observation. Slovak rivers show considerable intra-annual variability, especially between the summer–autumn (SA) and winter–spring (WS) seasons. To allow consistent comparisons, we apply a uniform methodology to estimate T-year daily maximum and minimum specific discharges over durations of 1 and 7 days for both seasons. Our findings indicate that 1-day maximum specific discharges are generally higher during the SA season compared to the WS season. The 7-day minimum specific discharges are lower during the WS season compared to the SA season. Slovakia’s diverse orographic and climatic conditions cause significant spatial variability in extreme discharges. However, the estimated T-year 7-day minimum and 1-day maximum specific discharges, based on the mean specific discharge and the altitude of the water gauge, exhibit certain nonlinear dependences. These relationships could support the indirect estimation of T-year M-day discharges in regions with similar runoff characteristics. Full article
(This article belongs to the Section Water Resources and Risk Management)
Show Figures

Figure 1

32 pages, 17155 KiB  
Article
Machine Learning Ensemble Methods for Co-Seismic Landslide Susceptibility: Insights from the 2015 Nepal Earthquake
by Tulasi Ram Bhattarai and Netra Prakash Bhandary
Appl. Sci. 2025, 15(15), 8477; https://doi.org/10.3390/app15158477 (registering DOI) - 30 Jul 2025
Viewed by 206
Abstract
The Mw 7.8 Gorkha Earthquake of 25 April 2015 triggered over 25,000 landslides across central Nepal, with 4775 events concentrated in Gorkha District alone. Despite substantial advances in landslide susceptibility mapping, existing studies often overlook the compound role of post-seismic rainfall and lack [...] Read more.
The Mw 7.8 Gorkha Earthquake of 25 April 2015 triggered over 25,000 landslides across central Nepal, with 4775 events concentrated in Gorkha District alone. Despite substantial advances in landslide susceptibility mapping, existing studies often overlook the compound role of post-seismic rainfall and lack robust spatial validation. To address this gap, we validated an ensemble machine learning framework for co-seismic landslide susceptibility modeling by integrating seismic, geomorphological, hydrological, and anthropogenic variables, including cumulative post-seismic rainfall. Using a balanced dataset of 4775 landslide and non-landslide instances, we evaluated the performance of Logistic Regression (LR), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost) models through spatial cross-validation, SHapley Additive exPlanations (SHAP) explainability, and ablation analysis. The RF model outperformed all others, achieving an accuracy of 87.9% and a Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) value of 0.94, while XGBoost closely followed (AUC = 0.93). Ensemble models collectively classified over 95% of observed landslides into High and Very High susceptibility zones, demonstrating strong spatial reliability. SHAP analysis identified elevation, proximity to fault, peak ground acceleration (PGA), slope, and rainfall as dominant predictors. Notably, the inclusion of post-seismic rainfall substantially improved recall and F1 scores in ablation experiments. Spatial cross-validation revealed the superior generalizability of ensemble models under heterogeneous terrain conditions. The findings underscore the value of integrating post-seismic hydrometeorological factors and spatial validation into susceptibility assessments. We recommend adopting ensemble models, particularly RF, for operational hazard mapping in earthquake-prone mountainous regions. Future research should explore the integration of dynamic rainfall thresholds and physics-informed frameworks to enhance early warning systems and climate resilience. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

22 pages, 22134 KiB  
Article
Adaptive Pluvial Flood Disaster Management in Taiwan: Infrastructure and IoT Technologies
by Sheng-Hsueh Yang, Sheau-Ling Hsieh, Xi-Jun Wang, Deng-Lin Chang, Shao-Tang Wei, Der-Ren Song, Jyh-Hour Pan and Keh-Chia Yeh
Water 2025, 17(15), 2269; https://doi.org/10.3390/w17152269 - 30 Jul 2025
Viewed by 385
Abstract
In Taiwan, hydro-meteorological data are fragmented across multiple agencies, limiting the effectiveness of coordinated flood response. To address this challenge and the increasing uncertainty associated with extreme rainfall, a real-time disaster prevention platform has been developed. This system integrates multi-source data and geospatial [...] Read more.
In Taiwan, hydro-meteorological data are fragmented across multiple agencies, limiting the effectiveness of coordinated flood response. To address this challenge and the increasing uncertainty associated with extreme rainfall, a real-time disaster prevention platform has been developed. This system integrates multi-source data and geospatial information through a cluster-based architecture to enhance pluvial flood management. Built on a Service-Oriented Architecture (SOA) and incorporating Internet of Things (IoT) technologies, AI-based convolutional neural networks (CNNs), and 3D drone mapping, the platform enables automated alerts by linking sensor thresholds with real-time environmental data, facilitating synchronized operational responses. Deployed in New Taipei City over the past three years, the system has demonstrably reduced flood risk during severe rainfall events. Region-specific action thresholds and adaptive strategies are continually refined through feedback mechanisms, while integrated spatial and hydrological trend analyses extend the lead time available for emergency response. Full article
Show Figures

Figure 1

15 pages, 2006 KiB  
Article
Hydrological Responses to Territorial Spatial Change in the Xitiaoxi River Basin: A Simulation Study Using the SWAT Model Driven by China Meteorological Assimilation Driving Datasets
by Dongyan Kong, Huiguang Chen and Kongsen Wu
Water 2025, 17(15), 2267; https://doi.org/10.3390/w17152267 - 30 Jul 2025
Viewed by 244
Abstract
The use of the Soil and Water Assessment Tool (SWAT) model driven by China Meteorological Assimilation Driving Datasets (CMADS) for runoff simulation research is of great significance for regional flood prevention and control. Therefore, from the perspective of production-living-ecological space, this article combined [...] Read more.
The use of the Soil and Water Assessment Tool (SWAT) model driven by China Meteorological Assimilation Driving Datasets (CMADS) for runoff simulation research is of great significance for regional flood prevention and control. Therefore, from the perspective of production-living-ecological space, this article combined multi-source data such as DEM, soil texture and land use type, in order to construct scenarios of territorial spatial change (TSC) across distinct periods. Based on the CMADS-L40 data and the SWAT model, it simulated the runoff dynamics in the Xitiaoxi River Basin, and analyzed the hydrological response characteristics under different TSCs. The results showed that The SWAT model, driven by CMADS-L40 data, demonstrated robust performance in monthly runoff simulation. The coefficient of determination (R2), Nash–Sutcliffe efficiency coefficient (NSE), and the absolute value of percentage bias (|PBIAS|) during the calibration and validation period all met the accuracy requirements of the model, which validated the applicability of CMADS-L40 data and the SWAT model for runoff simulation at the watershed scale. Changes in territorial spatial patterns are closely correlated with runoff variation. Changes in agricultural production space and forest ecological space show statistically significant negative correlation with runoff change, while industrial production space change exhibits a significant positive correlation with runoff change. The expansion of production space, particularly industrial production space, leads to increased runoff, whereas the enlargement of agricultural production space and forest ecological space can reduce runoff. This article contributes to highlighting the role of land use policy in hydrological regulation, providing a scientific basis for optimizing territorial spatial planning to mitigate flood risks and protect water resources. Full article
(This article belongs to the Topic Natural Hazards and Disaster Risks Reduction, 2nd Edition)
Show Figures

Figure 1

24 pages, 3832 KiB  
Article
Temperature and Precipitation Extremes Under SSP Emission Scenarios with GISS-E2.1 Model
by Larissa S. Nazarenko, Nickolai L. Tausnev and Maxwell T. Elling
Atmosphere 2025, 16(8), 920; https://doi.org/10.3390/atmos16080920 - 30 Jul 2025
Viewed by 234
Abstract
Atmospheric warming results in increase in temperatures for the mean, the coldest, and the hottest day of the year, season, or month. Global warming leads to a large increase in the atmospheric water vapor content and to changes in the hydrological cycle, which [...] Read more.
Atmospheric warming results in increase in temperatures for the mean, the coldest, and the hottest day of the year, season, or month. Global warming leads to a large increase in the atmospheric water vapor content and to changes in the hydrological cycle, which include an intensification of precipitation extremes. Using the GISS-E2.1 climate model, we present the future changes in the coldest and hottest daily temperatures as well as in extreme precipitation indices (under four main Shared Socioeconomic Pathways (SSPs)). The increase in the wet-day precipitation ranges between 6% and 15% per 1 °C global surface temperature warming. Scaling of the 95th percentile versus the total precipitation showed that the sensitivity for the extreme precipitation to the warming is about 10 times stronger than that for the mean total precipitation. For six precipitation extreme indices (Total Precipitation, R95p, RX5day, R10mm, SDII, and CDD), the histograms of probability density functions become flatter, with reduced peaks and increased spread for the global mean compared to the historical period of 1850–2014. The mean values shift to the right end (toward larger precipitation and intensity). The higher the GHG emission of the SSP scenario, the more significant the increase in the index change. We found an intensification of precipitation over the globe but large uncertainties remained regionally and at different scales, especially for extremes. Over land, there is a strong increase in precipitation for the wettest day in all seasons over the mid and high latitudes of the Northern Hemisphere. There is an enlargement of the drying patterns in the subtropics including over large regions around Mediterranean, southern Africa, and western Eurasia. For the continental averages, the reduction in total precipitation was found for South America, Europe, Africa, and Australia, and there is an increase in total precipitation over North America, Asia, and the continental Russian Arctic. Over the continental Russian Arctic, there is an increase in all precipitation extremes and a consistent decrease in CDD for all SSP scenarios, with the maximum increase of more than 90% for R95p and R10 mm observed under SSP5–8.5. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

25 pages, 10240 KiB  
Article
Present and Future Energy Potential of Run-of-River Hydropower in Mainland Southeast Asia: Balancing Climate Change and Environmental Sustainability
by Saman Maroufpoor and Xiaosheng Qin
Water 2025, 17(15), 2256; https://doi.org/10.3390/w17152256 - 29 Jul 2025
Viewed by 317
Abstract
Southeast Asia relies heavily on hydropower from dams and reservoir projects, but this dependence comes at the cost of ecological damage and increased vulnerability to extreme events. This dilemma necessitates a choice between continued dam development and adopting alternative renewable options. Concerns over [...] Read more.
Southeast Asia relies heavily on hydropower from dams and reservoir projects, but this dependence comes at the cost of ecological damage and increased vulnerability to extreme events. This dilemma necessitates a choice between continued dam development and adopting alternative renewable options. Concerns over these environmental impacts have already led to halts in dam construction across the region. This study assesses the potential of run-of-river hydropower plants (RHPs) across 199 hydrometric stations in Mainland Southeast Asia (MSEA). The assessment utilizes power duration curves for the historical period and projections from the HBV hydrological model, which is driven by an ensemble of 31 climate models for future scenarios. Energy production was analyzed at four levels (minimum, maximum, balanced, and optimal) for both historical and future periods under varying Shared Socioeconomic Pathways (SSPs). To promote sustainable development, environmental flow constraints and carbon dioxide (CO2) emissions were evaluated for both historical and projected periods. The results indicate that the aggregate energy production potential during the historical period ranges from 111.15 to 229.62 MW (Malaysia), 582.78 to 3615.36 MW (Myanmar), 555.47 to 3142.46 MW (Thailand), 1067.05 to 6401.25 MW (Laos), 28.07 to 189.77 MW (Vietnam), and 566.13 to 2803.75 MW (Cambodia). The impact of climate change on power production varies significantly across countries, depending on the level and scenarios. At the optimal level, an average production change of −9.2–5.9% is projected for the near future, increasing to 15.3–19% in the far future. Additionally, RHP development in MSEA is estimated to avoid 32.5 Mt of CO2 emissions at the optimal level. The analysis further shows avoidance change of 8.3–25.3% and −8.6–25.3% under SSP245 and SSP585, respectively. Full article
Show Figures

Graphical abstract

47 pages, 5162 KiB  
Review
Drought Analysis Methods: A Multidisciplinary Review with Insights on Key Decision-Making Factors in Method Selection
by Abdul Baqi Ahady, Elena-Maria Klopries, Holger Schüttrumpf and Stefanie Wolf
Water 2025, 17(15), 2248; https://doi.org/10.3390/w17152248 - 28 Jul 2025
Viewed by 557
Abstract
Drought is one of the most complex natural hazards, characterized by its slow onset, persistent nature, diverse sectoral impacts (e.g., agriculture, water resources, ecosystems), and dependence on meteorological, hydrological, and socioeconomic factors. Over the years, significant scientific effort has been devoted to developing [...] Read more.
Drought is one of the most complex natural hazards, characterized by its slow onset, persistent nature, diverse sectoral impacts (e.g., agriculture, water resources, ecosystems), and dependence on meteorological, hydrological, and socioeconomic factors. Over the years, significant scientific effort has been devoted to developing methodologies that address its multifaceted nature, reflecting the interdisciplinary challenges of drought analysis. However, previous reviews have typically focused on individual methods, while this study presents a unified, multidisciplinary framework that integrates multiple drought analysis methods and links them to key factors guiding method selection. To address this gap, five widely used methods—index-based, remote sensing, threshold-level methods (TLM), impact-based methods, and the storyline approach—are critically evaluated from a multidisciplinary perspective. In addition, the study examines spatial and temporal trends in scientific publications, illustrating how the application of these methods has evolved over time and across regions. The primary objective of this review is twofold: (1) to provide a holistic, state-of-the-art synthesis of these methods, their applications, and their limitations; and (2) to evaluate and prioritize the critical decision-making factors, including drought type, data type/availability, study scale, and management objectives that influence method selection. By bridging this gap, the paper offers a conceptual decision-support framework for selecting context-appropriate drought analysis methods. However, challenges remain, including the vast diversity of methods beyond the scope of this review and the limited consideration of less influential factors such as user expertise, computational resources, and policy context. The paper concludes with insights and recommendations for optimizing method selection under varying circumstances, aiming to support both drought research and effective policy implementation. Full article
(This article belongs to the Section Hydrology)
Show Figures

Graphical abstract

27 pages, 6584 KiB  
Article
Evaluating Geostatistical and Statistical Merging Methods for Radar–Gauge Rainfall Integration: A Multi-Method Comparative Study
by Xuan-Hien Le, Naoki Koyama, Kei Kikuchi, Yoshihisa Yamanouchi, Akiyoshi Fukaya and Tadashi Yamada
Remote Sens. 2025, 17(15), 2622; https://doi.org/10.3390/rs17152622 - 28 Jul 2025
Viewed by 315
Abstract
Accurate and spatially consistent rainfall estimation is essential for hydrological modeling and flood risk mitigation, especially in mountainous tropical regions with sparse observational networks and highly heterogeneous rainfall. This study presents a comparative analysis of six radar–gauge merging methods, including three statistical approaches—Quantile [...] Read more.
Accurate and spatially consistent rainfall estimation is essential for hydrological modeling and flood risk mitigation, especially in mountainous tropical regions with sparse observational networks and highly heterogeneous rainfall. This study presents a comparative analysis of six radar–gauge merging methods, including three statistical approaches—Quantile Adaptive Gaussian (QAG), Empirical Quantile Mapping (EQM), and radial basis function (RBF)—and three geostatistical approaches—external drift kriging (EDK), Bayesian Kriging (BAK), and Residual Kriging (REK). The evaluation was conducted over the Huong River Basin in Central Vietnam, a region characterized by steep terrain, monsoonal climate, and frequent hydrometeorological extremes. Two observational scenarios were established: Scenario S1 utilized 13 gauges for merging and 7 for independent validation, while Scenario S2 employed all 20 stations. Hourly radar and gauge data from peak rainy months were used for the evaluation. Each method was assessed using continuous metrics (RMSE, MAE, CC, NSE, and KGE), categorical metrics (POD and CSI), and spatial consistency indicators. Results indicate that all merging methods significantly improved the accuracy of rainfall estimates compared to raw radar data. Among them, RBF consistently achieved the highest accuracy, with the lowest RMSE (1.24 mm/h), highest NSE (0.954), and strongest spatial correlation (CC = 0.978) in Scenario S2. RBF also maintained high classification skills across all rainfall categories, including very heavy rain. EDK and BAK performed better with denser gauge input but required recalibration of variogram parameters. EQM and REK yielded moderate performance and had limitations near basin boundaries where gauge coverage was sparse. The results highlight trade-offs between method complexity, spatial accuracy, and robustness. While complex methods like EDK and BAK offer detailed spatial outputs, they require more calibration. Simpler methods are easier to apply across different conditions. RBF emerged as the most practical and transferable option, offering strong generalization, minimal calibration needs, and computational efficiency. These findings provide useful guidance for integrating radar and gauge data in flood-prone, data-scarce regions. Full article
Show Figures

Figure 1

20 pages, 4109 KiB  
Review
Hydrology and Climate Change in Africa: Contemporary Challenges, and Future Resilience Pathways
by Oluwafemi E. Adeyeri
Water 2025, 17(15), 2247; https://doi.org/10.3390/w17152247 - 28 Jul 2025
Viewed by 293
Abstract
African hydrological systems are incredibly complex and highly sensitive to climate variability. This review synthesizes observational data, remote sensing, and climate modeling to understand the interactions between fluvial processes, water cycle dynamics, and anthropogenic pressures. Currently, these systems are experiencing accelerating warming (+0.3 [...] Read more.
African hydrological systems are incredibly complex and highly sensitive to climate variability. This review synthesizes observational data, remote sensing, and climate modeling to understand the interactions between fluvial processes, water cycle dynamics, and anthropogenic pressures. Currently, these systems are experiencing accelerating warming (+0.3 °C/decade), leading to more intense hydrological extremes and regionally varied responses. For example, East Africa has shown reversed temperature–moisture correlations since the Holocene onset, while West African rivers demonstrate nonlinear runoff sensitivity (a threefold reduction per unit decline in rainfall). Land-use and land-cover changes (LULCC) are as impactful as climate change, with analysis from 1959–2014 revealing extensive conversion of primary non-forest land and a more than sixfold increase in the intensity of pastureland expansion by the early 21st century. Future projections, exemplified by studies in basins like Ethiopia’s Gilgel Gibe and Ghana’s Vea, indicate escalating aridity with significant reductions in surface runoff and groundwater recharge, increasing aquifer stress. These findings underscore the need for integrated adaptation strategies that leverage remote sensing, nature-based solutions, and transboundary governance to build resilient water futures across Africa’s diverse basins. Full article
Show Figures

Figure 1

27 pages, 4973 KiB  
Article
LSTM-Based River Discharge Forecasting Using Spatially Gridded Input Data
by Kamilla Rakhymbek, Balgaisha Mukanova, Andrey Bondarovich, Dmitry Chernykh, Almas Alzhanov, Dauren Nurekenov, Anatoliy Pavlenko and Aliya Nugumanova
Data 2025, 10(8), 122; https://doi.org/10.3390/data10080122 - 27 Jul 2025
Viewed by 512
Abstract
Accurate river discharge forecasting remains a critical challenge in hydrology, particularly in data-scarce mountainous regions where in situ observations are limited. This study investigated the potential of long short-term memory (LSTM) networks to improve discharge prediction by leveraging spatially distributed reanalysis data. Using [...] Read more.
Accurate river discharge forecasting remains a critical challenge in hydrology, particularly in data-scarce mountainous regions where in situ observations are limited. This study investigated the potential of long short-term memory (LSTM) networks to improve discharge prediction by leveraging spatially distributed reanalysis data. Using the ERA5-Land dataset, we developed an LSTM model that integrates grid-based meteorological inputs and assesses their relative importance. We conducted experiments on two snow-dominated basins with contrasting physiographic characteristics, the Uba River basin in Kazakhstan and the Flathead River basin in the USA, to answer three research questions: (1) whether full-grid input outperforms reduced configurations and models trained on Caravan, (2) the impact of spatial resolution on accuracy and efficiency, and (3) the effect of partial spatial coverage on prediction reliability. Specifically, we compared the full-grid LSTM with a single-cell LSTM, a basin-average LSTM, a Caravan-trained LSTM, and coarser cell aggregations. The results demonstrate that the full-grid LSTM consistently yields the highest forecasting performance, achieving a median Nash–Sutcliffe efficiency of 0.905 for Uba and 0.93 for Middle Fork Flathead, while using coarser grids and random subsets reduces performance. Our findings highlight the critical importance of spatial input richness and provide a reproducible framework for grid selection in flood-prone basins lacking dense observation networks. Full article
(This article belongs to the Special Issue New Progress in Big Earth Data)
Show Figures

Figure 1

22 pages, 3231 KiB  
Article
Evapotranspiration in a Small Well-Vegetated Basin in Southwestern China
by Zitong Zhou, Ying Li, Lingjun Liang, Chunlin Li, Yuanmei Jiao and Qian Ma
Sustainability 2025, 17(15), 6816; https://doi.org/10.3390/su17156816 - 27 Jul 2025
Viewed by 295
Abstract
Evapotranspiration (ET) crucially regulates water storage dynamics and is an essential component of the terrestrial water cycle. Understanding ET dynamics is fundamental for sustainable water resource management, particularly in regions facing increasing drought risks under climate change. In regions like southwestern China, where [...] Read more.
Evapotranspiration (ET) crucially regulates water storage dynamics and is an essential component of the terrestrial water cycle. Understanding ET dynamics is fundamental for sustainable water resource management, particularly in regions facing increasing drought risks under climate change. In regions like southwestern China, where extreme drought events are prevalent due to complex terrain and climate warming, ET becomes a key factor in understanding water availability and drought dynamics. Using the SWAT model, this study investigates ET dynamics and influencing factors in the Jizi Basin, Yunnan Province, a small basin with over 71% forest coverage. The model calibration and validation results demonstrated a high degree of consistency with observed discharge data and ERA5, confirming its reliability. The results show that the annual average ET in the Jizi Basin is 573.96 mm, with significant seasonal variations. ET in summer typically ranges from 70 to 100 mm/month, while in winter, it drops to around 20 mm/month. Spring ET exhibits the highest variability, coinciding with the occurrence of extreme hydrological events such as droughts. The monthly anomalies of ET effectively reproduce the spring and early summer 2019 drought event. Notably, ET variation exhibits significant uncertainty under scenarios of +1 °C temperature and −20% precipitation. Furthermore, although land use changes had relatively small effects on overall ET, they played crucial roles in promoting groundwater recharge through enhanced percolation, especially forest cover. The study highlights that, in addition to climate and land use, soil moisture and groundwater conditions are vital in modulating ET and drought occurrence. The findings offer insights into the hydrological processes of small forested basins in southwestern China and provide important support for sustainable water resource management and effective climate adaptation strategies, particularly in the context of increasing drought vulnerability. Full article
Show Figures

Figure 1

15 pages, 68949 KiB  
Article
Hydraulic Modeling of Extreme Flow Events in a Boreal Regulated River to Assess Impact on Grayling Habitat
by M. Lovisa Sjöstedt, J. Gunnar I. Hellström, Anders G. Andersson and Jani Ahonen
Water 2025, 17(15), 2230; https://doi.org/10.3390/w17152230 - 26 Jul 2025
Viewed by 297
Abstract
Climate change is projected to significantly alter hydrological conditions across the Northern Hemisphere, with increased precipitation variability, more intense rainfall events, and earlier, rain-driven spring floods in regions like northern Sweden. These changes will affect both natural ecosystems and hydropower-regulated rivers, particularly during [...] Read more.
Climate change is projected to significantly alter hydrological conditions across the Northern Hemisphere, with increased precipitation variability, more intense rainfall events, and earlier, rain-driven spring floods in regions like northern Sweden. These changes will affect both natural ecosystems and hydropower-regulated rivers, particularly during ecologically sensitive periods such as the grayling spawning season in late spring. This study examines the impact of extreme spring flow conditions on grayling spawning habitats by analyzing historical runoff data and simulating high-flow events using a 2D hydraulic model in Delft3D FM. Results show that previously suitable spawning areas became too deep or experienced flow velocities beyond ecological thresholds, rendering them unsuitable. These hydrodynamic shifts could have cascading effects on aquatic vegetation and food availability, ultimately threatening the survival and reproductive success of grayling populations. The findings underscore the importance of integrating ecological considerations into future water management and hydropower operation strategies in the face of climate-driven flow variability. Full article
Show Figures

Figure 1

Back to TopTop