Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,156)

Search Parameters:
Keywords = hydrogenic systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1098 KB  
Article
Effects of Cadmium Stress on Mycelial Growth and Antioxidant Systems in Agaricus subrufescens Peck
by Jianshuai Ma, Shengliang Hu, Changxia Yu, Lin Yang, Qin Dong, Qian Guo, Lei Zha and Yan Zhao
Horticulturae 2025, 11(11), 1361; https://doi.org/10.3390/horticulturae11111361 (registering DOI) - 12 Nov 2025
Abstract
Agaricus subrufescens Peck is a nutrient-rich edible fungi with a distinctive flavor, but most varieties are sensitive to cadmium (Cd), making cadmium contamination common during cultivation. Currently, excessive fertilizer uses and increased solid waste are exacerbating cadmium contamination in soils. Since A. subrufescens [...] Read more.
Agaricus subrufescens Peck is a nutrient-rich edible fungi with a distinctive flavor, but most varieties are sensitive to cadmium (Cd), making cadmium contamination common during cultivation. Currently, excessive fertilizer uses and increased solid waste are exacerbating cadmium contamination in soils. Since A. subrufescens utilize agricultural residues like straw and livestock manure as cultivation substrates, Cd can be adsorbed readily, leading to secondary accumulation. In this study, the toxic effects of and response mechanisms to different Cd concentrations with respect to mycelial growth, heavy metal accumulation, and antioxidant systems of A. subrufescens were systematically investigated. The results indicated that the mycelia exhibited Cd accumulation capacity, with accumulation levels positively correlated with stress concentration. At a Cd concentration of 5 mg/L, the intracellular Cd concentration in the mycelia reached approximately 800 mg/kg. As the Cd concentration increased, the efficiency of Cd uptake by mycelia correspondingly decreased. Cadmium stress (≥0.5 mg/L) significantly inhibited mycelial growth and induced morphological abnormalities, with the mycelia exhibiting yellowing. Furthermore, Cd induced dose-dependent oxidative stress. Hydrogen peroxide and MDA levels peaked at a Cd concentration of 2 mg/L, reaching 2.26 μmol/g and 8.98 nmol/g, respectively, indicating heightened lipid peroxidation. Low concentrations of Cd (≤2 mg/L) promoted increases in ASA and GSH activity. SOD, POD, GR, and APX activities significantly increased, with the ASA-GSH cycle synergistically scavenging ROS. CAT activity remained persistently inhibited, APX/GR activity was suppressed, and total sugar metabolism was disrupted, leading to the collapse of antioxidant defenses. In summary, depending on the Cd concentration, A. subrufescens mycelia exhibit markedly different responses at low versus high concentrations. This study provides a foundation for further research into the application of edible fungi in heavy metal-resistant cultivation. Full article
(This article belongs to the Special Issue Cultivation, Preservation and Molecular Regulation of Edible Mushroom)
Show Figures

Figure 1

17 pages, 3871 KB  
Article
Natural Nanoparticles in Gegen–Qinlian Decoction Promote the Colonic Absorption of Active Constituents in Mice with Dextran Sulfate Sodium-Induced Ulcerative Colitis
by Sheng Mu, Zhang-Jin Zheng, Jing-Ze Lu, Ling-Yun Pan and Bing-Liang Ma
Pharmaceuticals 2025, 18(11), 1718; https://doi.org/10.3390/ph18111718 (registering DOI) - 12 Nov 2025
Abstract
Background/Objectives: The aim of this study was to reveal the influence of the natural nanoparticles (Nnps) isolated from Gegen–Qinlian Decoction (GQD), i.e., GQD-Nnps, on the intestinal absorption and pharmacokinetic properties of several representative active GQD constituents. Methods: The morphology of GQD-Nnps [...] Read more.
Background/Objectives: The aim of this study was to reveal the influence of the natural nanoparticles (Nnps) isolated from Gegen–Qinlian Decoction (GQD), i.e., GQD-Nnps, on the intestinal absorption and pharmacokinetic properties of several representative active GQD constituents. Methods: The morphology of GQD-Nnps was examined using scanning electron microscopy (SEM). Protein and polysaccharide contents were measured using the bicinchoninic acid (BCA) assay and phenol–sulfuric acid method, respectively. Major GQD constituents were quantified by liquid chromatography–tandem mass spectrometry (LC-MS/MS). Formation mechanisms were explored using dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), and high-resolution mass spectrometry (HRMS). Pharmacokinetic studies were conducted in mice with dextran sulfate sodium (DSS)-induced UC. Results: GQD-Nnps were spherical, with a size of 110.9 ± 8.1 nm and a zeta potential of −13.7 ± 1.5 mV. GQD-Nnps were primarily composed of proteins and polysaccharides. FTIR analysis revealed significant hydrogen bonding interactions between the small molecular and macromolecular constituents of GQD. HRMS analyses indicated complex formation among small molecules, particularly berberine, baicalin, and glycyrrhizic acid. DLS demonstrated good stability of GQD-Nnps in artificial gastric and intestinal fluids. Pharmacokinetic studies showed that, except for puerarin, blood and liver exposure levels of several constituents in the GQD-Nnps group were significantly higher than those in the GQD extract group, suggesting enhanced colonic absorption and hepatic distribution. Conclusions: GQD-Nnps create an oral drug delivery system through complex interactions, significantly enhancing the colonic absorption and hepatic distribution of several active GQD constituents. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

17 pages, 4414 KB  
Article
Coupling Photothermal Effect in N-Doped Hollow Carbon Spheres with ZnIn2S4 Boosts Solar Hydrogen Evolution
by Shanhao He, Li Liu, Min Liu, Jinjun Tian, Yan Xue and Keliang Wu
Molecules 2025, 30(22), 4368; https://doi.org/10.3390/molecules30224368 (registering DOI) - 12 Nov 2025
Abstract
To address the challenges of low solar energy utilization efficiency and rapid recombination of photogenerated charge carriers in photocatalytic hydrogen evolution, this study successfully constructed a composite photocatalyst of ZnIn2S4 (ZIS) supported on N-doped hollow carbon spheres (N-HCS), denoted as [...] Read more.
To address the challenges of low solar energy utilization efficiency and rapid recombination of photogenerated charge carriers in photocatalytic hydrogen evolution, this study successfully constructed a composite photocatalyst of ZnIn2S4 (ZIS) supported on N-doped hollow carbon spheres (N-HCS), denoted as ZIS/N-HCS, via a combination of template etching and in situ growth strategies. Characterization results demonstrate that this hollow structure possesses a high specific surface area (48.41 m2/g) and a narrowed bandgap (2.41 eV), achieve broad-spectrum light absorption, thereby enabling the catalyst to generate a local hot spot temperature of 136 °C under AM1.5G conditions. The optimized ZIS/N-HCS-0.30 sample exhibited a significantly enhanced photocurrent response (8.26 μA cm−2) and improved charge separation efficiency. When evaluated at a set solution temperature of 20 °C, the material exhibited a photocatalytic hydrogen evolution rate of 17.03 mmol g−1·h−1, which is 7.06 times higher than that of pure ZIS. Furthermore, it demonstrated excellent cycling stability. This work elucidates the synergistic role of the hollow photothermal structure in enhancing solar energy utilization and catalytic reaction kinetics, providing a new strategy for designing efficient solar-driven hydrogen production systems. Full article
Show Figures

Figure 1

19 pages, 2855 KB  
Article
Structural, Adsorptive, and Antibacterial Properties of a Novel Silver (Diethyldithiocarbamate)-Decorated Reduced Graphene Oxide Nanocomposite for Sustainable Wastewater Treatment
by Adel Sayari, Hichem Chouayekh, Slim Smaoui, Wajdi Ayadi, Faten M. Ali Zainy, Ahmed S. Badr El-din, Abeer H. Aljadaani, Aida Hmida-Sayari and Amr A. Yakout
Nanomaterials 2025, 15(22), 1709; https://doi.org/10.3390/nano15221709 - 12 Nov 2025
Abstract
Eco-friendly silver nanoparticle systems are highly effective due to their large surface area and strong adsorption capacity. In this study, a novel silver (diethyldithiocarbamate)-decorated reduced graphene oxide nanocomposite (Ag(DDTC)@rGO) was synthesized via a simple green method, yielding a stable and monodispersed material. SEM [...] Read more.
Eco-friendly silver nanoparticle systems are highly effective due to their large surface area and strong adsorption capacity. In this study, a novel silver (diethyldithiocarbamate)-decorated reduced graphene oxide nanocomposite (Ag(DDTC)@rGO) was synthesized via a simple green method, yielding a stable and monodispersed material. SEM and HRTEM analyses revealed uniform anchoring of the Ag(DDTC) complex on rGO, producing a coherent nanocomposite with strong physicochemical coupling. The Ag(DDTC)@rGO nanocomposite exhibited a high Brunauer–Emmett–Teller (BET) surface area (289 m2 g−1) with an average pore diameter of 45 nm, confirming the mesoporous nature of the composite. FTIR spectra showed characteristic bands of rGO and DDTC ligands, with new peaks at 620–640 cm−1 confirming the successful anchoring of silver–diethyldithiocarbamate species onto rGO via Ag–S and Ag–O bond formation. Raman spectroscopy further confirmed the multilayered rGO structure after Ag(DDTC) incorporation. X-ray diffraction (XRD) identified a broad hybrid amorphous–crystalline pattern, favorable for catalytic and sensing functions. The superior malachite green adsorption capacity of Ag(DDTC)@rGO was attributed to synergistic electrostatic, π–π stacking, hydrogen bonding, and silver-mediated interactions. Furthermore, antibacterial assays demonstrated significant inhibition of P. aeruginosa ATCC 9027 and S. enterica ATCC 14028, further enhanced by mild heat activation (40–50 °C) that significantly improved the surface activation of silver nanoparticles. The multifunctional Ag(DDTC)@rGO nanocomposite exhibits strong adsorption and antibacterial properties, highlighting its potential for sustainable wastewater treatment and environmental remediation applications. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

18 pages, 7391 KB  
Article
Experimental and Simulation Studies of HPAM Microcomposite Structure and Molecular Mechanisms of Action
by Xianda Sun, Qiansong Guo, Yuchen Wang, Chengwu Xu, Wenjun Ma, Tao Liu, Yangdong Cao and Mingming Song
Polymers 2025, 17(22), 3005; https://doi.org/10.3390/polym17223005 - 12 Nov 2025
Abstract
Continental high water-cut reservoirs commonly exhibit strong heterogeneity, high viscosity, and insufficient reservoir drive, which has motivated the deployment of polymer-based composite chemical flooding, such as surfactant–polymer (SP) and alkali–surfactant–polymer (ASP) processes. However, conventional experimental techniques have limited ability to resolve intermolecular forces, [...] Read more.
Continental high water-cut reservoirs commonly exhibit strong heterogeneity, high viscosity, and insufficient reservoir drive, which has motivated the deployment of polymer-based composite chemical flooding, such as surfactant–polymer (SP) and alkali–surfactant–polymer (ASP) processes. However, conventional experimental techniques have limited ability to resolve intermolecular forces, and the coupled mechanism linking “formulation composition” to “microstructural evolution” remains insufficiently defined, constraining improvements in field performance. Here, scanning electron microscopy (SEM), backscattered electron (BSE) imaging, and molecular dynamics (MD) simulations are integrated to systematically investigate microstructural features of polymer composite systems and the governing mechanisms, including hydrogen bonding and electrostatic interactions. The results show that increasing the concentration of partially hydrolyzed polyacrylamide (HPAM) promotes hydrogen bond formation and the development of network structures; a moderate amount of surfactant strengthens interactions with polymer chains, whereas overdosing loosens the structure via electrostatic repulsion; the introduction of alkali reduces polymer connectivity, shifting the system toward an ion-dominated dispersed morphology. These insights provide a mechanistic basis for elucidating the behavior of polymer composite formulations, support enhanced chemical flooding performance, and ultimately advance the economic and efficient development of oil and gas resources. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Graphical abstract

21 pages, 3086 KB  
Review
Polymer-Based Artificial Solid Electrolyte Interphase Layers for Li- and Zn-Metal Anodes: From Molecular Engineering to Operando Visualization
by Jae-Hee Han and Joonho Bae
Polymers 2025, 17(22), 2999; https://doi.org/10.3390/polym17222999 - 11 Nov 2025
Abstract
Metal anodes promise improvements in energy density and cost; however, their performance is determined within the first several nanometers at the interface. This review reports on how polymer-based artificial solid electrolyte interphases (SEIs) are engineered to stabilize Li and aqueous-Zn anodes, and how [...] Read more.
Metal anodes promise improvements in energy density and cost; however, their performance is determined within the first several nanometers at the interface. This review reports on how polymer-based artificial solid electrolyte interphases (SEIs) are engineered to stabilize Li and aqueous-Zn anodes, and how these designs are now evaluated against operando readouts rather than post-mortem snapshots. We group the related molecular strategies into three classes: (i) side-chain/ionomer chemistry (salt-philic, fluorinated, zwitterionic) to increase cation selectivity and manage local solvation; (ii) dynamic or covalently cross-linked networks to absorb microcracks and maintain coverage during plating/stripping; and (iii) polymer–ceramic hybrids that balance modulus, wetting, and ionic transport characteristics. We then benchmark these choices against metal-specific constraints—high reductive potential and inactive Li accumulation for Li, and pH, water activity, corrosion, and hydrogen evolution reaction (HER) for Zn—showing why a universal preparation method is unlikely. A central element is a system of design parameters and operando metrics that links material parameters to readouts collected under bias, including the nucleation overpotential (ηnuc), interfacial impedance (charge transfer resistance (Rct)/SEI resistance (RSEI)), morphology/roughness statistics from liquid-cell or cryogenic electron microscopy (Cryo-EM), stack swelling, and (for Li) inactive-Li inventory. By contrast, planar plating/stripping and HER suppression are primary success metrics for Zn. Finally, we outline parameters affecting these systems, including the use of lean electrolytes, the N/P ratio, high areal capacity/current density, and pouch-cell pressure uniformity, and discuss closed-loop workflows that couple molecular design with multimodal operando diagnostics. In this view, polymer artificial SEIs evolve from curated “recipes” into predictive, transferable interfaces, paving a path from coin-cell to prototype-level Li- and Zn-metal batteries. Full article
(This article belongs to the Special Issue Advanced Preparation and Characterization of Polymer-Based Thin Films)
Show Figures

Figure 1

21 pages, 10547 KB  
Article
Hydrogen Sulfide Is Involved in Melatonin-Induced Drought Tolerance in Maize (Zea mays “Beiqing340”)
by Jianhong Ren, Xinru Yan, Wenjing Wu, Xiaoxiao Yang and Yanhui Dong
Agronomy 2025, 15(11), 2592; https://doi.org/10.3390/agronomy15112592 - 11 Nov 2025
Abstract
Melatonin and hydrogen sulfide (H2S) have both been demonstrated to enhance plant drought tolerance. However, the relationship between melatonin and H2S during the drought resistance response remains unclear. In this study, under drought stress, the synthesis pathways for both [...] Read more.
Melatonin and hydrogen sulfide (H2S) have both been demonstrated to enhance plant drought tolerance. However, the relationship between melatonin and H2S during the drought resistance response remains unclear. In this study, under drought stress, the synthesis pathways for both melatonin and H2S in maize seedlings were activated. The application of exogenous melatonin enhanced the expression of key genes, namely LCD and DCD, which are involved in H2S synthesis, thereby promoting the accumulation of H2S. Conversely, the application of NaHS did not significantly influence the expression of genes related to melatonin synthesis or the levels of endogenous melatonin. Melatonin enhanced drought tolerance in maize through the H2S signaling pathway, as evidenced by a 124.1% increase in the photosynthetic rate and improved activity of antioxidant enzymes. Specifically, there were increases of 66.5%, 75.6%, and 51.0% in the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), respectively. Furthermore, there was an elevation in the levels of osmotic regulatory substances and non-enzymatic antioxidants. The application of the H2S scavenger (HT) significantly inhibited the drought tolerance effects mediated by melatonin, whereas the melatonin synthesis inhibitor (p-CPA) did not exert a significant impact on the drought resistance induced by H2S. Overall, our findings suggest that H2S plays a role in the melatonin-mediated enhancement of drought tolerance in maize, primarily through coordinated modulation of osmotic balance and antioxidant defense systems. Full article
Show Figures

Figure 1

23 pages, 2327 KB  
Article
A Two-Stage Optimal Dispatch Strategy for Electric-Thermal-Hydrogen Integrated Energy System Based on IGDT and Fuzzy Chance-Constrained Programming
by Na Sun, Hongxu He and Haiying Dong
Energies 2025, 18(22), 5927; https://doi.org/10.3390/en18225927 - 11 Nov 2025
Abstract
To address the economic and reliability challenges of high-penetration renewable energy integration in electricity-heat-hydrogen integrated energy systems and support the dual-carbon strategy, this paper proposes an optimal dispatch method integrating Information Gap Decision Theory (IGDT) and Fuzzy Chance-Constrained Programming (FCCP). An IES model [...] Read more.
To address the economic and reliability challenges of high-penetration renewable energy integration in electricity-heat-hydrogen integrated energy systems and support the dual-carbon strategy, this paper proposes an optimal dispatch method integrating Information Gap Decision Theory (IGDT) and Fuzzy Chance-Constrained Programming (FCCP). An IES model coupling multiple energy components was constructed to exploit multi-energy complementarity. A stepped carbon trading mechanism was introduced to quantify emission costs. For interval uncertainties in renewable generation, IGDT-based robust and opportunistic dispatch models were established; for fuzzy load uncertainties, FCCP transformed them into deterministic equivalents, forming a dual-layer “IGDT-FCCP” uncertainty handling framework. Simulation using CPLEX demonstrated that the proposed model dynamically adjusts uncertainty tolerance and confidence levels, effectively balancing economy, robustness, and low-carbon performance under complex uncertainties: reducing total costs by 12.7%, cutting carbon emissions by 28.1%, and lowering renewable curtailment to 1.8%. This study provides an advanced decision-making paradigm for low-carbon resilient IES. Full article
Show Figures

Figure 1

19 pages, 4828 KB  
Review
Toward the Adoption of a Photocatalytic Membrane Electrode Assembly (P-MEA) System for Sustainable Green Hydrogen Production
by Mang Muan Lian, Bo-Sang Kim, Su-Min Lee, Su-Ho Ahn and Jung-Ho Yun
Sustainability 2025, 17(22), 10037; https://doi.org/10.3390/su172210037 - 10 Nov 2025
Abstract
Green hydrogen production using membrane electrode assembly (MEA) has attracted significant attention due to its remarkable energy conversion efficiency. To further enhance its sustainability, MEA-based water electrolysis can be integrated with renewable solar energy by adopting a photocatalytic MEA (P-MEA) system, incorporating light-transmitting [...] Read more.
Green hydrogen production using membrane electrode assembly (MEA) has attracted significant attention due to its remarkable energy conversion efficiency. To further enhance its sustainability, MEA-based water electrolysis can be integrated with renewable solar energy by adopting a photocatalytic MEA (P-MEA) system, incorporating light-transmitting windows into MEA stacks, and employing suitable photocatalytic electrode materials. A critical challenge lies in developing cost-effective and high-performance photocatalytic electrode materials by replacing conventional noble material systems with earth-abundant photocatalytic electrode materials. This review discusses recent advances in P-MEA concepts and fabrication strategies for photoelectrodes tailored to MEA operation. Particular emphasis is placed on elucidating the mechanisms of light-induced charge dynamics that govern the P-MEA-based water electrolysis process. Overall, this review highlights the synergistic potential of integrating photocatalysis with MEA-based water electrolysis to advance sustainable green hydrogen production. Full article
Show Figures

Figure 1

21 pages, 3602 KB  
Article
Genotoxic and Toxicopathological Responses to Ethylparaben in Plants: Potential Impacts to Crop Yields
by Edson Araujo de Almeida, Maria Eduarda Nardes Pinto, Ana Elisa Maehashi, Mateus Antônio Vicente Rodrigues, Emily de Moura Galdino, Diego Espirito Santo, Carmem Lúcia Henrich, Osvaldo Valarini Junior, Gideã Taques Tractz, Regiane da Silva Gonzalez, C. A. Downs and Ana Paula Peron
Toxics 2025, 13(11), 968; https://doi.org/10.3390/toxics13110968 - 10 Nov 2025
Abstract
Ethylparaben (EtP) is an emerging pollutant that is widely found in the environment, particularly in agricultural landscapes. With the extensive contamination of agricultural soils and irrigation waters, there is a rising concern about their potential impact on crop yields. To provide some of [...] Read more.
Ethylparaben (EtP) is an emerging pollutant that is widely found in the environment, particularly in agricultural landscapes. With the extensive contamination of agricultural soils and irrigation waters, there is a rising concern about their potential impact on crop yields. To provide some of the first evidence that EtP may be more than just an agricultural contaminant, but a potential pollutant, we evaluated the systemic toxicities and cellular responses triggered by EtP in seed roots of Daucus carota, Lycopersicum esculentum, and Cucumis sativus, and in bulb roots of Allium cepa, at environmentally relevant concentrations of 1, 10, 100, and 1000 ng·L−1. The seeds and bulbs remained in contact with the concentrations for 7 days. Distilled water and Tween 80 at 1000 ng·L−1 were used as negative controls. The results were subjected to Kruskal–Wallis analysis of variance followed by Dunn’s test (p ≤ 0.05). In all plants, all concentrations significantly altered the activity of catalase, ascorbate peroxidase, guaiacol peroxidase, and superoxide dismutase. In carrot (10, 100, and 1000 ng·L−1), tomato (1000 ng·L−1), and cucumber (all concentrations), such concentrations caused lipid peroxidation, leading to the accumulation of hydrogen peroxide, as well as hydroxyl and superoxide radicals in the cells. These oxidants caused a delay in the progression of the cell cycle and alterations to the mitotic spindle in the root meristems, significantly inhibiting root growth in the plants evaluated. Recurrent contamination with EtP can potentially harm soil quality, posing a risk to both agricultural productivity and the environment. Full article
Show Figures

Graphical abstract

19 pages, 1602 KB  
Article
Joint Optimization Scheduling of Electric Vehicles and Electro–Olefin–Hydrogen Electromagnetic Energy Supply Device for Wind–Solar Integration
by Shumin Sun, Chenglong Wang, Yan Cheng, Shibo Wang, Chengfu Wang, Xianwen Lu, Liqun Sun, Guangqi Zhou and Nan Wang
Energies 2025, 18(22), 5911; https://doi.org/10.3390/en18225911 - 10 Nov 2025
Abstract
In northern China, the long winter heating period is accompanied by severe wind curtailment. To address this issue, a joint optimization scheduling strategy of electric vehicles (EVs) and electro–olefin–hydrogen electromagnetic energy supply device (EHED) is proposed to promote deep wind–solar integration. Firstly, the [...] Read more.
In northern China, the long winter heating period is accompanied by severe wind curtailment. To address this issue, a joint optimization scheduling strategy of electric vehicles (EVs) and electro–olefin–hydrogen electromagnetic energy supply device (EHED) is proposed to promote deep wind–solar integration. Firstly, the feasibility analysis of EVs participating in scheduling is conducted, and the operation models of dispatchable EVs and thermal energy storage EHEDs within the scheduling period are established. Secondly, a control strategy for the joint optimization scheduling of wind–solar farms, EVs, EHEDs, and power grid is constructed. Then, an economic dispatch model for joint optimization of EVs and EHEDs is established to minimize the system operation cost within the scheduling period, and the deep wind–solar integration of the joint optimization model is studied by considering EVs under different demand responses. Finally, the proposed model is solved by CPLEX solver. The simulation results show that the established joint optimization economic dispatch model of EV-EHEDs can improve the enthusiasm of dispatchable EVs to participate in deep wind–solar integration, reduce wind curtailment power, and decrease the overall system operation cost. Full article
(This article belongs to the Special Issue Advances in Green Hydrogen and Green Ammonia)
Show Figures

Figure 1

42 pages, 3363 KB  
Review
Large-Scale Hydrogen Storage in Deep Saline Aquifers: Multiphase Flow, Geochemical–Microbial Interactions, and Economic Feasibility
by Abdullahi M. Baru, Stella I. Eyitayo, Chinedu J. Okere, Abdurrahman Baru and Marshall C. Watson
Materials 2025, 18(22), 5097; https://doi.org/10.3390/ma18225097 - 10 Nov 2025
Abstract
The development of large-scale, flexible, and safe hydrogen storage is critical for enabling a low-carbon energy system. Deep saline aquifers (DSAs) offer substantial theoretical capacity and broad geographic distribution, making them attractive options for underground hydrogen storage. However, hydrogen storage in DSAs presents [...] Read more.
The development of large-scale, flexible, and safe hydrogen storage is critical for enabling a low-carbon energy system. Deep saline aquifers (DSAs) offer substantial theoretical capacity and broad geographic distribution, making them attractive options for underground hydrogen storage. However, hydrogen storage in DSAs presents complex technical, geochemical, microbial, geomechanical, and economic challenges that must be addressed to ensure efficiency, safety, and recoverability. This study synthesizes current knowledge on hydrogen behavior in DSAs, focusing on multiphase flow dynamics, capillary trapping, fingering phenomena, geochemical reactions, microbial consumption, cushion gas requirements, and operational constraints. Advanced numerical simulations and experimental observations highlight the role of reservoir heterogeneity, relative permeability hysteresis, buoyancy-driven migration, and redox-driven hydrogen loss in shaping storage performance. Economic analysis emphasizes the significant influence of cushion gas volumes and hydrogen recovery efficiency on the levelized cost of storage, while pilot studies reveal strategies for mitigating operational and geochemical risks. The findings underscore the importance of integrated, coupled-process modeling and comprehensive site characterization to optimize hydrogen storage design and operation. This work provides a roadmap for developing scalable, safe, and economically viable hydrogen storage in DSAs, bridging the gap between laboratory research, pilot demonstration, and commercial deployment. Full article
Show Figures

Graphical abstract

34 pages, 8993 KB  
Article
Outlook on the Decarbonization of Non-Electrified Passenger Railway Connections in Poland
by Mateusz Jüngst and Wojciech Sawczuk
Energies 2025, 18(22), 5900; https://doi.org/10.3390/en18225900 - 10 Nov 2025
Viewed by 1
Abstract
The decarbonization of regional passenger rail transport is one of the key challenges for the sustainable transformation of the transport sector in Poland. While railway transportation remains one of the least carbon-intensive modes of transport, significant emission disparities persist between electrified and non-electrified [...] Read more.
The decarbonization of regional passenger rail transport is one of the key challenges for the sustainable transformation of the transport sector in Poland. While railway transportation remains one of the least carbon-intensive modes of transport, significant emission disparities persist between electrified and non-electrified lines, where diesel traction is still prevalent. This article presents a comparative analysis of various propulsion technologies—diesel, hybrid, battery-electric and hydrogen fuel-cell—taking into account both local (TTW) and total (WTW) greenhouse gas emissions. The study incorporates Poland’s current energy mix and proposes a methodological framework to assess emissions at the line level. It highlights the risks of focusing exclusively on in situ zero-emission technologies and calls for a more flexible, efficiency-based approach to fleet modernization. The analysis demonstrates that hybrid and optimized combustion-based systems can provide substantial emission reductions in the short term, especially in rural and transitional regions. The paper also critically discusses transport funding policies, pointing to discrepancies between incentives for private electric mobility and the lack of support for public transport solutions that could effectively counter mobility exclusion. The presented methodology and conclusions provide a basis for further research on transport decarbonization strategies tailored to national and regional contexts. Full article
(This article belongs to the Special Issue State-of-the-Art Energy Saving in the Transport Industries)
Show Figures

Figure 1

7 pages, 1111 KB  
Short Note
Bromo(5-cyclohexyl-1-methyl-1H-1,2,4-triazol-4-ium-3-yl)bis(triphenylphosphane)palladium Tetrafluoroborate
by Andrey Y. Chernenko, Igor V. Lavrentev, Maxim A. Shevchenko, Mikhail E. Minyaev, Konstantin E. Shepelenko and Victor M. Chernyshev
Molbank 2025, 2025(4), M2086; https://doi.org/10.3390/M2086 - 10 Nov 2025
Viewed by 96
Abstract
Transition metal complexes bearing protic N-heterocyclic carbene (pNHC) ligands are promising precatalysts for organic reactions due to their capacity for unique hydrogen-bonding interactions. Herein, we report the synthesis and structural characterization of the first Pd(II) complex featuring a pNHC derived from 1,2,4-triazole—a heterocyclic [...] Read more.
Transition metal complexes bearing protic N-heterocyclic carbene (pNHC) ligands are promising precatalysts for organic reactions due to their capacity for unique hydrogen-bonding interactions. Herein, we report the synthesis and structural characterization of the first Pd(II) complex featuring a pNHC derived from 1,2,4-triazole—a heterocyclic system previously unexplored for the preparation of metal/pNHC complexes. The complex was synthesized via oxidative addition of 3-bromo-5-cyclohexyl-1-methyl-1H-1,2,4-triazole to Pd(PPh3)4 in the presence of NH4BF4. Its molecular structure was characterized by NMR spectroscopy and X-ray diffraction analysis. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

32 pages, 1917 KB  
Article
Hybrid Wind–Solar–Fuel Cell–Battery Power System with PI Control for Low-Emission Marine Vessels in Saudi Arabia
by Hussam A. Banawi, Mohammed O. Bahabri, Fahd A. Hariri and Mohammed N. Ajour
Automation 2025, 6(4), 69; https://doi.org/10.3390/automation6040069 - 8 Nov 2025
Viewed by 168
Abstract
The maritime industry is under increasing pressure to reduce greenhouse gas emissions, especially in countries such as Saudi Arabia that are actively working to transition to cleaner energy. In this paper, a new hybrid shipboard power system, which incorporates wind turbines, solar photovoltaic [...] Read more.
The maritime industry is under increasing pressure to reduce greenhouse gas emissions, especially in countries such as Saudi Arabia that are actively working to transition to cleaner energy. In this paper, a new hybrid shipboard power system, which incorporates wind turbines, solar photovoltaic (PV) panels, proton-exchange membrane fuel cells (PEMFCs), and a battery energy storage system (BESS) together for propulsion and hotel load services, is proposed. A multi-loop Energy Management System (EMS) based on proportional–integral control (PI) is developed to coordinate the interconnections of the power sources in real time. In contrast to the widely reported model predictive or artificial intelligence optimization schemes, the PI-derived EMS achieves similar power stability and hydrogen utilization efficiency with significantly reduced computational overhead and full marine suitability. By taking advantage of the high solar irradiance and coastal wind resources in Saudi Arabia, the proposed configuration provides continuous near-zero-emission operation. Simulation results show that the PEMFC accounts for about 90% of the total energy demand, the BESS (±0.4 MW, 2 MWh) accounts for about 3%, and the stationary renewables account for about 7%, which reduces the demand for hydro-gas to about 160 kg. The DC-bus voltage is kept within ±5% of its nominal value of 750 V, and the battery state of charge (SOC) is kept within 20% to 80%. Sensitivity analyses show that by varying renewable input by ±20%, diesel consumption is ±5%. These results demonstrate the system’s ability to meet International Maritime Organization (IMO) emission targets by delivering stable near-zero-emission operation, while achieving high hydrogen efficiency and grid stability with minimal computational cost. Consequently, the proposed system presents a realistic, certifiable, and regionally optimized roadmap for next-generation hybrid PEMFC–battery–renewable marine power systems in Saudi Arabian coastal operations. Full article
(This article belongs to the Section Automation in Energy Systems)
Show Figures

Figure 1

Back to TopTop