Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (190)

Search Parameters:
Keywords = hydrodynamic motion response

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4382 KiB  
Article
Effect of Biological Fouling on the Dynamic Responses of Integrated Foundation Structure of Floating Wind Turbine and Net Cage
by Yu Hu, Hao Liu, Yingyao Cheng, Jichao Lei and Junxin Liu
J. Mar. Sci. Eng. 2025, 13(7), 1372; https://doi.org/10.3390/jmse13071372 - 18 Jul 2025
Viewed by 204
Abstract
This paper proposes a novel integrated foundation structure of floating wind turbine and net cage by combining large capacity semi-submersible wind turbines with aquaculture cages. The research mainly focuses on the effect of biological fouling on net cage structures and safety performance of [...] Read more.
This paper proposes a novel integrated foundation structure of floating wind turbine and net cage by combining large capacity semi-submersible wind turbines with aquaculture cages. The research mainly focuses on the effect of biological fouling on net cage structures and safety performance of mooring systems. The study firstly validates the simplified model of net cage through comparing with results of existing scaled experimental models. Then, a hydrodynamic analysis is conducted on the net cage model to obtain the RAOs of motion response of the structure under frequency-domain analysis, and damping correction is also carried out on the structure. Finally, time-domain analyses under irregular wave conditions are conducted to evaluate the effects of biofouling fouling on motion responses of net cage foundation and tensions of mooring lines. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 4551 KiB  
Article
Nonlinear Dynamic Analysis on Multi-Fishing Boats Anchored Together Based on Hilbert–Huang Transform
by Yi-Yan Sun, De-Shuang Yu, Yu-Zhang Xiong, Gang Wang, Xing Li and Ding Chen
Water 2025, 17(13), 1852; https://doi.org/10.3390/w17131852 - 21 Jun 2025
Viewed by 474
Abstract
Fishing boats anchored away from the wharf or revetment are typically in side-by-side configurations due to their small size. Expanding on previous physical model tests investigating regular wave interactions with multi-boat and bow-and-stern-anchored fishing arrays, this study examines the hydrodynamic effects of irregular [...] Read more.
Fishing boats anchored away from the wharf or revetment are typically in side-by-side configurations due to their small size. Expanding on previous physical model tests investigating regular wave interactions with multi-boat and bow-and-stern-anchored fishing arrays, this study examines the hydrodynamic effects of irregular wave conditions. The Hilbert–Huang transform (HHT), an adaptive time–frequency processing technique, was applied to investigate multi-order nonlinear oscillatory elements in dynamic systems. It is found that the roll and heave motions of each boat are dominated by the wave-frequency components, whereas the sway motion is dominated by the low-frequency components. When multi-boats are anchored side by side, the roll and heave motion of the lee-side boat has a greater wave-frequency response compared with other boats, while for sway motion, the middle boat seems a little higher than others. The nonlinear dynamics of the roll and sway motion for a single boat is very large. An increase in the number of parallel boats has significant effect on reducing these responses. The variation trends of the three motion responses of the boat on the weather and lee sides are obviously different in each form. Full article
(This article belongs to the Special Issue Coastal Management and Nearshore Hydrodynamics, 2nd Edition)
Show Figures

Figure 1

26 pages, 4477 KiB  
Article
A Parametric Study of a Fully Passive Oscillating Foil Turbine on a Swinging Arm in a Tandem Configuration
by Dominic Cloutier, Mathieu Olivier and Guy Dumas
Energies 2025, 18(13), 3253; https://doi.org/10.3390/en18133253 - 21 Jun 2025
Viewed by 271
Abstract
A fully passive oscillating foil turbine on a swinging arm in a tandem configuration consisting of two NACA 0015 foils at both ends of its arm and operating in an incompressible flow at a Reynolds number of 3.9×106 is investigated [...] Read more.
A fully passive oscillating foil turbine on a swinging arm in a tandem configuration consisting of two NACA 0015 foils at both ends of its arm and operating in an incompressible flow at a Reynolds number of 3.9×106 is investigated with numerical simulations. The turbine is free to oscillate passively in response to hydrodynamic forces and structural reactions from springs and dampers. The passive motion of the tandem turbine arises from a transfer of energy from the flow, and this motion is solved using a fluid-structure algorithm coupling the Newtonian dynamics of the system with two-dimensional, unsteady, and Reynolds-averaged Navier–Stokes equations. The performance metrics, i.e., the efficiency and power coefficient, of the proposed turbine concept are explored with a momentum gradient ascent algorithm, which uses the near-optimal configuration of an equivalent single-foil concept from a previous study as a starting point. These starting configurations consist of tandem foils operating either under coupled flutter or stall flutter instabilities. The use of gears to adjust the equilibrium position of the pitching motion is also considered, resulting in a total of four baseline configurations. The best configuration found with the gradient ascent algorithm presents an efficiency value near 75% and a power coefficient of 1.46, showing the great potential of fully passive oscillating foil turbines operating in a tandem configuration and providing valuable insight for further development of this technology through three-dimensional simulations and prototype testing. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

23 pages, 5541 KiB  
Article
Innovative Double Dumbbell-Shaped Flux-Switching Linear Tube Generator for Ocean Wave Energy Conversion: Design, Simulation, and Experimental Validation
by Pooja Khatri, Zhenwei Liu, James Rudolph, Elie Al Shami and Xu Wang
Vibration 2025, 8(2), 32; https://doi.org/10.3390/vibration8020032 - 13 Jun 2025
Viewed by 441
Abstract
This study introduces a novel double dumbbell-shaped flux-switching linear tube generator (DDFSLG) for ocean wave energy conversion. The innovative architecture features a uniquely shaped stator and translator, distinguishing it from conventional linear generators. Unlike traditional systems, the DDFSLG is housed in a cylindrical [...] Read more.
This study introduces a novel double dumbbell-shaped flux-switching linear tube generator (DDFSLG) for ocean wave energy conversion. The innovative architecture features a uniquely shaped stator and translator, distinguishing it from conventional linear generators. Unlike traditional systems, the DDFSLG is housed in a cylindrical buoy. The translator oscillates axially within the stator. This eliminates the need for motion rectification and reduces mechanical friction losses in the power take-off (PTO) system. These design advancements result in high power output and improved performance. The DDFSLG’s three-phase coil circuit is another key innovation, improving electrical performance and stability in irregular wave conditions. We conducted comprehensive experimental validation using an MTS-250 kN testing system, which demonstrated strong agreement between theoretical predictions and measured results. We compared star and delta coil connections to assess how circuit configuration affects power output and efficiency. Furthermore, hydrodynamic simulations using the JONSWAP spectrum and ANSYS AQWA software (Ansys 13.0) provide detailed insight into the system’s dynamic response under realistic oceanic conditions. Full article
Show Figures

Figure 1

27 pages, 5300 KiB  
Article
Motion Control of a Flexible-Towed Underwater Vehicle Based on Dual-Winch Differential Tension Coordination Control
by Hongming Wu, Xiong Li, Kan Xu, Dong Song, Yingkai Xia and Guohua Xu
J. Mar. Sci. Eng. 2025, 13(6), 1120; https://doi.org/10.3390/jmse13061120 - 3 Jun 2025
Viewed by 442
Abstract
This paper focused on the motion control of an underwater vehicle installed on a linear guide system, which is driven by two electric winches with wire ropes. The vehicle is subject to complex nonlinear time-varying disturbances and actuator input saturation effects during motion. [...] Read more.
This paper focused on the motion control of an underwater vehicle installed on a linear guide system, which is driven by two electric winches with wire ropes. The vehicle is subject to complex nonlinear time-varying disturbances and actuator input saturation effects during motion. A coupled dynamic model, incorporating an underwater vehicle, winches, and wire ropes, was established. Particular attention was paid to the nonlinear time-varying hydrodynamic disturbances acting on the underwater vehicle. The Kelvin–Voigt model was introduced to characterize the nonlinear dynamic behavior of the wire ropes, enabling the model to capture the dynamic response characteristics of traction forces. To tackle cross-coupling within the towing system, a differential tension coordination control method was proposed that simultaneously regulates system tension during motion control. For the vehicle dynamics model, a nonsingular fast-terminal sliding-mode (NFTSM) controller was designed to achieve high-precision position tracking control. An auxiliary dynamic compensator was incorporated to mitigate the impact of actuator input saturation. To handle time-varying disturbances, a fuzzy adaptive nonlinear disturbance observer (FANDO) is developed to perform feedforward compensation. Stability proof of the proposed algorithms was provided. Extensive numerical simulations demonstrate the effectiveness of the control strategies. Compared to the NFTSM without the disturbance observer the absolute mean value of the tracking error decreased by 76%, the absolute maximum value of the tracking error decreased by 67%, and the mean square error decreased by 93.5%. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

24 pages, 3541 KiB  
Article
Substructure Optimization for a Semi-Submersible Floating Wind Turbine Under Extreme Environmental Conditions
by Kevin Fletcher, Edem Tetteh, Eric Loth, Chris Qin and Rick Damiani
Designs 2025, 9(3), 68; https://doi.org/10.3390/designs9030068 - 3 Jun 2025
Viewed by 886
Abstract
A barrier to the adoption of floating offshore wind turbines is their high cost relative to conventional fixed-bottom wind turbines. The largest contributor to this cost disparity is generally the floating substructure, due to its large size and complexity. Typically, a primary driver [...] Read more.
A barrier to the adoption of floating offshore wind turbines is their high cost relative to conventional fixed-bottom wind turbines. The largest contributor to this cost disparity is generally the floating substructure, due to its large size and complexity. Typically, a primary driver of the geometry and size of a floating substructure is the extreme environmental load case of Region 4, where platform loads are the greatest due to the impact of extreme wind and waves. To address this cost issue, a new concept for a floating offshore wind turbine’s substructure, its moorings, and anchors was optimized for a reference 10-MW turbine under extreme load conditions using OpenFAST. The levelized cost of energy was minimized by fixing the above-water turbine design and minimizing the equivalent substructure mass, which is based on the mass of all substructure components (stem, legs, buoyancy cans, mooring, and anchoring system) and associated costs of their materials, manufacturing, and installation. A stepped optimization scheme was used to allow an understanding of their influence on both the system cost and system dynamic responses for the extreme parked load case. The design variables investigated include the length and tautness ratio of the mooring lines, length and draft of the cans, and lengths of the legs and the stem. The dynamic responses investigated include the platform pitch, platform roll, nacelle horizontal acceleration, and can submergence. Some constraints were imposed on the dynamic responses of interest, and the metacentric height of the floating system was used to ensure static stability. The results offer insight into the parametric influence on turbine motion and on the potential savings that can be achieved through optimization of individual substructure components. A 36% reduction in substructure costs was achieved while slightly improving the hydrodynamic stability in pitch and yielding a somewhat large surge motion and slight roll increase. Full article
(This article belongs to the Special Issue Design and Analysis of Offshore Wind Turbines)
Show Figures

Figure 1

19 pages, 4870 KiB  
Article
Adaptive Event-Triggered Predictive Control for Agile Motion of Underwater Vehicles
by Bo Wang, Junchao Peng, Jing Zhou and Liming Zhao
J. Mar. Sci. Eng. 2025, 13(6), 1072; https://doi.org/10.3390/jmse13061072 - 28 May 2025
Viewed by 375
Abstract
As the demand for underwater robots in complex environments continues to grow, research on their agile motion capabilities becomes increasingly crucial. This paper focuses on the design and agile motion control of autonomous underwater vehicles (AUVs) operating in subsea environments, addressing key issues [...] Read more.
As the demand for underwater robots in complex environments continues to grow, research on their agile motion capabilities becomes increasingly crucial. This paper focuses on the design and agile motion control of autonomous underwater vehicles (AUVs) operating in subsea environments, addressing key issues such as structural design, system modeling, and control algorithm development. An optimization model for the arrangement of propellers is formulated and solved using a Sequential Quadratic Programming (SQP) algorithm. Computational Fluid Dynamics (CFD) software is employed for hydrodynamic analysis and shape optimization. A novel adaptive event-triggered nonlinear model predictive control (AET-NMPC) algorithm is proposed and compared with traditional Cascaded Proportional–Integral–Derivative (PID) control and event-triggered cascaded PID control algorithms. Simulation and experimental results demonstrate that the AET-NMPC algorithm significantly enhances the response capability and control accuracy of underwater robots in complex tasks, with the trajectory tracking error being reduced to 4.89%. This study provides valuable insights into the design and control strategies for AUVs, paving the way for more sophisticated underwater operations in challenging environments. Full article
(This article belongs to the Special Issue Advancements in Deep-Sea Equipment and Technology, 3rd Edition)
Show Figures

Figure 1

21 pages, 19457 KiB  
Article
Comparative Analysis of Hydrodynamic Characteristics off Shandong Under the Influence of Two Types of Storm Surges
by Wenwen Liu, Qingdan Zheng, Zhizu Wang and Juncheng Zuo
J. Mar. Sci. Eng. 2025, 13(6), 1054; https://doi.org/10.3390/jmse13061054 - 27 May 2025
Viewed by 335
Abstract
As China’s largest peninsula, the Shandong Peninsula faces recurrent threats from both tropical and extratropical cyclone-induced storm surges. Understanding the distinct mechanisms governing these surge types is critical for developing targeted coastal hazard mitigation strategies. This investigation employs the FVCOM-SWAVE coupled wave–current model [...] Read more.
As China’s largest peninsula, the Shandong Peninsula faces recurrent threats from both tropical and extratropical cyclone-induced storm surges. Understanding the distinct mechanisms governing these surge types is critical for developing targeted coastal hazard mitigation strategies. This investigation employs the FVCOM-SWAVE coupled wave–current model to conduct numerical simulations and comparative analyses of two 2022 surge events, Typhoon Muifa (tropical) and the “221003” extratropical surge. The results demonstrate that hydrodynamic responses exhibit strong dependence on surge-generating meteorological regimes. Tropical surge dynamics correlate closely with typhoon track geometry, intensity gradients, and asymmetric wind field structures, manifesting rightward-biased energy intensification relative to storm motion. Conversely, extratropical surge variations align with evolving wind-pressure configurations during cold air advection, driven by synoptic-scale atmospheric reorganization. The hydrodynamic environmental response in the sea areas surrounding Jiaodong and Laizhou Bay is particularly pronounced, influenced by the intensity of wind stress on the sea surface, as well as the bathymetry and coastal geometry. Full article
(This article belongs to the Topic Wind, Wave and Tidal Energy Technologies in China)
Show Figures

Figure 1

23 pages, 5875 KiB  
Article
The Numerical Analysis of Hydrodynamic Response and Structural Stability of an Eccentric Conical Floating Structure
by Fei Qu, Shengtao Chen and Kang Zhang
J. Mar. Sci. Eng. 2025, 13(6), 1032; https://doi.org/10.3390/jmse13061032 - 24 May 2025
Viewed by 473
Abstract
This study examines the hydrodynamic response and structural stability of an eccentric conical floating structure, a return capsule for manned space missions, to ensure safe water landings. Using numerical simulations and experiments, we evaluated how center-of-mass offsets, displacement volume control, and environmental factors, [...] Read more.
This study examines the hydrodynamic response and structural stability of an eccentric conical floating structure, a return capsule for manned space missions, to ensure safe water landings. Using numerical simulations and experiments, we evaluated how center-of-mass offsets, displacement volume control, and environmental factors, including waves, currents, and wind, affect capsule stability. In still water, lateral center-of-mass offsets strongly affect stability through nonlinear restoring moments, whereas foam-based displacement control reduces motion amplitude and tilt angle. In dynamic sea conditions, wave parameters dominate motion, with surge displacement and pitch angle varying by wavelength and sea state. At higher sea states, nonlinear phenomena, including subharmonic resonance, amplify pitch angle extrema, compromising safety margins. This research offers key insights for evaluating and improving return capsule safety, highlighting the importance of complex multi-physics interactions in marine environments. Full article
(This article belongs to the Special Issue Numerical Analysis and Modeling of Floating Structures)
Show Figures

Figure 1

37 pages, 8641 KiB  
Article
Experimental Investigations of Moored OWC Wave Energy Converters in Cyclonic Conditions: Survivability Versus Operational Performance
by Eric Gubesch, Nagi Abdussamie, Irene Penesis and Christopher Chin
Energies 2025, 18(10), 2668; https://doi.org/10.3390/en18102668 - 21 May 2025
Viewed by 453
Abstract
This study experimentally evaluates the survivability and hydrodynamic performance of a moored oscillating water column (OWC) wave energy converter (WEC) subjected to extreme cyclonic wave conditions emulating tropical cyclone Oma (2019). Laboratory tests recreated realistic cyclonic sea states using focused wave groups through [...] Read more.
This study experimentally evaluates the survivability and hydrodynamic performance of a moored oscillating water column (OWC) wave energy converter (WEC) subjected to extreme cyclonic wave conditions emulating tropical cyclone Oma (2019). Laboratory tests recreated realistic cyclonic sea states using focused wave groups through the NewWave theory, combining singular and embedded focused waves within irregular seas to simulate extreme crests, troughs, and transient slamming events. Three mooring systems, including catenary, vertical-taut, and taut with 45° tendons, were tested to quantify their influence on structural response, chamber pressures, mooring tensions, and motion dynamics. The results revealed a critical trade-off: mooring configurations optimised for energy capture efficiency (e.g., taut systems) exhibited reduced survivability during extreme waves, while survivability-focused designs (e.g., catenary) compromised operational performance. Slamming pressures and transient loads were highly sensitive to wave group and mooring stiffness, with vertical taut systems experiencing the largest peak tensions. By integrating localised slamming pressure data with global mooring load measurements, this work provides a novel framework for balancing energy production and storm resilience in OWC design. Full article
(This article belongs to the Special Issue Advances in Ocean Energy Technologies and Applications)
Show Figures

Figure 1

39 pages, 9959 KiB  
Article
Hydrodynamic Performance and Motion Prediction Before Twin-Barge Float-Over Installation of Offshore Wind Turbines
by Mengyang Zhao, Xiang Yuan Zheng, Sheng Zhang, Kehao Qian, Yucong Jiang, Yue Liu, Menglan Duan, Tianfeng Zhao and Ke Zhai
J. Mar. Sci. Eng. 2025, 13(5), 995; https://doi.org/10.3390/jmse13050995 - 21 May 2025
Viewed by 620
Abstract
In recent years, the twin-barge float-over method has been widely used in offshore installations. This paper conducts numerical simulation and experimental research on the twin-barge float-over installation of offshore wind turbines (TBFOI-OWTs), focusing primarily on seakeeping performance, and also explores the influence of [...] Read more.
In recent years, the twin-barge float-over method has been widely used in offshore installations. This paper conducts numerical simulation and experimental research on the twin-barge float-over installation of offshore wind turbines (TBFOI-OWTs), focusing primarily on seakeeping performance, and also explores the influence of the gap distance on the hydrodynamic behavior of TBFOI-OWTs. Model tests are conducted in the ocean basin at Tsinghua Shenzhen International Graduate School. A physical model with a scale ratio of 1:50 is designed and fabricated, comprising two barges, a truss carriage frame, two small wind turbines, and a spread catenary mooring system. A series of model tests, including free decay tests, regular wave tests, and random wave tests, are carried out to investigate the hydrodynamics of TBFOI-OWTs. The experimental results and the numerical results are in good agreement, thereby validating the accuracy of the numerical simulation method. The motion RAOs of TBFOI-OWTs are small, demonstrating their good seakeeping performance. Compared with the regular wave situation, the surge and sway motions in random waves have greater ranges and amplitudes. This reveals that the mooring analysis cannot depend on regular waves only, and more importantly, that the random nature of realistic waves is less favorable for float-over installations. The responses in random waves are primarily controlled by motions’ natural frequencies and incident wave frequency. It is also revealed that the distance between two barges has a significant influence on the motion RAOs in beam seas. Within a certain range of incident wave periods (10.00 s < T < 15.00 s), increasing the gap distance reduces the sway RAO and roll RAO due to the energy dissipated by the damping pool of the barge gap. For installation safety within an operating window, it is meaningful but challenging to have accurate predictions of the forthcoming motions. For this, this study employs the Whale Optimization Algorithm (WOA) to optimize the Long Short-Term Memory (LSTM) neural network. Both the stepwise iterative model and the direct multi-step model of LSTM achieve a high accuracy of predicted heave motions. This study, to some extent, affirms the feasibility of float-over installation in the offshore wind power industry and provides a useful scheme for short-term predictions of motions. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

18 pages, 8125 KiB  
Article
Estimation of the Motion Response of a Large Ocean Buoy in the South China Sea
by Yunzhou Li, Chuankai Zhao, Penglin Jing, Bangqi Chen, Guanghua He, Zhigang Zhang, Jiming Zhang, Min Li and Juncheng Wang
J. Mar. Sci. Eng. 2025, 13(4), 822; https://doi.org/10.3390/jmse13040822 - 21 Apr 2025
Viewed by 458
Abstract
Ocean data buoys are among the most effective tools for monitoring marine environments. However, their measurement accuracy is affected by the motion of the buoys, making the hydrodynamic characteristics of buoys a critical issue. This study uses computational fluid dynamics to evaluate the [...] Read more.
Ocean data buoys are among the most effective tools for monitoring marine environments. However, their measurement accuracy is affected by the motion of the buoys, making the hydrodynamic characteristics of buoys a critical issue. This study uses computational fluid dynamics to evaluate the motion performance of large ocean buoys under wave loads with different characteristics. A high-fidelity numerical wave tank was established via the overset mesh method and the volume of fluid method to simulate wave–structure interactions. The results indicate that the buoy motion is influenced primarily by the first-order harmonic components of the waves. The response amplitude operators (RAOs) for both surge and heave gradually approach a value of 1 as the wave period increases. The pitch RAO peaks at the natural frequency of 2.84 s. As the wave steepness increases, the nonlinearity of wave–structure interactions becomes more pronounced, resulting in 13.78% and 13.65% increases in the RAO for heave and pitch, respectively. Additionally, the dynamic response under irregular waves was numerically simulated via full-scale field data. Good agreement was obtained compared with field data. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

27 pages, 7559 KiB  
Article
Multi-Column Semi-Submersible Floating Body Hydrodynamic Performance Analysis
by Wei Wang, Jingyi Hu, Cheng Zhao, Yonghe Xie, Xiwu Gong and Dingliang Jiang
Energies 2025, 18(8), 1884; https://doi.org/10.3390/en18081884 - 8 Apr 2025
Viewed by 416
Abstract
Due to the limited availability of land resources, offshore wind turbines have become a crucial technology for the development of deep-water renewable energy. The multi-floating body platform, characterized by its shallow draft and main body located near the sea surface, is prone to [...] Read more.
Due to the limited availability of land resources, offshore wind turbines have become a crucial technology for the development of deep-water renewable energy. The multi-floating body platform, characterized by its shallow draft and main body located near the sea surface, is prone to significant motion in marine environments. The proper chamfering of the heave plate can effectively enhance its resistance during wave action, thereby improving the stability of the floating platform. The optimal chamfer angle is 35°. Considering the complexity of the floating body’s motion response, this study focuses on the damping characteristics of the heave plate with 35° chamfered perforations. Using the NREL 5 MW three-column semi-submersible floating wind turbine platform as the research model, the hydrodynamic characteristics of the floating body with a perforated heave plate are systematically studied through theoretical analysis, numerical simulation, and physical tests. The amplitude of vertical force under various working conditions is measured. Through theoretical analysis, the additional mass coefficient and additional damping coefficient for different working conditions and models are determined. The study confirms that the heave plate with 35° chamfered perforations significantly reduces heave in the multi-floating body. Full article
(This article belongs to the Special Issue Advancements in Wind Farm Design and Optimization)
Show Figures

Figure 1

17 pages, 13692 KiB  
Article
Numerical Simulation of the Hydrodynamic Behavior of Immersed Tunnel in Waves
by Hang Shi, Xianlin Jia, Tiaojian Xu and Wo Zhang
Water 2025, 17(7), 1094; https://doi.org/10.3390/w17071094 - 6 Apr 2025
Viewed by 413
Abstract
The hydrodynamic response of immersed tunnel in waves is important for the design of immersed tunnel. The numerical wave tank that considers the coupling of wave field and floating body motion is established based on the OpenFOAM. The overset mesh method is adopted [...] Read more.
The hydrodynamic response of immersed tunnel in waves is important for the design of immersed tunnel. The numerical wave tank that considers the coupling of wave field and floating body motion is established based on the OpenFOAM. The overset mesh method is adopted to refresh the meshes around the immersed tunnel in waves. In addition, the experimental data of floating body motion and wave force is applied to validate the numerical model. The hydrodynamic characteristics of the immersed tunnel under wave loads are numerically studied, focusing on the motion response and the force of the immersed tunnel. The results show that with the increase in wave height, the roll of the immersed tunnel increases, the amplitude of the horizontal force increases significantly, the amplitude of the vertical force remains basically unchanged, and the nonlinear enhancement of the roll motion response is observed. When the wave period is close to the natural period of the floating body, the roll angle reaches its maximum. Under irregular wave conditions, with the increase in significant wave height, the average amplitude of the immersed tunnel’s roll motion increases, which is significantly greater (about 2–3 times) than that under regular wave conditions. With the increasing average amplitude of horizontal force, the change in vertical force is not significant. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

24 pages, 6065 KiB  
Article
Numerical Modeling of a Triangle Semi-Submersible Floating Wind Platform Under Wave–Current Flows
by Shuai Li, Jungang Hao, Yajun Ren, Ling Zhu, Jing Yuan and Yiyong Dong
J. Mar. Sci. Eng. 2025, 13(4), 714; https://doi.org/10.3390/jmse13040714 - 3 Apr 2025
Viewed by 578
Abstract
The semi-submersible platform is a widely used structure for supporting floating offshore wind turbines (FOWTs) in deep-sea environments where waves and currents interact. Understanding the impact of wave–current interaction (WCI) on hydrodynamic loading and the resulting platform response is essential for effective platform [...] Read more.
The semi-submersible platform is a widely used structure for supporting floating offshore wind turbines (FOWTs) in deep-sea environments where waves and currents interact. Understanding the impact of wave–current interaction (WCI) on hydrodynamic loading and the resulting platform response is essential for effective platform design. However, many existing ocean engineering software packages assume that wave and current loadings can be linearly superimposed. In this study, computational fluid dynamics (CFD) numerical simulations were performed to examine the dynamic response of a newly proposed triangle semi-submersible platform under various wave–current cases. The research underscores the significant influence of WCI on platform motion and loads, introducing nonlinearities that substantially affect both dynamic response and structural stability. Furthermore, the study reveals that WCI can mitigate vortex-induced motion (VIM), thereby enhancing platform stability by altering the force frequency, which no longer aligns with the platform’s natural frequency, thus preventing resonance. Additionally, the presence of current can intensify wave dynamics, leading to increased wave forces acting on the platform. These findings highlight the necessity of integrating WCI considerations into the design and optimization of floating wind turbine platforms to enhance their structural stability and operational performance. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

Back to TopTop