Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,125)

Search Parameters:
Keywords = hydrogen strategy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3613 KB  
Article
Modeling and Optimization of Phenolic Compound Adsorption from Olive Wastewater Using XAD-4 Resin, Activated Carbon, and Chitosan Biosorbent
by Chaimaa Hakim, Hélène Carrère, Abdessadek Essadek, Soukaina Terroufi, Audrey Battimelli, Renaud Escudie, Jérôme Harmand and Mounsef Neffa
Appl. Sci. 2026, 16(3), 1231; https://doi.org/10.3390/app16031231 (registering DOI) - 25 Jan 2026
Abstract
This study proposes a circular economy strategy to recover phenolic compounds by valorizing shrimp shell waste into a chitosan biosorbent (CH-B). Its adsorption efficiency was evaluated compared to commercial activated carbon (AC) and synthetic XAD-4 resin. Kinetic analysis revealed that while both pseudo-first-order [...] Read more.
This study proposes a circular economy strategy to recover phenolic compounds by valorizing shrimp shell waste into a chitosan biosorbent (CH-B). Its adsorption efficiency was evaluated compared to commercial activated carbon (AC) and synthetic XAD-4 resin. Kinetic analysis revealed that while both pseudo-first-order (PFO) and pseudo-second-order (PSO) models exhibited high correlations (R2  0.96), both CH-B and XAD-4 resin were best described by the PFO model. This aligns with diffusion-controlled processes consistent with the porous and physical nature of these adsorbents. In contrast, AC followed the PSO model. Isotherm modeling indicated that CH-B and AC fit the Temkin model, reflecting heterogeneous surfaces, whereas XAD-4 followed the Langmuir model (monolayer adsorption). Notably, CH-B exhibited a maximum adsorption capacity (qm) of 229.2 mg/g, significantly outperforming XAD-4 (104.8 mg/g) and AC (90.2 mg/g). Thermodynamic and kinetic modeling confirmed that the adsorption mechanism was governed by a combination of electrostatic interactions, π–π stacking, and hydrogen bonding between the hydroxyl/amine groups of chitosan and phenolic compounds. Optimization using Box–Behnken design for CH-B showed optimal acidic pH and moderate temperature but non-significant effect of CH-B dose in the experimental domain. Optimisation results showed unexpected high removal efficiency at low CH-B dosages. A tentative explanation may be adsorbent aggre-gation, which needs to be confirmed by further experimental evidence. Full article
Show Figures

Figure 1

24 pages, 4835 KB  
Article
Protective Effect of Resolvin D1, D2, and Their Methyl Esters on Oxidative Stress and Hyaluronidase—Induced Hyaluronic Acid Degradation
by Zahra Kariminezhad, Mahdi Rahimi, Julio Fernandes, Hassan Fahmi and Mohamed Benderdour
Antioxidants 2026, 15(2), 163; https://doi.org/10.3390/antiox15020163 (registering DOI) - 25 Jan 2026
Abstract
Hyaluronic acid (HA) injections are commonly employed in the management of osteoarthritis (OA), yet their therapeutic benefits are often limited by oxidative degradation and enzymatic breakdown within the joint. This study investigates whether Resolvin D1, Resolvin D2, and their methyl ester derivatives can [...] Read more.
Hyaluronic acid (HA) injections are commonly employed in the management of osteoarthritis (OA), yet their therapeutic benefits are often limited by oxidative degradation and enzymatic breakdown within the joint. This study investigates whether Resolvin D1, Resolvin D2, and their methyl ester derivatives can enhance the efficacy of HA injections by acting as dual-function agents with both antioxidant and enzyme inhibitory properties. A comprehensive series of in vitro assays—including ORAC, FRAP, DPPH, ABTS, HRS, and SOD—were performed to evaluate antioxidant capacity, using Trolox, Ascorbic acid, β-Carotene, and Quercetin as reference standards. The potential to inhibit HA degradation was assessed through ROS-induced HA fragmentation and hyaluronidase inhibition assay, with epigallocatechin gallate (EGCG) serving as a positive control. The results indicate that Resolvin derivatives, particularly the methyl ester form of Resolvin D1, display mechanism-dependent antioxidant activity, showing pronounced effects in hydrogen atom transfer-based assays (e.g., ORAC and HRS), as well as in ABTS•+ and superoxide-related systems, along with protection against ROS and enzyme-induced HA degradation. These findings suggest that incorporating Resolvin derivatives may represent a promising strategy to improve HA-based viscosupplementation by enhancing stability and therapeutic persistence in osteoarthritic joints. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

16 pages, 3098 KB  
Article
Electrocatalytic Hydrogenation of 5-Hydroxymethylfurfural to 2,5-Bis(hydroxymethyl)furan Using CuIr Bimetallic Nanowires
by Chen Chen, Chenhao Yang, Hongke Li, Yiran Liu, Yao Chen and Yunlei Zhang
Catalysts 2026, 16(2), 116; https://doi.org/10.3390/catal16020116 (registering DOI) - 25 Jan 2026
Abstract
Electrocatalytic hydrogenation (ECH) represents an environmentally friendly pathway for converting 5-hydroxymethylfurfural (HMF) into the high-value chemical 2,5-bis(hydroxymethyl)furan (BHMF). However, its selectivity and Faradaic efficiency are often constrained by competitive hydrogen evolution at the cathode and insufficient supply of active hydrogen at the surface. [...] Read more.
Electrocatalytic hydrogenation (ECH) represents an environmentally friendly pathway for converting 5-hydroxymethylfurfural (HMF) into the high-value chemical 2,5-bis(hydroxymethyl)furan (BHMF). However, its selectivity and Faradaic efficiency are often constrained by competitive hydrogen evolution at the cathode and insufficient supply of active hydrogen at the surface. To address this challenge, this study developed an Ir-decorated copper oxide nanowire catalyst (denoted as CuIr) featuring a hydrogen-rich adsorption (Hads) surface. The incorporation of Ir significantly enhances the catalyst’s water dissociation capacity, creating abundant Hads sources that selectively accelerate HMF hydrogenation while suppressing side reactions. Under a mild applied potential of −0.45 V vs. RHE and a current density of approximately −20 mA cm−2, the optimal CuIr40 catalyst achieved near-complete conversion of HMF (99%), a BHMF yield of 99%, and a high Faradaic efficiency of 97% within 120 min of electrolysis. Mechanistic studies reveal that this catalytic leap stems from the synergistic functional interaction between Cu and Ir sites in substrate activation and hydrogen supply. This work presents a novel strategy for designing efficient electrocatalysts for biomass hydrogenation by regulating surface Hads concentration. Full article
Show Figures

Figure 1

14 pages, 1616 KB  
Article
A Novel Polyacrylamide/Sodium Alginate/Polypyrrole Composite Hydrogel for Fabricating Flexible Sensors for Wearable Health Monitoring
by Yan Gao, Hongyi Wan, Guoxiang Wang and Yawen Zhu
Gels 2026, 12(2), 99; https://doi.org/10.3390/gels12020099 (registering DOI) - 24 Jan 2026
Abstract
Conductive hydrogels that simultaneously exhibit high mechanical robustness, reliable electrical conductivity, and interfacial adhesion are highly desirable for flexible sensing applications; however, achieving these properties in a single system remains challenging due to intrinsic structure–property trade-offs. Herein, a multifunctional conductive hydrogel (ASP hydrogel) [...] Read more.
Conductive hydrogels that simultaneously exhibit high mechanical robustness, reliable electrical conductivity, and interfacial adhesion are highly desirable for flexible sensing applications; however, achieving these properties in a single system remains challenging due to intrinsic structure–property trade-offs. Herein, a multifunctional conductive hydrogel (ASP hydrogel) is developed based on a polyacrylamide (PAM)/sodium alginate (SA) double-network architecture using a gallic acid (GA)–Fe3+–pyrrole (Py) coupling strategy. In this design, GA provides metal-coordination sites for Fe3+, while Fe3+ simultaneously serves as an oxidant to trigger the in situ polymerization of pyrrole, enabling the homogeneous integration of polypyrrole (PPy) conductive networks within the hydrogel matrix. The resulting ASP hydrogel exhibits a markedly enhanced fracture strength of 2.95 MPa compared with PAM (0.26 MPa) and PAM–SA (0.22 MPa) hydrogels, together with stable electrical conductivity and reproducible strain-dependent electrical responses. Moreover, the introduction of dynamic metal–phenolic coordination and hydrogen-bonding interactions endows the hydrogel with intrinsic self-healing capability and strong adhesion to diverse substrates. Rather than relying on simple filler incorporation, this work demonstrates an integrated network design that balances mechanical strength, conductivity, and adhesion, providing a versatile material platform for flexible strain sensors and wearable electronics. Full article
(This article belongs to the Section Gel Chemistry and Physics)
Show Figures

Figure 1

15 pages, 1080 KB  
Article
Producing High-Quality Buckwheat Sprouts: The Combined Effects of Melatonin and UV-B Treatment
by Xin Tian, Meixia Hu, Weiming Fang and Yongqi Yin
Foods 2026, 15(3), 422; https://doi.org/10.3390/foods15030422 (registering DOI) - 24 Jan 2026
Abstract
Our prior research revealed that UV-B stress enhances bioactive compounds’ biosynthesis in buckwheat sprouts while simultaneously increasing oxidative damage. To address this, we searched for an exogenous hormone capable of promoting bioactive compound accumulation while mitigating UV-B-induced oxidative damage. This study investigated the [...] Read more.
Our prior research revealed that UV-B stress enhances bioactive compounds’ biosynthesis in buckwheat sprouts while simultaneously increasing oxidative damage. To address this, we searched for an exogenous hormone capable of promoting bioactive compound accumulation while mitigating UV-B-induced oxidative damage. This study investigated the regulatory effects of exogenous melatonin (MT) on secondary metabolite accumulation and antioxidant systems in buckwheat sprouts under UV-B stress. MT (30 μM) treatment significantly increased the contents of bioactive compounds (flavonoids and total phenolics) in buckwheat sprouts under UV-B stress. Moreover, these contents peaked in 3-day-old sprouts, showing increases of 23.1% and 13.6%, respectively, compared to UV-B-treated. Concurrently, combined UV-B and MT treatment significantly elevated key enzyme activities in the phenylpropanoid pathway and upregulated the related gene expression levels. Additionally, exogenous MT significantly enhanced the antioxidant capacity of sprouts under 3-day UV-B stress, increasing DPPH radical scavenging rate and FRAP values by 8.38% and 12.2%, respectively. MT treatment also upregulated superoxide dismutase activity (32.1%), peroxidase activity (10.3%), and catalase activity (27.2%). It further enhanced the expression of antioxidant-related genes. Collectively, these effects reduced the accumulation of malondialdehyde, hydrogen peroxide, and superoxide anions, thereby mitigating UV-B-induced oxidative damage in sprouts. This research suggests a potential strategy for the targeted enhancement of bioactive compounds in buckwheat sprouts. Full article
Show Figures

Figure 1

21 pages, 3597 KB  
Article
Turbocharging Matching Investigation for High-Altitude Power Recovery in Aviation Hydrogen Internal Combustion Engines
by Weicheng Wang and Yu Yan
Fire 2026, 9(2), 51; https://doi.org/10.3390/fire9020051 - 23 Jan 2026
Abstract
Aviation hydrogen internal combustion engines represent a critical pathway for rapid decarbonization due to their reliability and compatibility with existing aircraft platforms. However, the significant reduction in air density at high altitudes causes severe power degradation in naturally aspirated port-fuel-injected hydrogen internal combustion [...] Read more.
Aviation hydrogen internal combustion engines represent a critical pathway for rapid decarbonization due to their reliability and compatibility with existing aircraft platforms. However, the significant reduction in air density at high altitudes causes severe power degradation in naturally aspirated port-fuel-injected hydrogen internal combustion engines, making turbocharging essential for maintaining propulsion capability. This study utilizes a combined experimental and simulation framework to investigate turbocharger matching for power recovery in a 1.4 L hydrogen engine. A simulation model was constructed and validated against experimental data within a 5% error margin to ensure technical accuracy. Theoretical compressor and turbine operating parameters were derived for altitudes ranging from 4 to 8 km, comparing two boost-pressure control strategies: variable geometry turbine and waste-gate turbine. The results demonstrate that both boosting strategies successfully restore sea-level power at altitudes up to 8 km, increasing high-altitude power output by approximately four-fold to five-fold compared to naturally aspirated conditions. Specifically, the variable of geometry turbine demonstrates superior overall performance, maintaining normalized turbine efficiencies between 78.4% and 96.3% while achieving lower pumping losses and improved brake thermal efficiency. These advantages arise from the variable geometry turbine’s ability to optimize exhaust-energy utilization across varying altitudes. This study establishes a quantitative methodology for turbocharger matching, providing essential guidance for developing efficient, high-altitude hydrogen propulsion systems. Full article
16 pages, 1073 KB  
Review
Hydrogen and Ozone Therapies as Adjunctive Strategies for Gastrointestinal Health in Geriatric Populations
by Joanna Michalina Jurek, Zuzanna Jakimowicz, Runyang Su, Kexin Shi and Yiqiao Qin
Gastrointest. Disord. 2026, 8(1), 8; https://doi.org/10.3390/gidisord8010008 (registering DOI) - 23 Jan 2026
Abstract
Aging is accompanied by progressive gastrointestinal structural and functional decline, increased intestinal permeability, dysbiosis, and impaired mucosal immunity, collectively elevating susceptibility to infections, chronic inflammation, and multimorbidity. These age-related changes are further exacerbated by polypharmacy, metabolic disorders, and lifestyle factors, positioning the gastrointestinal [...] Read more.
Aging is accompanied by progressive gastrointestinal structural and functional decline, increased intestinal permeability, dysbiosis, and impaired mucosal immunity, collectively elevating susceptibility to infections, chronic inflammation, and multimorbidity. These age-related changes are further exacerbated by polypharmacy, metabolic disorders, and lifestyle factors, positioning the gastrointestinal tract as a central driver of systemic physiological decline. Gut-centered interventions have emerged as critical strategies to mitigate these vulnerabilities and support healthy aging. Dietary modulation, prebiotic and probiotic supplementation, and microbiota-targeted approaches have demonstrated efficacy in improving gut microbial diversity, enhancing short-chain fatty acid production, restoring epithelial integrity, and modulating immune signaling in older adults. Beyond nutritional strategies, non-nutritional interventions such as molecular hydrogen and medical ozone offer complementary mechanisms by selectively neutralizing reactive oxygen species, reducing pro-inflammatory signaling, modulating gut microbiota, and promoting mucosal repair. Hydrogen-based therapies, administered via hydrogen-rich water or inhalation, confer antioxidant, anti-inflammatory, and cytoprotective effects, while ozone therapy exhibits broad-spectrum antimicrobial activity, enhances tissue oxygenation, and stimulates epithelial and vascular repair. Economic considerations further differentiate these modalities, with hydrogenated water positioned as a premium wellness product and ozonated water representing a cost-effective, scalable option for geriatric gastrointestinal care. Although preclinical and early clinical studies are promising, evidence in older adults remains limited, emphasizing the need for well-designed, age-specific trials to establish safety, dosing, and efficacy. Integrating dietary, microbiota-targeted, and emerging non-nutritional gut-centered interventions offers a multimodal framework to preserve gut integrity, immune competence, and functional health, potentially mitigating age-related decline and supporting overall health span in older populations. Full article
Show Figures

Figure 1

22 pages, 2631 KB  
Article
Design, Docking, Synthesis, and Biological Evaluation of Pyrazolone Derivatives as Potential Dual-Action Antimicrobial and Antiepileptic Agents
by Yousef Al-ebini, Manojmouli Chandramouli, Naga Prashant Koppuravuri, Thoppalada Yunus Pasha, Mohamed Rahamathulla, Salwa Eltawaty, Kamal Y. Thajudeen, Mohammed Muqtader Ahmed and Thippeswamy Boreddy Shivanandappa
Pharmaceuticals 2026, 19(2), 193; https://doi.org/10.3390/ph19020193 - 23 Jan 2026
Abstract
Background/Objectives: Epilepsy is characterized by unpredictable seizures and drug resistance, along with rising antimicrobial resistance (AMR), highlighting the urgent need for innovative dual-action therapies. This study aimed to design, develop, and evaluate novel pyrazolone derivatives for a dual antimicrobial and antiepileptic potential. Methods: [...] Read more.
Background/Objectives: Epilepsy is characterized by unpredictable seizures and drug resistance, along with rising antimicrobial resistance (AMR), highlighting the urgent need for innovative dual-action therapies. This study aimed to design, develop, and evaluate novel pyrazolone derivatives for a dual antimicrobial and antiepileptic potential. Methods: Novel pyrazolone derivatives were designed, synthesized (using 2,4-dinitrophenylhydrazine/semicarbazide condensation with ethyl acetoacetate), and evaluated through molecular docking against antimicrobial (4URM, 3FYV, 3FRA) and neuronal targets (4COF, 5TP9, 5L1F). The in vitro antimicrobial activity was assessed against Gram-positive (S. aureus) and in vitro Gram-negative (E. coli, P. aeruginosa) strains via agar cup plate assays, while in vivo antiepileptic efficacy was tested in a PTZ-induced seizure model in Swiss albino mice. Results: Compound IIa showed potent dual activity, inhibiting E. coli (9 mm zone at 80 μg/mL) and S. aureus (9.5 mm at 80 μg/mL), alongside a significantly delayed seizure onset in the PTZ-induced mouse model (100% survival rate, 45 sec delayed seizure onset, p < 0.001). Compounds Ia and Id showed selective activity against E. coli (6 mm at 80 μg/mL) and P. aeruginosa (7 mm at 80 μg/mL), respectively. Docking studies revealed that compound IIa has a superior binding affinity (−7.57 kcal/mol for 3FYV) compared to standards, driven by hydrogen bonds (SER X: 49) and hydrophobic interactions (LEU X: 20). Conclusions: This study presents a novel approach by proposing a rationally designed pyrazolone scaffold exhibiting both antimicrobial and antiepileptic activity, which integrates in silico modeling with experimental validation. Compound IIa emerged with preliminary dual biological activities, exhibiting strong antibacterial activity, a superior binding affinity toward both bacterial and neuronal targets, and notable seizure prevention in vivo. These findings show the potential of multifunctional pyrazolone derivatives as a new treatment strategy for addressing drug-resistant infections linked to epilepsy and support further optimization toward clinical development. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

21 pages, 4926 KB  
Article
Redox Priming Ameliorates Salinity Tolerance of Seeds and Seedlings of the Coastal Halophyte Grass Urochondra setulosa
by Sadiq Hussain, Farah Nisar, Sahar Abbas, Abdul Hameed and Brent L. Nielsen
Plants 2026, 15(3), 350; https://doi.org/10.3390/plants15030350 - 23 Jan 2026
Viewed by 27
Abstract
Low salinity tolerance during germination and early seedling establishment limits large-scale cultivation of halophytes for forage, food, restoration, and conservation purposes. This study evaluates the potential of redox priming to enhance salt tolerance in the perennial C4 halophyte grass Urochondra setulosa, [...] Read more.
Low salinity tolerance during germination and early seedling establishment limits large-scale cultivation of halophytes for forage, food, restoration, and conservation purposes. This study evaluates the potential of redox priming to enhance salt tolerance in the perennial C4 halophyte grass Urochondra setulosa, which could be used as a revegetation and phytoremediation crop for coastal saline lands. Fresh seeds were found to be non-dormant with ~90% mean final germination (MFG) in distilled water. Redox priming, including hydrogen peroxide (H2O2), melatonin (MT), sodium nitroprusside (SNP; a nitric oxide donor), and ascorbic acid (AsA), significantly accelerated the germination rate index (GRI) and reduced mean germination time (MGT) without altering MFG under non-saline conditions. Salinity severely suppressed germination, as unprimed seeds reached only ~1% MFG with ~99% germination reduction (GR) and near-zero germination stress tolerance index (GSTI) at 200 mM NaCl. All priming treatments significantly improved MFG, GRI, and GSTI and decreased GR, with H2O2 priming showing the highest amelioration. Ungerminated seeds from all treatments recovered ~90% germination capacity in water, indicating enforced dormancy owing to osmotic constraints. Salinity did not impair growth in unprimed seedlings. However, MT priming uniquely enhanced total length, leaf area, and seedling vigor index (SVI) at 200 mM NaCl, while MT and SNP priming resulted in the highest chlorophyll and carotenoid contents. Multivariate analyses confirmed MT’s consistent superiority across traits under stress. Thus, H2O2 priming optimizes germination, while MT priming improves seedling vigor and offers a practical, targeted strategy to improve early-stage salinity tolerance in U. setulosa for coastal revegetation and sustainable saline agriculture. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants—Second Edition)
13 pages, 1671 KB  
Article
Experimental Study of Hydrogen Combustion and Emissions for a Self-Developed Microturbine
by István Péter Kondor
Energies 2026, 19(3), 577; https://doi.org/10.3390/en19030577 - 23 Jan 2026
Viewed by 60
Abstract
This paper presents an experimental investigation of hydrogen enrichment effects on combustion behavior and exhaust emissions in a self-developed micro gas turbine fueled with a propane–butane mixture. Hydrogen was blended with the base fuel in volume fractions of 0–30%, and combustion was examined [...] Read more.
This paper presents an experimental investigation of hydrogen enrichment effects on combustion behavior and exhaust emissions in a self-developed micro gas turbine fueled with a propane–butane mixture. Hydrogen was blended with the base fuel in volume fractions of 0–30%, and combustion was examined under unloaded operating conditions at three global equivalence ratios (ϕ = 0.7, 1.1, and 1.3). The global equivalence ratio (ϕ) is defined as the ratio of the actual fuel–air ratio to the corresponding stoichiometric fuel–air ratio, with ϕ < 1 representing lean, ϕ = 1 stoichiometric, and ϕ > 1 fuel-rich operating conditions. The micro gas turbine is based on an automotive turbocharger coupled with a custom-designed counterflow combustion chamber developed specifically for alternative gaseous fuel research. Exhaust gas emissions of CO, CO2, and NOx were measured using a laboratory-grade FTIR analyzer (Horiba Mexa FTIR Horiba Ltd., Kyoto, Japan), while combustion chamber temperature was monitored with thermocouples. The results show that hydrogen addition significantly influences flame stability, combustion temperature, and emission characteristics. Increasing the hydrogen fraction led to a pronounced reduction in CO emissions across all equivalence ratios, indicating enhanced oxidation kinetics and improved combustion completeness. CO2 concentrations decreased monotonically with hydrogen enrichment due to the reduced carbon content of the blended fuel and the shift of combustion products toward higher H2O fractions. In contrast, NOx emissions increased with increasing hydrogen content for all tested equivalence ratios, which is attributed to elevated local flame temperatures, enhanced reaction rates, and the formation of locally near-stoichiometric zones in the compact combustor. A slight reduction in NOx at low hydrogen fractions was observed under near-stoichiometric conditions, suggesting a temporary shift toward a more distributed combustion regime. Overall, the findings demonstrate that hydrogen–propane–butane blends can be stably combusted in a micro gas turbine without major operational issues under unloaded conditions. While hydrogen addition offers clear benefits in terms of CO reduction and carbon-related emissions, effective NOx mitigation strategies will be essential for future high-hydrogen microturbine applications. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

26 pages, 5269 KB  
Article
Development and Optimization of Resveratrol-Loaded NLCs via Low-Energy Methods: A Promising Alternative to Conventional High-Energy or Solvent-Based Techniques
by Nicoly T. R. Britto, Lilian R. S. Montanheri, Juliane N. B. D. Pelin, Raquel A. G. B. Siqueira, Matheus de Souza Alves, Tereza S. Martins, Ian W. Hamley, Patrícia S. Lopes, Vânia R. Leite-Silva and Newton Andreo-Filho
Processes 2026, 14(2), 393; https://doi.org/10.3390/pr14020393 - 22 Jan 2026
Viewed by 25
Abstract
High-energy methods dominate the development of lipid nanoparticles but often require specialized equipment that increases production costs. Low-energy approaches, particularly those free of organic solvents, offer a promising alternative. This study aimed to obtain nanostructured lipid carriers (NLCs) using a solvent-free, low-energy process [...] Read more.
High-energy methods dominate the development of lipid nanoparticles but often require specialized equipment that increases production costs. Low-energy approaches, particularly those free of organic solvents, offer a promising alternative. This study aimed to obtain nanostructured lipid carriers (NLCs) using a solvent-free, low-energy process combining microemulsification and phase inversion. Cetearyl alcohol and PEG-40 hydrogenated castor oil were selected as the solid lipid and surfactant, respectively; the formulation and process were optimized through a Box–Behnken Design. Incorporation of the ionic surfactant extended colloidal stability, while the poloxamer in the aqueous phase enhanced steric stabilization. Resveratrol was efficiently encapsulated (E.E. = 98%), contributing to reduced particle size (291 nm), improved homogeneity (PDI = 0.25), and positive surface charge (+43 mV). Scale-up yielded stable particles carrying resveratrol with a mean size of 507 nm, PDI = 0.24, and ZP = +52 mV. The optimized formulation remained stable for 90 days at 8 °C. In vitro release demonstrated a sustained and controlled release profile, with significantly lower resveratrol release compared to the free compound. Thermal analysis confirmed drug incorporation within the lipid matrix, while transmission electron microscopy (TEM) revealed spherical particles (~200 nm) and SAXS indicated a nanostructure of ~50 nm. Overall, this study demonstrates that solvent-free, low-energy processing can produce stable and scalable NLC formulations, successfully encapsulating resveratrol with favorable physicochemical properties and controlled release behavior. These findings highlight a simple, cost-effective strategy for developing lipid-based nanocarriers with potential applications in drug delivery. Full article
Show Figures

Figure 1

15 pages, 2514 KB  
Article
Seasonal Shifts in Water Utilization Strategies of Typical Desert Plants in a Desert Oasis Revealed by Hydrogen and Oxygen Stable Isotopes and Leaf δ13C
by Yang Wang, Wenze Li, Wei Cai, Nan Bai, Jiaqi Wang and Yu Hong
Plants 2026, 15(2), 340; https://doi.org/10.3390/plants15020340 - 22 Jan 2026
Viewed by 23
Abstract
Understanding seasonal water acquisition strategies of desert plants is critical for predicting vegetation resilience under increasing hydrological stress in arid inland river basins. In hyper-arid oases, strong evaporative demand and declining groundwater levels impose tightly coupled constraints on plant water uptake across soil–plant–atmosphere [...] Read more.
Understanding seasonal water acquisition strategies of desert plants is critical for predicting vegetation resilience under increasing hydrological stress in arid inland river basins. In hyper-arid oases, strong evaporative demand and declining groundwater levels impose tightly coupled constraints on plant water uptake across soil–plant–atmosphere continua. In this study, we combined hydrogen and oxygen stable isotopes, Bayesian mixing models, soil moisture measurements and groundwater monitoring, and leaf δ13C analysis to quantify monthly water-source contributions and long-term water-use efficiency of three dominant species (Reaumuria soongarica, Tamarix ramosissima, and Populus euphratica) in the Ejina Oasis. Clear ecohydrological niche differentiation was evident among the three species. R. soongarica exhibited moderate temporal flexibility by integrating shallow and deep soil water with episodic groundwater use, whereas T. ramosissima adopted a vertically integrated and hydraulically plastic strategy combining precipitation, multi-depth soil water, and groundwater. In contrast, P. euphratica followed a conservative strategy, relying predominantly on deep soil water with only minor and transient inputs from precipitation and groundwater. Across species and seasons, deep vadose-zone soil water (120–200 cm) consistently acted as the most stable and influential reservoir, buffering seasonal drought and sustaining transpiration. T. ramosissima maintained the highest intrinsic water-use efficiency, and P. euphratica exhibited consistently lower efficiency associated with sustained access to stable deep soil water. These contrasting strategies reveal multiple pathways of hydraulic stability and plasticity that underpin vegetation persistence under progressive groundwater depletion. By linking water-source partitioning with physiological regulation, this study provides a mechanistic basis for understanding plant water-use strategies and informs ecological water management and species-specific restoration in hyper-arid inland oases. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

24 pages, 393 KB  
Article
Global Transition of Energy Vectors in the Maritime Sector: Role of Liquefied Natural Gas, Green Hydrogen, and Ammonia in Achieving Net Zero by 2050
by Carmen Luisa Vásquez Stanescu, Rhonmer Pérez-Cedeño, Jesús C. Hernández and Teresa Batista
Energies 2026, 19(2), 568; https://doi.org/10.3390/en19020568 (registering DOI) - 22 Jan 2026
Viewed by 16
Abstract
The global transition toward net-zero emissions by 2050, encompassing the International Energy Agency’s Roadmap for the energy sector, the IMO’s revised strategy for the maritime industry, and broader climate guidelines, necessitates a profound transformation of both global energy systems and the shipping sector. [...] Read more.
The global transition toward net-zero emissions by 2050, encompassing the International Energy Agency’s Roadmap for the energy sector, the IMO’s revised strategy for the maritime industry, and broader climate guidelines, necessitates a profound transformation of both global energy systems and the shipping sector. In this context, energy vectors such as Liquefied Natural Gas, Green Hydrogen, and Ammonia are emerging as key elements for this shift. This review article proposes a comprehensive analysis of these vectors, contrasting their roles: Liquefied Natural Gas as a transitional solution and Hydrogen and Ammonia as long-term pillars for decarbonization. The research moves beyond a simple comparative analysis, offering a detailed mapping and evaluation of the global port infrastructure required for their safe handling, cryogenic storage, and bunkering operations. We examine their technical specifications, decarbonization potential, and the challenges related to operational feasibility, costs, regulation, and sustainability. The objective is to provide a critical perspective on how the evolution of maritime ports into energy hubs is a sine qua non condition for the secure and efficient management of these vectors, thereby ensuring the sector effectively meets the Net Zero 2050 climate goals. Full article
22 pages, 5497 KB  
Article
Numerical Study of Combustion in a Methane–Hydrogen Co-Fired W-Shaped Radiant Tube Burner
by Daun Jeong, Seongbong Ha, Jeongwon Seo, Jinyeol Ahn, Dongkyu Lee, Byeongyun Bae, Jongseo Kwon and Gwang G. Lee
Energies 2026, 19(2), 557; https://doi.org/10.3390/en19020557 - 22 Jan 2026
Viewed by 20
Abstract
Three-dimensional computational fluid dynamics (CFD) simulation was performed using the eddy-dissipation concept coupled with detailed hydrogen oxidation kinetics and a reduced two-step methane mechanism for a newly proposed W-shaped radiant tube burner (RTB). The effects of the hydrogen volume fraction (0–100%) and excess [...] Read more.
Three-dimensional computational fluid dynamics (CFD) simulation was performed using the eddy-dissipation concept coupled with detailed hydrogen oxidation kinetics and a reduced two-step methane mechanism for a newly proposed W-shaped radiant tube burner (RTB). The effects of the hydrogen volume fraction (0–100%) and excess air ratio (0%, 10%, 20%) on the flame morphology, temperature distribution, and NOX emissions are systematically analyzed. The results deliver three main points. First, a flame-shape transformation was identified in which the near-injector flame changes from a triangular attached mode to a splitting mode as the mixture reactivity increases with the transition occurring at a characteristic laminar flame speed window of about 0.33 to 0.36 m/s. Second, NOX shows non-monotonic behavior with dilution, and 10% excess air can produce higher NOX than 0% or 20% because OH radical enhancement locally promotes thermal NO pathways despite partial cooling. Third, a multi-parameter coupling strategy was established showing that hydrogen enrichment raises the maximum gas temperature by roughly 100 to 200 K from 0% to 100% H2, while higher excess air improves axial temperature uniformity and can suppress NOX if over-dilution is avoided. These findings provide a quantitative operating map for balancing stability, uniform heating, and NOX–CO trade-offs in hydrogen-enriched industrial RTBs. Full article
Show Figures

Figure 1

12 pages, 2588 KB  
Article
Low-Odor High-Density Fiberboard Enabled by Supramolecular Interactions in Wood Fibers
by Xia Yu, Zongying Fu, Bo Liu, Xiaoxuan Guo, Yun Lu and Lihong Yao
Polymers 2026, 18(2), 297; https://doi.org/10.3390/polym18020297 - 22 Jan 2026
Viewed by 19
Abstract
The development of sustainable wood-based composites has driven increasing interest in formaldehyde-free, low-odor, and recyclable bonding systems. However, achieving high mechanical performance and dimensional stability in high-density fiberboards (HDFs) without synthetic adhesives remains a challenge. Here, we report a two-step strategy combining oxidative [...] Read more.
The development of sustainable wood-based composites has driven increasing interest in formaldehyde-free, low-odor, and recyclable bonding systems. However, achieving high mechanical performance and dimensional stability in high-density fiberboards (HDFs) without synthetic adhesives remains a challenge. Here, we report a two-step strategy combining oxidative pretreatment of wood fibers with supramolecular assembly of tannic acid (TA) and sodium ions (Na+) to fabricate low-odor, recyclable HDF. Oxidation generated abundant carboxyl groups on the fiber surface, enabling strong coordination and hydrogen-bonding interactions between TA and Na+, which constructed robust inter-fiber supramolecular networks without formaldehyde-based adhesives. The resulting HDF exhibited excellent mechanical properties, with an internal bond strength of 3.1 MPa, a modulus of rupture of 49 MPa, and 24 h water thickness swelling of only 12%. Odor and VOC analysis revealed only trace benzene, demonstrating markedly low odor. Furthermore, the reversible nature of Na+-TA interactions allowed efficient fiber separation and recyclability under mild aqueous conditions. This oxidation-assisted supramolecular approach provides a sustainable route for producing high-performance, low-odor, and recyclable fiberboards, offering a viable alternative to conventional polymer-bonded wood composites. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

Back to TopTop