Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (357)

Search Parameters:
Keywords = hydrogen heat treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3079 KiB  
Review
Progress in Caking Mechanism and Regulation Technologies of Weakly Caking Coal
by Zhaoyang Li, Shujun Zhu, Ziqu Ouyang, Zhiping Zhu and Qinggang Lyu
Energies 2025, 18(15), 4178; https://doi.org/10.3390/en18154178 - 6 Aug 2025
Abstract
Efficient and clean utilization remains a pivotal development focus within the coal industry. Nevertheless, the application of weakly caking coal results in energy loss due to the caking property, thereby leading to a waste of resources. This paper, therefore, concentrates on the caking [...] Read more.
Efficient and clean utilization remains a pivotal development focus within the coal industry. Nevertheless, the application of weakly caking coal results in energy loss due to the caking property, thereby leading to a waste of resources. This paper, therefore, concentrates on the caking property, offering insights into the relevant caking mechanism, evaluation indexes, and regulation technologies associated with it. The caking mechanism delineates the transformation process of coal into coke. During pyrolysis, the active component generates the plastic mass in which gas, liquid, and solid phases coexist. With an increase in temperature, the liquid phase is diminished gradually, causing the inert components to bond. Based on the caking mechanism, evaluation indexes such as that characteristic of char residue, the caking index, and the maximal thickness of the plastic layer are proposed. These indexes are used to distinguish the strength of the caking property. However, they frequently exhibit a poor differentiation ability and high subjectivity. Additionally, some technologies have been demonstrated to regulate the caking property. Technologies such as rapid heating treatment and hydrogenation modification increase the amount of plastic mass generated, thereby improving the caking property. Meanwhile, technologies such as mechanical breaking and pre-oxidation reduce the caking property by destroying agglomerates or consuming plastic mass. Full article
(This article belongs to the Special Issue Advanced Clean Coal Technology)
Show Figures

Figure 1

24 pages, 6760 KiB  
Article
Influence of Microstructure and Heat Treatment on the Corrosion Resistance of Mg-1Zn Alloy Produced by Laser Powder Bed Fusion
by Raúl Reyes-Riverol, Ángel Triviño-Peláez, Federico García-Galván, Marcela Lieblich, José Antonio Jiménez and Santiago Fajardo
Metals 2025, 15(8), 853; https://doi.org/10.3390/met15080853 - 30 Jul 2025
Viewed by 289
Abstract
The corrosion behavior of an additively manufactured Mg-1Zn alloy was investigated in both the transverse and longitudinal directions relative to the build direction, in the as-built condition and after annealing at 350 °C for 24 h under high vacuum. Microstructural characterization using XRD [...] Read more.
The corrosion behavior of an additively manufactured Mg-1Zn alloy was investigated in both the transverse and longitudinal directions relative to the build direction, in the as-built condition and after annealing at 350 °C for 24 h under high vacuum. Microstructural characterization using XRD and SEM revealed the presence of magnesium oxide (MgO) and the absence of intermetallic second-phase particles. Optical microscopy (OM) images and Electron Backscatter Diffraction (EBSD) maps showed a highly complex grain morphology with anomalous, anisotropic shapes and a heterogeneous grain size distribution. The microstructure includes grains with a pronounced columnar morphology aligned along the build direction and is therefore characterized by a strong crystallographic texture. Electrochemical techniques, including PDP and EIS, along with gravimetric H2 collection, concluded that the transverse plane exhibited greater corrosion resistance compared to the longitudinal plane. Additionally, an increase in cathodic kinetics was observed when comparing as-built with heat-treated samples. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

21 pages, 1897 KiB  
Article
Simulation of Conventional WWTPs Acting as Mediators in H2/CO2 Conversion into Methane
by Rubén González and Xiomar Gómez
Environments 2025, 12(7), 245; https://doi.org/10.3390/environments12070245 - 16 Jul 2025
Viewed by 509
Abstract
CO2-biomethanation was studied in the present manuscript by considering the direct injection of hydrogen into a conventional anaerobic digester treating sewage sludge within a simulated wastewater treatment plant (WWTP). The plant was simulated using the Python 3.12.4 software, and a Monte [...] Read more.
CO2-biomethanation was studied in the present manuscript by considering the direct injection of hydrogen into a conventional anaerobic digester treating sewage sludge within a simulated wastewater treatment plant (WWTP). The plant was simulated using the Python 3.12.4 software, and a Monte Carlo simulation was conducted to account for the high variability in the organic content of the wastewater and the methane potential of the sludge. Two modes of operation were studied. The first mode involves the use of an anaerobic digester to upgrade biogas, and the second mode considers using the digester as a CO2 utilization unit, transforming captured CO2. Upgrading biogas and utilizing the extra methane to generate electricity within the same plant leads to a negative economic balance (first scenario). A hydrogen injection of 1 L of H2/Lr d (volumetric H2 injection per liter of reactor per day) was required to transform the CO2 present in the biogas into methane. The benefits associated with this approach resulted in lower savings regarding heat recovery from the electrolyzer, increased electricity production, and an additional oxygen supply for the waste-activated sludge treatment system. Increasing the injection rate to values of 5 and 30 L of H2/Lr d was also studied by considering the operation of the digester under thermophilic conditions. The latter assumptions benefited from the better economy of scale associated with larger installations. They allowed for enough savings to be obtained in terms of the fuel demand for sludge drying, in addition to the previous categories analyzed in the biogas upgrading case. However, the current electricity price makes the proposal unfeasible unless a lower price is set for hydrogen generation. A standard electricity price of 7.6 c€/kWh was assumed for the analysis, but the specific operation of producing hydrogen required a price below 3.0 c€/kWh to achieve profitability. Full article
Show Figures

Figure 1

12 pages, 1673 KiB  
Article
Low Tenacity of Toxoplasma gondii Tachyzoites In Vitro
by Thomas Grochow, Mirjam Kalusa, Pauline Tonndorf-Martini, Nicole Röhrmann, Simone A. Fietz and Lea-Christina Murnik
Microorganisms 2025, 13(7), 1517; https://doi.org/10.3390/microorganisms13071517 - 29 Jun 2025
Viewed by 865
Abstract
Toxoplasma gondii, an obligate intracellular protozoan, poses significant risks to public health due to its widespread distribution and potential for severe congenital and neurological complications. The fast-replicating tachyzoite stage is crucial for acute infection and laboratory studies, yet effective inactivation methods remain [...] Read more.
Toxoplasma gondii, an obligate intracellular protozoan, poses significant risks to public health due to its widespread distribution and potential for severe congenital and neurological complications. The fast-replicating tachyzoite stage is crucial for acute infection and laboratory studies, yet effective inactivation methods remain inadequately explored. This study evaluates various chemical and physical approaches to inactivate T. gondii tachyzoites in vitro. Using a combination of GFP fluorescence and viability assays, we demonstrated the complete inactivation of tachyzoites with ethanol (≥30%), hydrogen peroxide (≥3%), o-hydroxydiphenyl fatty acid eutectic with peracetic acid (≥1%), and heat treatment at 60 °C for 30 min. Our findings highlight the importance of concentration, solvent choice, and exposure time in disinfection efficacy, providing a framework for improving laboratory safety protocols. These results contribute to the refinement of inactivation strategies, supporting safer handling and research on T. gondii in vitro while reducing reliance on animal models. Full article
Show Figures

Figure 1

15 pages, 3928 KiB  
Article
Environmental Stability of Li6PS5Cl0.5Br0.5 Electrolyte During Lithium Battery Manufacturing and a Simplified Test Protocol
by Eman Hassan and Siamak Farhad
Energies 2025, 18(13), 3391; https://doi.org/10.3390/en18133391 - 27 Jun 2025
Viewed by 335
Abstract
In this study, we investigate the environmental stability of the sulfide-based argyrodite solid electrolyte Li6PS5Cl0.5Br0.5, a promising candidate for all-solid-state lithium batteries due to its high ionic conductivity and favorable mechanical [...] Read more.
In this study, we investigate the environmental stability of the sulfide-based argyrodite solid electrolyte Li6PS5Cl0.5Br0.5, a promising candidate for all-solid-state lithium batteries due to its high ionic conductivity and favorable mechanical properties. Despite its potential, the material’s sensitivity to ambient air humidity presents challenges for large-scale battery manufacturing. Moisture exposure leads to performance degradation and the release of toxic hydrogen sulfide (H2S) gas, raising concerns for workplace safety. The objectives of this study are to validate the electrolyte synthesis process, evaluate the effects of air humidity exposure on its reactivity and ionic conductivity, and establish a standardized protocol for assessing environmental stability. We report a synthesis method based on ball milling and heat treatment that achieves an ionic conductivity of 2.11 mS/cm, along with a fundamental study incorporating modeling and formulation approaches to evaluate the electrolyte’s environmental stability. Furthermore, we introduce a simplified testing method for assessing environmental stability, which may serve as a benchmark protocol for the broader class of argyrodite solid electrolytes. Full article
(This article belongs to the Special Issue Advances in Manufacturing and Recycling of Energy Systems)
Show Figures

Figure 1

18 pages, 3655 KiB  
Article
Herbal Cuscutae Semen Contributes to Oxidative Stress Tolerance and Extends Lifespan via Sirtuin1 in Caenorhabditis elegans
by Chunyan Chen, Yudie Liu, Jing Hu, Yihan Gu, Weiwei Li, Hui Yue, Sijing An, Na Sun, Peng Zhang, Nan Li and Lin Miao
Antioxidants 2025, 14(7), 786; https://doi.org/10.3390/antiox14070786 - 26 Jun 2025
Viewed by 609
Abstract
Cuscutae Semen (CS), a traditional herb recognized as a nutraceutical food in China, has been widely utilized in managing aging-related diseases throughout history. However, whether this mechanism is associated with mitochondrial stress tolerance remains unclear. In the present study, Caenorhabditis elegans (C. [...] Read more.
Cuscutae Semen (CS), a traditional herb recognized as a nutraceutical food in China, has been widely utilized in managing aging-related diseases throughout history. However, whether this mechanism is associated with mitochondrial stress tolerance remains unclear. In the present study, Caenorhabditis elegans (C. elegans) was used to investigate the effects of CS on their longevity. The data demonstrated that CS prolonged the average lifespan of the nematodes by 15.26%, reducing lipofuscin accumulation by 61.46%, as well as improving spontaneous motility. CS treatment significantly enhanced the resistance of C. elegans to hydrogen peroxide-induced oxidative stress and 37 °C induced heat stress, reducing reactive oxygen species (ROS) production by 71.45%. Additionally, membrane potential (MMP) and adenosine triphosphate (ATP) were increased by 354.72% and 69.64%, respectively. However, mitochondrion-specific ROS and calcium flux were significantly reduced to 45.86% and 63.25%, respectively, in C. elegans treated with CS. Consistently, the polymerase chain reaction data revealed that CS significantly up-regulated the expressions of the antioxidant-related genes skn-1, ctl-1, sod-3, and gst-4; the heat shock gene hsp-16.2; and the autophagy-related genes lgg-1 and bec-1. Considering the crucial role of the silent information regulator sirtuin 1 (SIR-2.1/SIRT1) in aging-related mitochondrial oxidative stress, we examined its expression and transcriptional activity. As expected, treatment with CS induced SIRT1 expression, and isorhamnetin identified from CS extract significantly enhanced SIRT1 transcriptional activity in HEK293T cells. Collectively, our results provided evidence that CS prolonged the lifespan of C. elegans by ameliorating oxidative stress damage and mitochondrial dysfunction via SIRT1. Full article
Show Figures

Figure 1

17 pages, 4407 KiB  
Article
Effect of T6 and T8 Ageing on the Mechanical and Microstructural Properties of Graphene-Reinforced AA2219 Composites for Hydrogen Storage Tank Inner Liner Applications
by Bharathiraja Parasuraman, Ashwath Pazhani, Anthony Xavior Michael, Sudhagar Pitchaimuthu and Andre Batako
J. Compos. Sci. 2025, 9(7), 328; https://doi.org/10.3390/jcs9070328 - 25 Jun 2025
Viewed by 396
Abstract
This study examines the mechanical and microstructural properties of graphene-reinforced AA2219 composites developed for hydrogen storage tank inner liner applications. A novel processing route combining high-energy ball milling, ultrasonic-assisted stir casting, and squeeze casting was used to achieve homogeneous dispersion of 0.5 wt.% [...] Read more.
This study examines the mechanical and microstructural properties of graphene-reinforced AA2219 composites developed for hydrogen storage tank inner liner applications. A novel processing route combining high-energy ball milling, ultrasonic-assisted stir casting, and squeeze casting was used to achieve homogeneous dispersion of 0.5 wt.% graphene nanoplatelets and minimise agglomeration. The composites were subjected to T6 and T8 ageing treatments to optimize their properties. Microstructural analysis revealed refined grains, uniform Al2Cu precipitate distribution, and stable graphene retention. Mechanical testing showed that the as-cast composite exhibited a UTS of 308.6 MPa with 13.68% elongation. After T6 treatment, the UTS increased to 353.6 MPa with an elongation of 11.24%. T8 treatment further improved the UTS to 371.5 MPa, with an elongation of 8.54%. Hardness improved by 46%, from 89.6 HV (as-cast) to 131.3 HV (T8). Fractography analysis indicated a shift from brittle to ductile fracture modes after heat treatment. The purpose of this work is to develop lightweight, high-strength composites for hydrogen storage applications. The novelty of this study lies in the integrated processing approach, which ensures uniform graphene dispersion and superior mechanical performance. The results demonstrate the suitability of these composites for advanced aerospace propulsion systems. Full article
(This article belongs to the Special Issue Composite Materials for Hydrogen Storage)
Show Figures

Figure 1

32 pages, 3453 KiB  
Article
Activated Carbons from Apricot Kernel Shells for Wastewater Treatment: Adsorption of Pb2+ and Rhodamine B with Equilibrium, Kinetics, Thermodynamics, and DFT Analysis
by Milena Pijović Radovanović, Marija Ječmenica Dučić, Dragana Vasić Anićijević, Vladimir Dodevski, Sanja Živković, Vladimir Pavićević and Bojan Janković
Processes 2025, 13(6), 1715; https://doi.org/10.3390/pr13061715 - 30 May 2025
Viewed by 807
Abstract
Apricot kernel shells were evaluated as a sustainable activated carbon precursor for wastewater treatment using experimental and theoretical methods. Two adsorbents were synthesized: physically activated with CO2 (AKS-CO2) and chemically activated with H3PO4 (AKS-H3PO4 [...] Read more.
Apricot kernel shells were evaluated as a sustainable activated carbon precursor for wastewater treatment using experimental and theoretical methods. Two adsorbents were synthesized: physically activated with CO2 (AKS-CO2) and chemically activated with H3PO4 (AKS-H3PO4). Comprehensive materials characterization and adsorption tests using Pb2+ ions and Rhodamine B dye (RhB) as model pollutants revealed that AKS-H3PO4 significantly outperformed its physically activated counterpart. With an exceptionally high specific surface area (1159.4 m2/g) enriched with phosphorus-containing functional groups, the chemically activated carbon demonstrated outstanding removal efficiencies of 85.1% for Pb2+ and 80.3% for RhB. Kinetic studies showed Pb2+ adsorption followed pseudo-second-order kinetics, indicating chemisorption, while RhB adsorption fitted pseudo-first-order kinetics, suggesting intra-particle diffusion control. The thermodynamic analysis confirmed the spontaneity of both processes: Pb2+ adsorption was exothermic under standard conditions with positive isosteric heat at higher concentrations, reinforcing its chemisorption nature, whereas RhB adsorption was endothermic, consistent with physisorption. Density Functional Theory (DFT) calculations further elucidated the mechanisms, revealing that Pb2+ preferentially binds to oxygen-containing functional groups, while RhB interacts through hydrogen bonding and π–π stacking. These findings establish chemically activated apricot kernel shell carbon as a high-performance adsorbent, exhibiting exceptional removal capacity for both ionic and molecular contaminants through distinct adsorption mechanisms. Full article
(This article belongs to the Special Issue Advanced Wastewater Treatment Processes and Technologies)
Show Figures

Graphical abstract

31 pages, 9985 KiB  
Article
Additively Manufactured 316L Stainless Steel: Hydrogen Embrittlement Susceptibility and Electrochemical Gas Production
by Reham Reda, Sabbah Ataya, Mohamed Ayman, Khaled Saad, Shimaa Mostafa, Gehad Elnady, Rashid Khan and Yousef G. Y. Elshaghoul
Appl. Sci. 2025, 15(11), 5824; https://doi.org/10.3390/app15115824 - 22 May 2025
Viewed by 812
Abstract
Interest in hydrogen is rapidly growing due to rising greenhouse gas emissions and the depletion of fossil fuel reserves. Additive manufacturing (AM) is extensively employed to produce high-quality components, with a strong focus on enhancing mechanical properties. The efficiency and cost-effectiveness of AM [...] Read more.
Interest in hydrogen is rapidly growing due to rising greenhouse gas emissions and the depletion of fossil fuel reserves. Additive manufacturing (AM) is extensively employed to produce high-quality components, with a strong focus on enhancing mechanical properties. The efficiency and cost-effectiveness of AM have further increased interest in its application to manufacturing components capable of withstanding demanding conditions, such as those encountered in hydrogen technology. In this study, 316L stainless steel specimens were fabricated using AM via the selective laser melting (SLM) technique. The specimens then underwent various post-processing heat treatments (PPHT). A subset of these specimens, measuring 50 × 50 × 3 mm3, was tested as electrodes in a water electrolysis cell for oxyhydrogen (HHO) gas production. The HHO gas flow rate and electrolyzer efficiency were evaluated at 60 °C under varying currents. The remaining AM specimens were evaluated for their susceptibility to hydrogen embrittlement under various hydrogen storage conditions, including testing at both room and cryogenic temperatures. Tensile and Charpy impact specimens were fabricated and tested before and after hydrogen charging. The fracture surfaces were analyzed using scanning electron microscopy (SEM) to assess the influence of hydrogen on fracture characteristics. Additionally, as-rolled stainless-steel specimens were examined for comparison with AM and PPHT 316L stainless steel. The primary objective of this study is to determine the most efficient alloy processing condition for optimal performance in each application. Results indicate that PPHT 316L stainless steel exhibits superior performance both as electrodes for HHO gas production and as a material for hydrogen storage vessels, demonstrating high resistance to hydrogen embrittlement. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

17 pages, 4918 KiB  
Article
Cultivar-Specific Responses of Spinach to Root-Zone Cooling in Hydroponic Systems in a Greenhouse Under Warm Climates
by Md Noor E Azam Khan, Joseph Masabni and Genhua Niu
Sustainability 2025, 17(9), 3925; https://doi.org/10.3390/su17093925 - 27 Apr 2025
Viewed by 712
Abstract
Growing spinach year-round via greenhouse hydroponics in warm climates can be challenging because of the intolerance of many spinach cultivars to heat. Root-zone cooling in hydroponic systems in warm climates may be a promising cooling method to alleviate heat stress; however, its effectiveness [...] Read more.
Growing spinach year-round via greenhouse hydroponics in warm climates can be challenging because of the intolerance of many spinach cultivars to heat. Root-zone cooling in hydroponic systems in warm climates may be a promising cooling method to alleviate heat stress; however, its effectiveness is still unknown in spinach plants. This study aimed to investigate the impact of root-zone cooling on the growth and physiological responses of four spinach cultivars (‘Lakeside’, ‘Hammerhead’, ‘Mandolin’, and ‘SV2157’) grown in deep water culture hydroponic systems in a greenhouse during the summer season in two growing cycles. The experiment consisted of the following three root-zone temperatures (RZTs): Control (ambient water temperature), RZT24 (24 °C), and RZT21 (21 °C). Among the four cultivars, ‘SV2157’ performed equally regardless of the treatment, demonstrating superior heat tolerance versus the other three cultivars. ‘Mandolin’ exhibited the greatest benefit from root-zone cooling, with increases in shoot dry weights of 87% and 94% under RZT24 and RZT21, respectively, compared to those under control treatment. Additionally, total leaf areas significantly increased under the two root-zone cooling treatments. ‘Lakeside’ and ‘Hammerhead’ generally benefited from root-zone cooling, although the magnitude of growth increases was small or statistically insignificant. However, ‘Lakeside’ and ‘Hammerhead’ were highly responsive to lower ambient air temperatures, as evidenced by increases of 121% and 90%, respectively, in shoot fresh weights across the treatments in Cycle 2 (average air temperature of 24.7 °C) compared to those in Cycle 1 (29.3 °C). Physiological responses to root-zone cooling varied among cultivars, with ‘SV2157’ exhibiting the highest chlorophyll, carotenoid, and anthocyanin levels. Higher total phenolic contents under control treatment in Cycle 1 in all three cultivars except for ‘SV2157’ suggested greater reactive oxygen species production, indicating oxidative stress. Root-zone cooling reduced oxidative stress indicators, including mortality (%), hydrogen peroxide content, and malondialdehyde content, and minimized cell leakage. Based on plant growth, physiological and biochemical traits, and electricity consumption, cooling the root zone to 24 °C rather than 21 °C is recommended for hot summers with high air temperatures. Full article
Show Figures

Figure 1

44 pages, 2521 KiB  
Article
Evaluation of Environmental Sustainability of Biorefinery and Incineration with Energy Recovery Based on Life Cycle Assessment
by Alejandra Gabriela Yáñez-Vergara, Héctor Mario Poggi-Varaldo, Guadalupe Pérez-Morales, Perla Xochitl Sotelo-Navarro, América Alejandra Padilla-Viveros, Yasuhiro Matsumoto-Kuwahara, Teresa Ponce-Noyola and Rocío Sánchez-Pérez
Fermentation 2025, 11(4), 232; https://doi.org/10.3390/fermentation11040232 - 21 Apr 2025
Viewed by 658
Abstract
Based on Life Cycle Assessment (LCA) and ISO standards, we compared the global environmental sustainability (ES) of two technologies that process the organic fraction of municipal solid waste (OFMSW) in Mexico. The first technology was a biorefinery (BRF) known as HMEZSNN-BRF (abbreviation for [...] Read more.
Based on Life Cycle Assessment (LCA) and ISO standards, we compared the global environmental sustainability (ES) of two technologies that process the organic fraction of municipal solid waste (OFMSW) in Mexico. The first technology was a biorefinery (BRF) known as HMEZSNN-BRF (abbreviation for Hydrogen-Methane-Extraction-Enzyme-Saccharification/Nanoproduction Biorefinery); it produces the gas biofuels hydrogen (H) and methane (M), organic acids (E), enzymes (Z), saccharified liquors (S), and bionanobioparticles (BNBPs) in a nanoproduction stage (NN). The second technology was incineration with energy recovery (IER). An LCA was performed with a functional unit (FU) of 1000 kg of OFMSW. The BRF generates 166.4 kWh/FU (600 MJ) of net electricity, along with bioproducts such as volatile organic acids (38 kg), industrial enzyme solution (1087 kg), and BNBPs (40 kg). The IER only produces 393 net kWh/FU electricity and 5653 MJ/FU heat. The characterization potential environmental impacts (PEIs) were assessed using SimaPro software, and normalized PEIs (NPEIs) were calculated accordingly. We defined a new variable alpha and the indices σ-τ plane for quantifying the ES. The higher the alpha, the lower the ES. Alpha was the sum of the eighteen NPEIs aligned with the ISO standards. The contributions to PEI and NPEI were also analyzed. Four NPEIs were the highest in both technologies, i.e., freshwater and marine ecotoxicities and human non-carcinogenic and carcinogenic toxicities. For the three first categories, the NPEI values corresponding to IER were much higher than those of the BRF (58.6 and 8.7 person*year/FU freshwater toxicity; 93.5 and 13.6 marine ecotoxicity; 12.1 and 1.8 human non-carcinogenic toxicity; 13.7 and 13.9 human carcinogenic toxicity, for IER and the BRF, respectively). The total α values were 179.1 and 40.7 (person*yr)/FU for IER and the BRF, respectively. Thus, the ES of IER was four times lower than that of the BRF. Values of σ = 0.592 and τ = −0.368 were found; the point defined by these coordinates in the σ-τ plane was located in Quadrant IV. This result confirmed that the BRF in this work is more environmentally sustainable (with restrictions) than the IER in Mexico for the treatment of the OFMSW. Full article
(This article belongs to the Special Issue Microbial Biorefineries: 2nd Edition)
Show Figures

Figure 1

14 pages, 2508 KiB  
Article
Selective Adsorption of VOCs/Water Vapor on Activated Carbon: The Role of Adsorbent and VOC Molecular Polarity
by Wenlin Hang, Jiaxing Sun, Ronghang Zhao, Heng Chen and Jinjin Li
Separations 2025, 12(4), 86; https://doi.org/10.3390/separations12040086 - 2 Apr 2025
Cited by 1 | Viewed by 788
Abstract
The presence of abundant water vapor in industrial organic waste gases greatly reduces the selective adsorption of volatile organic pollutants (VOCs). The polarity of the adsorbent and VOC molecules plays an important role in the adsorption process, especially in the presence of water [...] Read more.
The presence of abundant water vapor in industrial organic waste gases greatly reduces the selective adsorption of volatile organic pollutants (VOCs). The polarity of the adsorbent and VOC molecules plays an important role in the adsorption process, especially in the presence of water vapor. In this paper, commercial coconut shell activated carbon (CSC) was modified by a thermal reduction treatment to obtain heat-treated coconut shell activated carbon (HCSC). CSC and HCSC exhibited similar pore structure characteristics but differed significantly in surface oxygen content (10.97% and 7.55%, respectively). Dynamic adsorption breakthrough experiments were conducted to determine the dynamic adsorption capacities of toluene on both adsorbents under varying relative humidity levels. HCSC demonstrated superior toluene/water vapor adsorption selectivity. Further analyses of toluene adsorption kinetics, activation energy, and water vapor adsorption isotherms revealed that the lower surface oxygen functional group content of HCSC resulted in a weaker surface polarity, facilitating the adsorption of weakly polar toluene. This was attributed to stronger toluene–HCSC interactions and weaker water–HCSC interactions. The dynamic adsorption capacities of three VOCs with varying polarities were also tested on HCSC. The observed VOC/water vapor adsorption selectivity had the following order: toluene > n-heptane > 1,2-dichloroethane. Grand Canonical Monte Carlo (GCMC) simulations were employed to quantify the relationship between the adsorption selectivity of eight VOCs with varying polarities and their molecular polarity. The results indicated a decrease in adsorption selectivity with increasing VOC polarity. A mechanistic analysis suggests that more polar VOCs prefer to adsorb polar oxygen-containing functional groups, competing with water molecules for adsorption sites. Under high humidity, hydrogen bonding leads to the formation of water clusters, exacerbating this competition. This research holds significant implications for the efficient selective adsorption of VOCs with varying polarities in humid industrial conditions. Full article
Show Figures

Figure 1

15 pages, 2720 KiB  
Article
Ion Implantation Combined with Heat Treatment Enables Excellent Conductivity and Corrosion Resistance of Stainless Steel Bipolar Plate Anode for Hydrogen Fuel Cells
by Li Ding, Chaoqin Ren, Ruijuan Wang, Meng Yang and Yong Pan
Materials 2025, 18(7), 1483; https://doi.org/10.3390/ma18071483 - 26 Mar 2025
Viewed by 570
Abstract
The broad use of (stainless steel) SS 316 L bipolar plates (BPs) in proton exchange membrane fuel cells relies (PEMFC) on high conductivity and corrosion resistance. To enhance the properties of stainless steel, this study applies ion implantation and heat treatment to form [...] Read more.
The broad use of (stainless steel) SS 316 L bipolar plates (BPs) in proton exchange membrane fuel cells relies (PEMFC) on high conductivity and corrosion resistance. To enhance the properties of stainless steel, this study applies ion implantation and heat treatment to form a non-homogeneous modified layer on SS 316 L. The injection of C and Mo ions on the SS 316 L surface caused irradiation damage, producing holes. But with the heat treatment of the ion-implanted samples, the irradiation-damaged surface will be repaired to a certain extent. The corrosion current density (Icorr) of the 600 °C sample in the kinetic potential test (5.32 × 10−4 A/cm2) was 54% lower than that of the naked SS 316 L (1.17 × 10−3 A/cm2). In the electrostatic potential test, the corrosion current of the 600 °C sample stabilized at a low value (about 0.26 μA/cm2), with the lowest concentration of dissolved metal ions (Fe2+ 2.908 mg/L). After anodic electrostatic potential polarization, the interfacial contact resistance (ICR) of (Mo+C)600-1 was much lower than that of the untreated SS 316 L. Heat treatment experiments show that samples treated at 600 °C for 1 h exhibit significantly higher conductivity and anodic corrosion resistance than naked SS 316 L. This improvement is mainly due to the heat treatment under these conditions, which facilitated the formation of Mo carbides from the implanted C and Mo elements. Ion implantation and heat treatment enhance stainless steel surface conductivity and passive film corrosion resistance. These findings are useful in altering stainless steel BPs. Full article
Show Figures

Figure 1

13 pages, 5275 KiB  
Article
Effects of Annealing on Hydrogen Storage Performance in TiZrCrMnFeNi High-Entropy Alloy
by Tengfei Cheng, Jing Huang, Wanggang Fang, Liqing He, Xiangqun Duan, Guotong Zou, Xiao Li and Xinghai Ren
Crystals 2025, 15(4), 297; https://doi.org/10.3390/cryst15040297 - 25 Mar 2025
Viewed by 528
Abstract
This study employed annealing heat treatment ranging from 900 to 1300 °C to systematically investigate the effects of annealing temperature on the microstructure and hydrogen storage performance of the equimolar TiZrCrMnFeNi high-entropy alloy. The research indicates that the TiZrCrMnFeNi high-entropy alloy is composed [...] Read more.
This study employed annealing heat treatment ranging from 900 to 1300 °C to systematically investigate the effects of annealing temperature on the microstructure and hydrogen storage performance of the equimolar TiZrCrMnFeNi high-entropy alloy. The research indicates that the TiZrCrMnFeNi high-entropy alloy is composed of the C14 Laves phase and a small amount of cubic phase. Compared to the as-cast alloy, the alloy annealed at high temperature (1000~1200 °C) exhibited increased microstructure homogeneity, a higher content of the C14 Laves phase, and a significant enhancement in hydrogen storage capacity. The annealing heat treatment led to changes in the unit cell volume of the C14 Laves phase, with an inverse relationship between unit cell volume and hydrogen absorption and desorption plateau pressures. An increase in unit cell volume resulted in a lower desorption plateau pressure, making the desorption reaction more difficult and consequently increasing the enthalpy change for desorption. This study not only reveals the intrinsic relationship between annealing temperature and the hydrogen storage performance of high-entropy alloys, but also provides significant experimental evidence and theoretical guidance for the design and development of high-entropy alloy materials with excellent hydrogen storage characteristics. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

16 pages, 8643 KiB  
Article
Tuning the Surface Oxophilicity of PdAu Alloy Nanoparticles to Favor Electrochemical Reactions: Hydrogen Oxidation and Oxygen Reduction in Anion Exchange Membrane Fuel Cells
by Maria V. Pagliaro, Lorenzo Poggini, Marco Bellini, Lorenzo Fei, Tailor Peruzzolo and Hamish A. Miller
Catalysts 2025, 15(4), 306; https://doi.org/10.3390/catal15040306 - 24 Mar 2025
Viewed by 485
Abstract
Anion exchange membrane fuel cells (AEMFCs) are versatile power generation devices that can be fed by both gaseous (H2) and liquid fuels. The development of sustainable, efficient, and stable catalysts for the oxidation of hydrogen (HOR) and oxygen reduction (ORR) under [...] Read more.
Anion exchange membrane fuel cells (AEMFCs) are versatile power generation devices that can be fed by both gaseous (H2) and liquid fuels. The development of sustainable, efficient, and stable catalysts for the oxidation of hydrogen (HOR) and oxygen reduction (ORR) under alkaline conditions remains a challenge currently facing AEMFC technology. Reducing the loading of PGMs is essential for reducing the overall cost of AEMFCs. One strategy involves exploiting the synergistic effects of two metals in bimetallic nanoparticles (NPs). Here, we report that the activity for the HOR and the ORR can be finely tuned through surface engineering of carbon-supported PdAu-PVA NPs. The activity for both ORR and HOR can be adjusted by subjecting the material to heat treatment. Specifically, heat treatment at 500 °C under an inert atmosphere increases the crystallinity and oxophilicity of the nanoparticles, thereby enhancing anodic HOR performance. On the contrary, heat treatment significantly lowers ORR activity, highlighting how reduced surface oxophilicity plays a major role in increasing active sites for ORR. The tailored activity in these catalysts translates into high power densities when employed in AEMFCs (up to 1.1 W cm−2). Full article
Show Figures

Graphical abstract

Back to TopTop