Ion Implantation Combined with Heat Treatment Enables Excellent Conductivity and Corrosion Resistance of Stainless Steel Bipolar Plate Anode for Hydrogen Fuel Cells
Abstract
:1. Introduction
2. Experimental Section
2.1. Sample Preparation
2.2. Surface Characterization
2.3. ICR Measurements
2.4. Electrochemical Measurements
3. Results and Discussion
3.1. Characterization of the Modified Layer
3.2. Open Circuit Potential (OCP) Measurements and Corrosion Tendency Analyses
3.3. Dynamic Potentiodynamic Polarization Scanning and Corrosion Rate Analysis
3.4. Static Potential Current–Time Curve and Corrosion Resistance Stability Analysis
3.5. Interfacial Contact Resistance After Anodic Corrosion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, S.; Woo, S.; Kakati, N.; Lee, Y.; Yoon, Y. Corrosion and electrical properties of carbon/ceramic multilayer coated on stainless steel bipolar plates. Surf. Coat. Technol. 2016, 303, 162–169. [Google Scholar] [CrossRef]
- Tsuchiya, H. Mass production cost of PEM fuel cell by learning curve. Int. J. Hydrogen Energy 2004, 29, 985–990. [Google Scholar] [CrossRef]
- Karimi, S.; Fraser, N.; Roberts, B.; Foulkes, F.R. A Review of Metallic Bipolar Plates for Proton Exchange Membrane Fuel Cells: Materials and Fabrication Methods. Adv. Mater. Sci. Eng. 2012, 2012, 828070. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, C.; Ling, C.-Y.; Han, M.; Yong, R.-Y.; Sun, D.; Chen, J. Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2020, 45, 29832–29847. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, T.; Yang, W.; Cui, H.; Fan, W.; Jiang, K.; Zheng, D.; Wang, M.; Lu, G.; Liu, Z. Design and preparation of composite bipolar plates with synergistic conductive networks of graphite and metal foam. Int. J. Hydrogen Energy 2024, 92, 165–173. [Google Scholar] [CrossRef]
- Liu, R.; Jia, Q.; Zhang, B.; Lai, Z.; Chen, L. Protective coatings for metal bipolar plates of fuel cells: A review. Int. J. Hydrogen Energy 2022, 47, 22915–22937. [Google Scholar] [CrossRef]
- Deryn Chu, R.J. Performance of polymer electrolyte membrane fuel cell (PEMFC) stacks: Part I. Evaluation and simulation of an air-breathing PEMFC stack. J. Power Sources 1999, 83, 128–133. [Google Scholar]
- Makkus, R.C.; Janssen, A.H.H.; de Bruijn, F.A.; Mallan, R.K.A.M. Use of stainless steel for cost competitive bipolar plates in the SPFC. J. Power Sources 2000, 86, 274–282. [Google Scholar]
- Wang, L.; Sun, J. Molybdenum modified AISI 304 stainless steel bipolar plate for proton exchange membrane fuel cell. J. Renew. Sustain. Energy 2013, 5, 21407. [Google Scholar] [CrossRef]
- Li, W.; Zeng, H.; Peng, T.; Gao, Z.; Xie, Z. A High Conductive Composite Bipolar Plate with Conductive Network Constructed by Chemical Vapor Deposition. Energies 2022, 15, 4979. [Google Scholar] [CrossRef]
- Liu, W.; Li, W.; Dong, W.; Guo, L.; Zou, Y.; Yu, C.; Sun, C.; Huang, N.; Sun, X. A novel carbon coating by electrochemical deposition in deep eutectic solvent with the assistance of ammonium chloride for stainless steel bipolar plates. J. Power Sources 2024, 606, 234518. [Google Scholar] [CrossRef]
- Che, J.; Yi, P.; Peng, L.; Lai, X. Impact of pressure on carbon films by PECVD toward high deposition rates and high stability as metallic bipolar plate for PEMFCs. Int. J. Hydrogen Energy 2020, 45, 16277–16286. [Google Scholar] [CrossRef]
- Wang, X.; Luo, H.; Cheng, H.; Yue, L.; Deng, Z.; Yao, J.; Li, X. Investigation on the performance of Pt surface modified Ti bipolar plates in proton exchange membrane water electrolyzer. Appl. Energy 2024, 357, 122517. [Google Scholar] [CrossRef]
- Li, W.; Xie, Z.; Qiu, S.; Zeng, H.; Liu, M.; Wu, G. Improved Performance of Composite Bipolar Plates for PEMFC Modified by Homogeneously Dispersed Multi-Walled Carbon Nanotube Networks Prepared by In Situ Chemical Deposition. Nanomaterials 2023, 13, 365. [Google Scholar] [CrossRef]
- Rashtchi, H.; Atapour, M.; Elmkhah, H.; Reza Rashtchi, H. Nanostructured multilayer Cr/CrN coatings on 316 L stainless steel for proton exchange membrane fuel cell bipolar plates. Fuel 2024, 377, 132761. [Google Scholar] [CrossRef]
- Kesik, O.; Elçi, A.; Kaynar, M.B.; Ceylan, A. Synthesis of Mo/Mo2C-DLC composite thin films via diffusion of plasma generated C atoms into sputter coated Mo thin films. Vacuum 2025, 233, 114008. [Google Scholar] [CrossRef]
- Feng, K.; Wang, Y.; Li, Z.; Chu, P.K. Characterization of carbon ion implantation induced graded microstructure and phase transformation in stainless steel. Mater. Charact. 2015, 106, 11–19. [Google Scholar] [CrossRef]
- Pan, Z.; Luo, H.; Zhao, Q.; Cheng, H.; Wang, X.; Ma, Y.; Li, X. Novel Mo-modified medium entropy alloys achieving enhanced corrosion resistance in acidic solution. Corros. Sci. 2023, 216, 111094. [Google Scholar] [CrossRef]
- Zhou, Y.; Wen, S.F.; Song, B.; Zhou, X.; Teng, Q.; Wei, Q.S.; Shi, Y.S. A novel titanium alloy manufactured by selective laser melting: Microstructure, high temperature oxidation resistance. Mater. Des. 2016, 89, 1199–1204. [Google Scholar] [CrossRef]
- Kiniger, M.; Eisenmenger-Sittner, C.; Hell, J.; Schwarz, B.; Hutter, H.; Puchner, S. Carbide formation upon heat treatment of molybdenum layers deposited on carbon substrates: Comparison of experimental data with a cellular automaton model. Surf. Interface Anal. 2008, 40, 786–789. [Google Scholar] [CrossRef]
- Kim, K.M.; Park, J.H.; Kim, J.H.; Kim, K.Y. Effect of chemical and heat treatment on the interfacial contact resistance and corrosion resistance of 446M ferritic stainless steel as a bipolar plate for polymer electrolyte membrane fuel cells. Int. J. Hydrogen Energy 2011, 36, 9926–9935. [Google Scholar] [CrossRef]
- Jinlong, L.; Zhuqing, W.; Tongxiang, L.; Ken, S.; Hideo, M. Enhancing the corrosion resistance of the 2205 duplex stainless steel bipolar plates in PEMFCs environment by surface enriched molybdenum. Results Phys. 2017, 7, 3459–3464. [Google Scholar] [CrossRef]
- Gallagher, J. Cheap and stable bipolar plates. Nat. Energy 2024, 9, 915. [Google Scholar] [CrossRef]
- Salman, O.O.; Gammer, C.; Chaubey, A.K.; Eckert, J.; Scudino, S. Effect of heat treatment on microstructure and mechanical properties of 316 L steel synthesized by selective laser melting. Mater. Sci. Eng. A 2019, 748, 205–212. [Google Scholar] [CrossRef]
- Chen, X.; Li, J.; Cheng, X.; Wang, H.; Huang, Z. Effect of heat treatment on microstructure, mechanical and corrosion properties of austenitic stainless steel 316 L using arc additive manufacturing. Mater. Sci. Eng. A 2018, 715, 307–314. [Google Scholar] [CrossRef]
- Yari, M.; Larijani, M.M.; Afshar, A.; Eshghabadi, M.; Shokouhy, A. Physical properties of sputtered amorphous carbon coating. J. Alloys Compd. 2012, 513, 135–138. [Google Scholar] [CrossRef]
- Yi, P.; Zhang, D.; Qiu, D.; Peng, L.; Lai, X. Carbon-based coatings for metallic bipolar plates used in proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2019, 44, 6813–6843. [Google Scholar] [CrossRef]
- Singh, R.S.; Gautam, A.; Rai, V. Graphene-based bipolar plates for polymer electrolyte membrane fuel cells. Front. Mater. Sci. 2019, 13, 217–241. [Google Scholar] [CrossRef]
- Madhavan, P.V.; Shahgaldi, S.; Li, X. Modelling Anti-Corrosion Coating Performance of Metallic Bipolar Plates for PEM Fuel Cells: A Machine Learning Approach. Energy AI 2024, 17, 100391. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kim, S.-K.; You, Y.-Z.; Kim, D.-I.; Hong, S.-T.; Suh, H.-C.; Weil, K.S. Niobium Sputter Coated Stainless Steel as a Bipolar Plate Material for Polymer Electrolyte Membrane Fuel Cell Stacks. Int. J. Electrochem. Sci. 2011, 6, 4365–4377. [Google Scholar] [CrossRef]
- Gan, L.; Jiang, C.; Peng, Y.; Han, L.; Qiu, W.; Ren, Y.; Zhao, Y. Highly anticorrosive Cr2AlC coatings on 304 stainless steels as bipolar plates for proton exchange membrane fuel cells. Appl. Surf. Sci. 2025, 685, 162018. [Google Scholar] [CrossRef]
- Liu, G.; Hou, F.; Peng, S.; Wang, X.; Fang, B. Process and challenges of stainless steel based bipolar plates for proton exchange membrane fuel cells. Int. J. Miner. Metall. Mater. 2022, 29, 1099–1119. [Google Scholar] [CrossRef]
- Zu, Q.; Mao, C.; Zhang, J.; Chen, T.; Wang, J.; Ma, X.; Liu, P.; Mi, B.; Li, W. Corrosion resistant and conductive amorphous carbon/Ti coatings on stainless steel bipolar plates prepared by filtered cathodic vacuum arc system. Int. J. Hydrogen Energy 2025, 113, 575–584. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, J.; Zhang, S.; Wei, Y.; Hou, L.; Wu, P.; Zhang, Y.; Zhang, J.; Liu, B. Simultaneous optimization of corrosion resistance and mechanical properties of LMD-processed 316 L austenitic stainless steel by adding Ti nanoparticles in a simulated environment for proton exchange membrane fuel cells. Vacuum 2025, 237, 114205. [Google Scholar] [CrossRef]
- Li, D.G.; Chen, D.R.; Liang, P. Influence of heat treatment on corrosion behaviors of 316 L stainless steel in simulated cathodic environment of proton exchange membrane fuel cell (PEMFC). Int. J. Hydrogen Energy 2020, 45, 30101–30112. [Google Scholar] [CrossRef]
- Xu, R.; Jin, X.; Bi, H.; Zhang, Z.; Li, M. Effect of surface roughness on contact resistance and electrochemical corrosion behavior of 446 stainless steel in simulated anode environments for proton exchange membrane fuel cell. J. Solid State Electrochem. 2024, 28, 3087–3098. [Google Scholar] [CrossRef]
- Ren, Y.J.; Chen, J.; Zeng, C.L.; Li, C.; He, J.J. Electrochemical corrosion characteristics of conducting polypyrrole/polyaniline coatings in simulated environments of a proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2016, 41, 8542–8549. [Google Scholar] [CrossRef]
- Wang, R.; Ding, L.; Pan, Y.; Zhang, X.; Yang, M.; Zhu, C. Ion Implantation Combined with Heat Treatment Enables Excellent Conductivity and Corrosion Resistance of Stainless Steel Bipolar Plates for Hydrogen Fuel Cells. Materials 2024, 17, 779. [Google Scholar] [CrossRef]
- Mi, B.; Wang, Q.; Qi, T.; Qin, Z.; Chen, Z.; Wang, H. Performance and structure of Ti-doped amorphous carbon/CrN/Ti multilayer coating deposited on 316 L stainless steel for use as bipolar plate in proton exchange membrane fuel cell. J. Alloys Compd. 2023, 943, 169080. [Google Scholar] [CrossRef]
- Leng, Y.; Yang, D.; Min, J.; Lv, X.; Yang, J.; Qian, J.; Ming, P.; Zhang, C. Improvement of corrosion resistance and electrical conductivity of a Cr–C coated heat-assisted forming stainless steel bipolar plate for proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2024, 70, 183–194. [Google Scholar] [CrossRef]
- Wang, X.-Z.; Luo, H.; Luo, J.-L. Effects of hydrogen and stress on the electrochemical and passivation behaviour of 304 stainless steel in simulated PEMFC environment. Electrochim. Acta 2019, 293, 60–77. [Google Scholar] [CrossRef]
- Li, Q.; Ding, C.; Yang, M.; Yang, M.; Gao, T.; Zhang, S.; Ji, B.; Goto, T.; Tu, R. Corrosion Resistance and Conductivity of Ta-Nb-N-Coated 316 L Stainless Steel as Bipolar Plates for Proton Exchange Membrane Fuel Cells. Coatings 2024, 14, 542. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Kim, D.-W.; Lee, I.-S.; Yoon, S.; Kim, D.; Jun, S.; Cha, B.-C. Effect of N+ Implantation on Surface Characteristics of 316 L Stainless Steels for Bipolar Plate in PEMFC. Coatings 2020, 10, 604. [Google Scholar] [CrossRef]
- Abu-warda, N.; Bedmar, J.; García-Rodriguez, S.; Torres, B.; Utrilla, M.V.; Rams, J. Effect of post-processing heat treatments on the high-temperature oxidation of additively manufactured 316 L stainless steel. J. Mater. Res. Technol. 2024, 29, 3465–3476. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, J.; Hu, S.; Tao, H.; Fang, B.; Li, L.; Zheng, J.; Zhang, L. Enhanced Corrosion Resistance of Additively Manufactured 316 L Stainless Steel After Heat Treatment. J. Electrochem. Soc. 2020, 167, 141504. [Google Scholar] [CrossRef]
- Zhang, X.; Xiong, Z.; Cheng, X. Effect of a Novel Heat Treatment on the Corrosion Resistance of Duplex Stainless Steel S32101. J. Mater. Eng. Perform. 2025. [Google Scholar] [CrossRef]
Sample Code | Bare SS316 L | Ion Implantation Mo: 4.5 × 1017 ions/cm2, 40 kV C: 6 × 1017 ions/cm2, 30 kV | Heat Treatment Temperature (℃) | Heat Treatment Time (h) |
---|---|---|---|---|
(Mo+C)1000-1 | - | √ | 1000 | 1 |
(Mo+C)800-1 | - | √ | 800 | 1 |
(Mo+C)600-1 | - | √ | 600 | 1 |
(Mo+C) | - | √ | - | - |
316 L | √ | - | - | - |
Sample | Element Mass Concentration (Wt%) | |||
---|---|---|---|---|
Fe | Mo | C | O | |
(Mo+C)1000-1 | 38.24 | 0.99 | 14.71 | 46.05 |
(Mo+C)800-1 | 61.08 | 2.02 | 13.05 | 23.86 |
(Mo+C)600-1 | 55.52 | 1.67 | 19.03 | 23.78 |
(Mo+C) | 67.10 | 2.08 | 25.21 | 5.61 |
316 L | 73.85 | 2.03 | 19.53 | 4.59 |
Sample | Ecorr (V) | Icorr (A/cm2) | Ipass (A/cm2) |
---|---|---|---|
(Mo+C)1000-1 | −0.59 | 5.36 × 10−4 | 3.21 × 10−4 |
(Mo+C)800-1 | −0.78 | 5.93 × 10−4 | 3.02 × 10−4 |
(Mo+C)600-1 | −0.60 | 5.32 × 10−4 | 3.38 × 10−4 |
(Mo+C) | −0.80 | 1.21 × 10−3 | 3.08 × 10−4 |
316 L | −0.80 | 1.17 × 10−3 | 1.61 × 10−4 |
Sample | Ionic Concentration mg/L | |||
---|---|---|---|---|
Fe | Mo | Ni | Cr | |
(Mo+C)1000-1 | 3.438 | 0.288 | 1.845 | 2.071 |
(Mo+C)800-1 | 19.482 | 1.557 | 2.898 | 4.579 |
(Mo+C)600-1 | 2.908 | 0.062 | 0.260 | 0.375 |
(Mo+C) | 4.387 | 0.312 | 1.905 | 2.212 |
316 L | 5.983 | 0.635 | 2.130 | 3.214 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, L.; Ren, C.; Wang, R.; Yang, M.; Pan, Y. Ion Implantation Combined with Heat Treatment Enables Excellent Conductivity and Corrosion Resistance of Stainless Steel Bipolar Plate Anode for Hydrogen Fuel Cells. Materials 2025, 18, 1483. https://doi.org/10.3390/ma18071483
Ding L, Ren C, Wang R, Yang M, Pan Y. Ion Implantation Combined with Heat Treatment Enables Excellent Conductivity and Corrosion Resistance of Stainless Steel Bipolar Plate Anode for Hydrogen Fuel Cells. Materials. 2025; 18(7):1483. https://doi.org/10.3390/ma18071483
Chicago/Turabian StyleDing, Li, Chaoqin Ren, Ruijuan Wang, Meng Yang, and Yong Pan. 2025. "Ion Implantation Combined with Heat Treatment Enables Excellent Conductivity and Corrosion Resistance of Stainless Steel Bipolar Plate Anode for Hydrogen Fuel Cells" Materials 18, no. 7: 1483. https://doi.org/10.3390/ma18071483
APA StyleDing, L., Ren, C., Wang, R., Yang, M., & Pan, Y. (2025). Ion Implantation Combined with Heat Treatment Enables Excellent Conductivity and Corrosion Resistance of Stainless Steel Bipolar Plate Anode for Hydrogen Fuel Cells. Materials, 18(7), 1483. https://doi.org/10.3390/ma18071483