Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (391)

Search Parameters:
Keywords = hydraulic model calibration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 15216 KiB  
Article
Leveraging Soil Geography for Land Use Planning: Assessing and Mapping Soil Ecosystem Services Indicators in Emilia-Romagna, NE Italy
by Fabrizio Ungaro, Paola Tarocco and Costanza Calzolari
Geographies 2025, 5(3), 39; https://doi.org/10.3390/geographies5030039 (registering DOI) - 1 Aug 2025
Abstract
An indicator-based approach was implemented to assess the contributions of soils in supplying ecosystem services, providing a scalable tool for modeling the spatial heterogeneity of soil functions at regional and local scales. The method consisted of (i) the definition of soil-based ecosystem services [...] Read more.
An indicator-based approach was implemented to assess the contributions of soils in supplying ecosystem services, providing a scalable tool for modeling the spatial heterogeneity of soil functions at regional and local scales. The method consisted of (i) the definition of soil-based ecosystem services (SESs), using available point data and thematic maps; (ii) the definition of appropriate SES indicators; (iii) the assessment and mapping of potential SESs provision for the Emilia-Romagna region (22.510 km2) in NE Italy. Depending on data availability and on the role played by terrain features and soil geography and its complexity, maps of basic soil characteristics (textural fractions, organic C content, and pH) covering the entire regional territory were produced at a 1 ha resolution using digital soil mapping techniques and geostatistical simulations to explicitly consider spatial variability. Soil physical properties such as bulk density, porosity, and hydraulic conductivity at saturation were derived using pedotransfer functions calibrated using local data and integrated with supplementary information such as land capability and remote sensing indices to derive the inputs for SES assessment. Eight SESs were mapped at 1:50,000 reference scale: buffering capacity, carbon sequestration, erosion control, food provision, biomass provision, water regulation, water storage, and habitat for soil biodiversity. The results are discussed and compared for the different pedolandscapes, identifying clear spatial patterns of soil functions and potential SES supply. Full article
Show Figures

Figure 1

25 pages, 16639 KiB  
Article
Hydraulic Modeling of Newtonian and Non-Newtonian Debris Flows in Alluvial Fans: A Case Study in the Peruvian Andes
by David Chacon Lima, Alan Huarca Pulcha, Milagros Torrejon Llamoca, Guillermo Yorel Noriega Aquise and Alain Jorge Espinoza Vigil
Water 2025, 17(14), 2150; https://doi.org/10.3390/w17142150 - 19 Jul 2025
Viewed by 484
Abstract
Non-Newtonian debris flows represent a critical challenge for hydraulic infrastructure in mountainous regions, often causing significant damage and service disruption. However, current models typically simplify these flows as Newtonian, leading to inaccurate design assumptions. This study addresses this gap by comparing the hydraulic [...] Read more.
Non-Newtonian debris flows represent a critical challenge for hydraulic infrastructure in mountainous regions, often causing significant damage and service disruption. However, current models typically simplify these flows as Newtonian, leading to inaccurate design assumptions. This study addresses this gap by comparing the hydraulic behavior of Newtonian and non-Newtonian flows in an alluvial fan, using the Amoray Gully in Apurímac, Peru, as a case study. This gully intersects the Interoceánica Sur national highway via a low-water crossing (baden), making it a relevant site for evaluating debris flow impacts on critical road infrastructure. The methodology integrates hydrological analysis, rheological characterization, and hydraulic modeling. QGIS 3.16 was used for watershed delineation and extraction of physiographic parameters, while a high-resolution topographic survey was conducted using an RTK drone. Rainfall-runoff modeling was performed in HEC-HMS 4.7 using 25 years of precipitation data, and hydraulic simulations were executed in HEC-RAS 6.6, incorporating rheological parameters and calibrated with the footprint of a historical event (5-year return period). Results show that traditional Newtonian models underestimate flow depth by 17% and overestimate velocity by 54%, primarily due to unaccounted particle-collision effects. Based on these findings, a multi-barrel circular culvert was designed to improve debris flow management. This study provides a replicable modeling framework for debris-prone watersheds and contributes to improving design standards in complex terrain. The proposed methodology and findings offer practical guidance for hydraulic design in mountainous terrain affected by debris flows, especially where infrastructure intersects active alluvial fans. Full article
(This article belongs to the Topic Natural Hazards and Disaster Risks Reduction, 2nd Edition)
Show Figures

Figure 1

38 pages, 25146 KiB  
Article
Driplines Layout Designs Comparison of Moisture Distribution in Clayey Soils, Using Soil Analysis, Calibrated Time Domain Reflectometry Sensors, and Precision Agriculture Geostatistical Imaging for Environmental Irrigation Engineering
by Agathos Filintas
AgriEngineering 2025, 7(7), 229; https://doi.org/10.3390/agriengineering7070229 - 10 Jul 2025
Viewed by 388
Abstract
The present study implements novel innovative geostatistical imaging using precision agriculture (PA) under sugarbeet field conditions. Two driplines layout designs (d.l.d.) and soil water content (SWC)–irrigation treatments (A: d.l.d. = 1.00 m driplines spacing × 0.50 m emitters inline spacing; B: d.l.d. = [...] Read more.
The present study implements novel innovative geostatistical imaging using precision agriculture (PA) under sugarbeet field conditions. Two driplines layout designs (d.l.d.) and soil water content (SWC)–irrigation treatments (A: d.l.d. = 1.00 m driplines spacing × 0.50 m emitters inline spacing; B: d.l.d. = 1.50 m driplines spacing × 0.50 m emitters inline spacing) were applied, with two subfactors of clay loam and clay soils (laboratory soil analysis) for modeling (evaluation of seven models) TDR multi-sensor network measurements. Different sensor calibration methods [method 1(M1) = according to factory; method 2 (M2) = according to Hook and Livingston] were applied for the geospatial two-dimensional (2D) imaging of accurate GIS maps of rootzone soil moisture profiles, soil apparent dielectric Ka profiles, and granular and hydraulic parameters profiles, in multiple soil layers (0–75 cm depth). The modeling results revealed that the best-fitted geostatistical model for soil apparent dielectric Ka was the Gaussian model, while spherical and exponential models were identified to be the most appropriate for kriging modelling, and spatial and temporal imaging was used for accurate profile SWC θvTDR (m3·m−3) M1 and M2 maps using TDR sensors. The resulting PA profile map images depict the spatio-temporal soil water and apparent dielectric Ka variability at very high resolutions on a centimeter scale. The best geostatistical validation measures for the PA profile SWC θvTDR maps obtained were MPE = −0.00248 (m3·m−3), RMSE = 0.0395 (m3·m−3), MSPE = −0.0288, RMSSE = 2.5424, ASE = 0.0433, Nash–Sutcliffe model efficiency NSE = 0.6229, and MSDR = 0.9937. Based on the results, we recommend d.l.d. A and sensor calibration method 2 for the geospatial 2D imaging of PA GIS maps because these were found to be more accurate, with the lowest statistical and geostatistical errors, and the best validation measures for accurate profile SWC imaging were obtained for clay loam over clay soils. Visualizing sensors’ soil moisture results via geostatistical maps of rootzone profiles have practical implications that assist farmers and scientists in making informed, better and timely environmental irrigation engineering decisions, to save irrigation water, increase water use efficiency and crop production, optimize energy, reduce crop costs, and manage water resources sustainably. Full article
(This article belongs to the Section Sensors Technology and Precision Agriculture)
Show Figures

Figure 1

24 pages, 3815 KiB  
Article
Evaluating Natural Attenuation of Dissolved Volatile Organic Compounds in Shallow Aquifer in Industrial Complex Using Numerical Models
by Muhammad Shoaib Qamar, Nipada Santha, Sutthipong Taweelarp, Nattapol Ploymaklam, Morrakot Khebchareon, Muhammad Zakir Afridi and Schradh Saenton
Water 2025, 17(13), 2038; https://doi.org/10.3390/w17132038 - 7 Jul 2025
Viewed by 1234
Abstract
A VOC-contaminated shallow aquifer in an industrial site was investigated to evaluate its potential for natural attenuation. The shallow groundwater aquifer beneath the industrial site has been contaminated by dissolved volatile organic compounds (VOCs) such as trichloroethylene (TCE), cis-1,2-dichloroethylene (cis-DCE), [...] Read more.
A VOC-contaminated shallow aquifer in an industrial site was investigated to evaluate its potential for natural attenuation. The shallow groundwater aquifer beneath the industrial site has been contaminated by dissolved volatile organic compounds (VOCs) such as trichloroethylene (TCE), cis-1,2-dichloroethylene (cis-DCE), and vinyl chloride (VC) for more than three decades. Monitoring and investigation were implemented during 2011–2024, aiming to propose future groundwater aquifer management strategies. This study included groundwater borehole investigation, well installation monitoring, hydraulic head measurements, slug tests, groundwater samplings, and microbial analyses. Microbial investigations identified the predominant group of microorganisms of Proteobacteria, indicating biodegradation potential, as demonstrated by the presence of cis-DCE and VC. BIOSCREEN was used to evaluate the process of natural attenuation, incorporating site-specific parameters. A two-layer groundwater flow model was developed using MODFLOW with hydraulic conductivities obtained from slug tests. The site has an average hydraulic head of 259.6 m amsl with a hydraulic gradient of 0.026, resulting in an average groundwater flow velocity of 11 m/y. Hydraulic conductivities were estimated during model calibration using the PEST pilot point technique. A reactive transport model, RT3D, was used to simulate dissolved TCE transport over 30 years, which can undergo sorption as well as biodegradation. Model calibration demonstrated a satisfactory fit between observed and simulated groundwater heads with a root mean square error of 0.08 m and a correlation coefficient (r) between measured and simulated heads of 0.81, confirming the validity of the hydraulic conductivity distribution. The TCE plume continuously degraded and gradually migrated southward, generating a cis-DCE plume. The concentrations in both plumes decreased toward the end of the simulation period at Source 1 (located upstream), while BIOSCREEN results confirmed ongoing natural attenuation primarily by biodegradation. The integrated MODFLOW-RT3D-BIOSCREEN approach effectively evaluated VOC attenuation and plume migration. However, future remediation strategies should consider enhanced bioremediation to accelerate contaminant degradation at Source 2 and ensure long-term groundwater quality. Full article
(This article belongs to the Special Issue Application of Bioremediation in Groundwater and Soil Pollution)
Show Figures

Figure 1

31 pages, 19561 KiB  
Article
Geostatistics Precision Agriculture Modeling on Moisture Root Zone Profiles in Clay Loam and Clay Soils, Using Time Domain Reflectometry Multisensors and Soil Analysis
by Agathos Filintas
Hydrology 2025, 12(7), 183; https://doi.org/10.3390/hydrology12070183 - 7 Jul 2025
Cited by 1 | Viewed by 492
Abstract
Accurate measurement and understanding of the spatiotemporal distribution of soil water content (SWC) are crucial in various environmental and agricultural sectors. The present study implements a novel precision agriculture (PA) approach under sugarbeet field conditions of two moisture-irrigation treatments with two subfactors, clay [...] Read more.
Accurate measurement and understanding of the spatiotemporal distribution of soil water content (SWC) are crucial in various environmental and agricultural sectors. The present study implements a novel precision agriculture (PA) approach under sugarbeet field conditions of two moisture-irrigation treatments with two subfactors, clay loam (CL) and clay (C) soils, for geostatistics modeling (seven models’ evaluation) of time domain reflectometry (TDR) multisensor network measurements. Two different sensor calibration methods (M1 and M2) were trialed, as well as the results of laboratory soil analysis for geospatial two-dimensional (2D) imaging for accurate GIS maps of root zone moisture profiles, granular, and hydraulic profiles in multiple soil layers (0–75 cm depth). Modeling results revealed that the best-fitted semi-variogram models for the granular attributes were circular, exponential, pentaspherical, and spherical, while for hydraulic attributes were found to be exponential, circular, and spherical models. The results showed that kriging modeling, spatial and temporal imaging for accurate profile SWC θvTDR (m3·m−3) maps, the exponential model was identified as the most appropriate with TDR sensors using calibration M1, and the exponential and spherical models were the most appropriate when using calibration M2. The resulting PA profile maps depict spatiotemporal soil water variability with very high resolutions at the centimeter scale. The best validation measures of PA profile SWC θvTDR maps obtained were Nash-Sutcliffe model efficiency NSE = 0.6657, MPE = 0.00013, RMSE = 0.0385, MSPE = −0.0022, RMSSE = 1.6907, ASE = 0.0418, and MSDR = 0.9695. The sensor results using calibration M2 were found to be more valuable in environmental irrigation decision-making for a more accurate and timely decision on actual crop irrigation, with the lowest statistical and geostatistical errors. The best validation measures for accurate profile SWC θvTDR (m3·m−3) maps obtained for clay loam over clay soils. Visualizing the SWC results and their temporal changes via root zone profile geostatistical maps assists farmers and scientists in making informed and timely environmental irrigation decisions, optimizing energy, saving water, increasing water-use efficiency and crop production, reducing costs, and managing water–soil resources sustainably. Full article
(This article belongs to the Special Issue Hydrological Processes in Agricultural Watersheds)
Show Figures

Figure 1

23 pages, 25599 KiB  
Article
Numerical Simulation and Risk Assessment of Debris Flows in Suyukou Gully, Eastern Helan Mountains, China
by Guorui Wang, Hui Wang, Zheng He, Shichang Gao, Gang Zhang, Zhiyong Hu, Xiaofeng He, Yongfeng Gong and Jinkai Yan
Sustainability 2025, 17(13), 5984; https://doi.org/10.3390/su17135984 - 29 Jun 2025
Viewed by 405
Abstract
Suyukou Gully, located on the eastern slope of the Helan Mountains in northwest China, is a typical debris-flow-prone catchment characterized by a steep terrain, fractured bedrock, and abundant loose colluvial material. The area is subject to intense short-duration convective rainfall events, which often [...] Read more.
Suyukou Gully, located on the eastern slope of the Helan Mountains in northwest China, is a typical debris-flow-prone catchment characterized by a steep terrain, fractured bedrock, and abundant loose colluvial material. The area is subject to intense short-duration convective rainfall events, which often trigger destructive debris flows that threaten the Suyukou Scenic Area. To investigate the dynamics and risks associated with such events, this study employed the FLO-2D two-dimensional numerical model to simulate debris flow propagation, deposition, and hazard distribution under four rainfall return periods (10-, 20-, 50-, and 100-year scenarios). The modeling framework integrated high-resolution digital elevation data (original 5 m DEM resampled to 20 m grid), land-use classification, rainfall design intensities derived from regional storm atlases, and detailed field-based sediment characterization. Rheological and hydraulic parameters, including Manning’s roughness coefficient, yield stress, dynamic viscosity, and volume concentration, were calibrated using post-event geomorphic surveys and empirical formulations. The model was validated against field-observed deposition limits and flow depths, achieving a spatial accuracy within 350 m. Results show that the debris flow mobility and hazard intensity increased significantly with rainfall magnitude. Under the 100-year scenario, the peak discharge reached 1195.88 m3/s, with a maximum flow depth of 20.15 m and velocities exceeding 8.85 m·s−1, while the runout distance surpassed 5.1 km. Hazard zoning based on the depth–velocity (H × V) product indicated that over 76% of the affected area falls within the high-hazard zone. A vulnerability assessment incorporated exposure factors such as tourism infrastructure and population density, and a matrix-based risk classification revealed that 2.4% of the area is classified as high-risk, while 74.3% lies within the moderate-risk category. This study also proposed mitigation strategies, including structural measures (e.g., check dams and channel straightening) and non-structural approaches (e.g., early warning systems and land-use regulation). Overall, the research demonstrates the effectiveness of physically based modeling combined with field observations and a GIS analysis in understanding debris flow hazards and supports informed risk management and disaster preparedness in mountainous tourist regions. Full article
Show Figures

Figure 1

17 pages, 1337 KiB  
Article
Effects of Plant and Substrate Types on Turbidity Removal in Constructed Wetlands: Experimental and w-C* Model Validation
by Paula Cristine Silva Gomes, Isabela da Silva Pedro Rochinha, Jaine Nayara de Araújo de Oliveira, Marllus Henrique Ribeiro de Paiva, Ana Letícia Pilz de Castro, Tamara Daiane de Souza, Múcio André dos Santos Alves Mendes and Aníbal da Fonseca Santiago
Water 2025, 17(13), 1921; https://doi.org/10.3390/w17131921 - 27 Jun 2025
Viewed by 333
Abstract
Constructed wetlands are nature-based technologies widely used for the treatment of wastewater and contaminated surface water. This study evaluated the efficiency of free water surface (FWS) and horizontal subsurface flow (HSSF) constructed wetlands in reducing the turbidity of mine spoil rainwater using the [...] Read more.
Constructed wetlands are nature-based technologies widely used for the treatment of wastewater and contaminated surface water. This study evaluated the efficiency of free water surface (FWS) and horizontal subsurface flow (HSSF) constructed wetlands in reducing the turbidity of mine spoil rainwater using the w-C* model. Different hydraulic retention times (2, 4, and 6 days) were tested, and the influence of macrophyte type and substrate on the w parameter was investigated. Model calibration was performed based on correlation coefficients (R), coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE), and root mean square error (RMSE). The results indicated a 99% reduction in turbidity, with average values of R = 0.87 ± 0.05 (FWS) and 0.87 ± 0.03 (HSSF), and NSE of 0.76 ± 0.04 (FWS) and 0.74 ± 0.07 (HSSF), demonstrating good agreement between observed and predicted data. The settling rate (w) ranged from 0.16 to 0.40 m·d−1 in FWS and from 0.20 to 0.70 m·d−1 in HSSF, with the lowest value recorded in the control (0.09 m·d−1). The best performances were observed in FWS-P with Pistia stratiotes (0.40 m·d−1) and HSSF with Typha domingensis (0.70 m·d−1), demonstrating that vegetation, combined with the use of medium-grain substrate (9.5–19.0 mm), enhances turbidity removal. The w-C* model proved to be a robust tool for describing the kinetics of suspended colloidal particle removal in constructed wetlands, providing valuable insights for optimizing hydraulic parameters and design criteria for full-scale application. Full article
Show Figures

Figure 1

21 pages, 4008 KiB  
Article
Assessing the Impact of Hydraulic Control Structures on Hydrodynamic Modelling in Shallow Waters
by Alfonso Arrieta-Pastrana, Edwin A. Martínez-Padilla, Modesto Pérez-Sánchez, Oscar E. Coronado-Hernández and Helena M. Ramos
J. Mar. Sci. Eng. 2025, 13(7), 1233; https://doi.org/10.3390/jmse13071233 - 26 Jun 2025
Viewed by 232
Abstract
Currently, hydrodynamic models for bay and estuarine systems involve many parameters that require proper calibration to design coastal structures effectively. However, in coastal regions with limited data availability, the implementation of such models becomes challenging. This research introduces a simplified hydrodynamic methodology designed [...] Read more.
Currently, hydrodynamic models for bay and estuarine systems involve many parameters that require proper calibration to design coastal structures effectively. However, in coastal regions with limited data availability, the implementation of such models becomes challenging. This research introduces a simplified hydrodynamic methodology designed to analyse the impact of hydraulic control structures in shallow waters. This approach offers a computationally efficient alternative that allows engineers to rapidly evaluate the impact of horizontal and vertical constrictions in shallow waters experiencing wave propagation. A practical application is demonstrated in a one-dimensional channel with a length of 200,000 m and an average depth of 5 m. The only parameter required for calibration in the proposed methodology is bed friction. The three analysed scenarios—longitudinal constriction, plan-view constriction, and the influence of bed friction—demonstrate the model’s sensitivity to these variations, highlighting its reliability as a decision-making tool for coastal engineering projects. Moreover, the comparison of the proposed hydrodynamic simulation methodology at the stabilised tidal inlet structure in Cartagena de Indias, Colombia, demonstrated its ability to reproduce observed water levels accurately, reinforcing its reliability and potential for broader application. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

25 pages, 5582 KiB  
Article
Integrated Hydrologic–Hydraulic Modeling Framework for Flood Risk Assessment of Rural Bridge Infrastructure in Northwestern Pakistan
by Muhammad Kashif, Wang Bin, Hamza Shams, Muhammad Jhangeer Khan, Marwa Metwally, S. K. Towfek and Amal H. Alharbi
Water 2025, 17(13), 1893; https://doi.org/10.3390/w17131893 - 25 Jun 2025
Viewed by 513
Abstract
This study presents a flood risk assessment of five rural bridges along the monsoon-prone Khar–Mohmand Gat corridor in Northwestern Pakistan using an integrated hydrologic and hydraulic modeling framework. Hydrologic simulations for 50- and 100-year design storms were performed using the Hydrologic Engineering Center’s [...] Read more.
This study presents a flood risk assessment of five rural bridges along the monsoon-prone Khar–Mohmand Gat corridor in Northwestern Pakistan using an integrated hydrologic and hydraulic modeling framework. Hydrologic simulations for 50- and 100-year design storms were performed using the Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS), with watershed delineation conducted via Geographic Information Systems (GIS). Calibration was based on regional rainfall data from the Peshawar station using a Soil Conservation Service Curve Number (SCS-CN) of 86 and time of concentration calculated using Kirpich’s method. The resulting hydrographs were used in two-dimensional hydraulic simulations using the Hydrologic Engineering Center’s River Analysis System (HEC-RAS) to evaluate water surface elevations, flow velocities, and Froude numbers at each bridge site. The findings reveal that all bridges can convey peak flows without overtopping under current climatic conditions. However, Bridges 3 to 5 experience near-critical to supercritical flow conditions, with velocities ranging from 3.43 to 4.75 m/s and Froude numbers between 0.92 and 1.04, indicating high vulnerability to local scour. Bridge 2 shows moderate risk, while Bridge 1 faces the least hydraulic stress. The applied modeling framework effectively identifies structures requiring priority intervention and demonstrates a practical methodology for assessing flood risk in ungauged, data-scarce, and semi-arid regions. Full article
(This article belongs to the Special Issue Numerical Modelling in Hydraulic Engineering)
Show Figures

Figure 1

28 pages, 2554 KiB  
Article
Design, Calibration, and Performance Evaluation of a High-Fidelity Spraying Rainfall Simulator for Soil Erosion Research
by Vukašin Rončević, Nikola Živanović, Lazar Radulović, Ratko Ristić, Seyed Hamidreza Sadeghi, María Fernández-Raga and Sergio A. Prats
Water 2025, 17(13), 1863; https://doi.org/10.3390/w17131863 - 23 Jun 2025
Viewed by 365
Abstract
Rainfall simulators are essential tools in soil research, providing a controlled and repeatable approach to studying rainfall-induced erosion. However, the development of high-fidelity rainfall simulators remains a challenge. This study aimed to design, construct, and calibrate a spraying-type rainfall simulator and validate assessment [...] Read more.
Rainfall simulators are essential tools in soil research, providing a controlled and repeatable approach to studying rainfall-induced erosion. However, the development of high-fidelity rainfall simulators remains a challenge. This study aimed to design, construct, and calibrate a spraying-type rainfall simulator and validate assessment criteria optimized for soil erosion research. The simulator’s design is based on a modified simulator model previously described in the literature and following the defined criteria. The calibration of the simulator was conducted in two phases, on slopes of 0° and 15°, measuring rainfall intensity, drop size, and its spatial distribution, and calculating drop falling velocity, kinetic energy, and momentum. The simulator consists of structural support, a water tank, a water-moving mechanism, a flow regulation system, and sprayers, contributing to its simplicity, cost-effectiveness, durability, rigidity, and stability, ensuring smooth simulator operation. The calibration of the rainfall simulator demonstrated that rainfall intensity increased from 1.4 mm·min−1 to 4.6 mm·min−1 with higher pressure in the hydraulic system (1.0 to 2.0 bar), while spatial uniformity remained within 79–91% across different nozzle configurations. The selected Rain Bird HE-VAN series nozzles proved highly effective in simulating rainfall, achieving drop diameters ranging from 0.8 mm to 1.9 mm, depending on pressure and nozzle type. The rainfall simulator successfully replicates natural rainfall characteristics, offering a controlled environment for investigating soil erosion processes. Drop velocity values varied between 2.5 and 2.9 m·s−1, influencing kinetic energy, which ranged from 0.6 J·min−1·m−2 to 2.9 J·min−1·m−2, and impact momentum, which was measured between 0.005 N·s and 0.032 N·s. The simulator design suggests that it is suitable for future applications in both field and laboratory soil erosion research, ensuring repeatability and adaptability for various experimental conditions. Calibration results emphasized the significance of nozzle selection and water pressure adjustments. These factors significantly affect rainfall intensity, drop size, kinetic energy, and momentum, parameters that are critical for accurate erosion modeling. Full article
Show Figures

Figure 1

24 pages, 2488 KiB  
Article
Rapid SWMM Catchment Prototyping Using Fuzzy Logic: Analyzing Catchment Features for Enhanced Efficiency
by Jacek Dawidowicz and Rafał Buczyński
Water 2025, 17(12), 1820; https://doi.org/10.3390/w17121820 - 18 Jun 2025
Viewed by 266
Abstract
Parameterization of SWMM subcatchments is labor-intensive and a major source of model uncertainty. This study presents the Rapid Catchment Generator (RCG), a fuzzy logic framework that derives hydraulic width, average slope, and impervious fraction from three easily accessible descriptors—area, landform type, and land [...] Read more.
Parameterization of SWMM subcatchments is labor-intensive and a major source of model uncertainty. This study presents the Rapid Catchment Generator (RCG), a fuzzy logic framework that derives hydraulic width, average slope, and impervious fraction from three easily accessible descriptors—area, landform type, and land cover type—and inserts them directly into SWMM input files. A sensitivity analysis of 116,640 synthetic simulations confirmed that width, slope, and imperviousness are the dominant controls on runoff and infiltration. Their relationships are encoded in triangular membership functions covering nine geomorphic classes and twelve imperviousness classes, linked through expert-calibrated Mamdani rules. Validation on a calibrated 37-subcatchment, 10-hectare urban basin in Wrocław, Poland, showed Mean Absolute Percentage Errors of 15.9–16.0% for total runoff, 19% for infiltration, and 29–37% for peak flow, while preserving hydrograph shape. RCG thus reduces model setup time and provides a transparent, reproducible starting point for rapid scenario screening and subsequent fine-scale calibration. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

25 pages, 4968 KiB  
Article
Impact of Precipitation Uncertainty on Flood Hazard Assessment in the Oueme River Basin
by Dognon Jules Afféwé, Fabian Merk, Marleine Bodjrènou, Manuel Rauch, Muhammad Nabeel Usman, Jean Hounkpè, Jan-Geert Bliefernicht, Aristide B. Akpo, Markus Disse and Julien Adounkpè
Hydrology 2025, 12(6), 138; https://doi.org/10.3390/hydrology12060138 - 4 Jun 2025
Viewed by 1623
Abstract
This study evaluates the impact of precipitation ensembles on flood hazards in the Ouémé River Basin by coupling the hydrological HBV and hydrodynamic HEC–RAS model. Both models were calibrated and validated to simulate hydrological and hydraulic processes. Meteorological and hydrometric data from 1994 [...] Read more.
This study evaluates the impact of precipitation ensembles on flood hazards in the Ouémé River Basin by coupling the hydrological HBV and hydrodynamic HEC–RAS model. Both models were calibrated and validated to simulate hydrological and hydraulic processes. Meteorological and hydrometric data from 1994 to 2016, along with flood maps and DEM are used. Evapotranspiration data are calculated using Hargreaves–Samani formula. The coupling HBV–HEC–RAS models enabled the generation of ensemble hydrographs, flood maps, flood probability maps and additional statistics in West Africa for the first time, offering a comprehensive understanding of flood dynamics under uncertainty. Ensemble hydrographs and maps obtained enhance decision-making by showing discharge scenarios, spatial flood variability, prediction reliability, and probabilities, supporting targeted flood management and resource planning under uncertainty. The findings underline the need for a comprehensive strategy to mitigate both common and rare flood events while accounting for spatial uncertainties inherent in hydrological and hydraulic modeling. Full article
Show Figures

Figure 1

19 pages, 4233 KiB  
Article
A Modelling Framework for the Hydraulic Simulation of a Water Distribution System Under Data Scarcity: Application in the City of Farsala, Greece
by Pantelis Sidiropoulos, Achilleas Papadomanolakis, Aikaterini Lyra, Nikitas Mylopoulos and Lampros Vasiliades
Appl. Sci. 2025, 15(11), 6124; https://doi.org/10.3390/app15116124 - 29 May 2025
Viewed by 459
Abstract
Access to safe and reliable water is a fundamental requirement for sustainable urban development. However, water distribution systems (WDSs), particularly in small and aging municipalities, face persistent challenges, including infrastructure degradation, population growth, and limited operational data. This study presents a comprehensive hydraulic [...] Read more.
Access to safe and reliable water is a fundamental requirement for sustainable urban development. However, water distribution systems (WDSs), particularly in small and aging municipalities, face persistent challenges, including infrastructure degradation, population growth, and limited operational data. This study presents a comprehensive hydraulic modeling framework for the city of Farsala, Central Greece, an area characterized by significant data scarcity and outdated water network records. A novel methodology was developed that combines AutoCAD-based network digitization, GIS data integration, field surveys, and real-time SCADA telemetry to create a high-fidelity and operational hydraulic model using WaterGEMS software. The model was calibrated and validated using observed pressure and flow data, achieving high performance metrics, including a Nash–Sutcliffe efficiency (NSE) of 0.841 and R2 of 0.90. Extended period simulations (EPS) were conducted to evaluate system behavior over a 24 h cycle, revealing critical insights into pressure distribution, peak demand conditions, and leakage hotspots. The results demonstrate that even under constrained data conditions, it is possible to construct a robust and decision-supportive model, offering valuable guidance for future system upgrades, leakage control strategies, and smart infrastructure planning in similar urban environments. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

29 pages, 23090 KiB  
Article
Comparison of Flood Scenarios in the Cunas River Under the Influence of Climate Change
by Carlos-Enrique Torres-Mercado, Jhordan-Anderson Villafuerte-Jeremias, Giancarlo-Paul Guerreros-Ollero and Giovene Perez-Campomanes
Hydrology 2025, 12(5), 117; https://doi.org/10.3390/hydrology12050117 - 12 May 2025
Viewed by 1573
Abstract
Climate change has a significant impact on river flows, leading to overflows and floods that affect populations, especially in Andean regions. This study examines flood scenarios in the Cunas River Basin (Junín, Peru) through hydrological and hydraulic simulations under various climate projections. A [...] Read more.
Climate change has a significant impact on river flows, leading to overflows and floods that affect populations, especially in Andean regions. This study examines flood scenarios in the Cunas River Basin (Junín, Peru) through hydrological and hydraulic simulations under various climate projections. A Reliability Ensemble Averaging (REA) approach was employed using CMIP6 climate models. In this analysis, precipitation data were processed, basin parameters were calculated, and peak flows and the extent of flood-prone areas were estimated. HEC-HMS software was used to simulate peak flows corresponding to return periods of 25, 50, 100, 139, and 200 years, while HEC-RAS was employed to determine flood zones. Model calibration and validation relied on historical precipitation data from nearby stations. The results indicate a considerable increase in peak flows and flood-prone areas due to climate change. A 3.32% increase in peak flow, a 55.35% expansion in flood-prone areas, and a 34.12% rise in flood depth are observed. These findings highlight the importance of implementing riverine protection structures. This study provides key information for flood risk management in the Peruvian highlands, using widely accepted tools to understand the hydrological response to climate change. Full article
Show Figures

Figure 1

31 pages, 6399 KiB  
Article
Hydrological Modelling and Multisite Calibration of the Okavango River Basin: Addressing Catchment Heterogeneity and Climate Variability
by Milkessa Gebeyehu Homa, Gizaw Mengistu Tsidu and Esther Nelly Lofton
Water 2025, 17(10), 1442; https://doi.org/10.3390/w17101442 - 10 May 2025
Viewed by 771
Abstract
The Okavango River is a transboundary waterway that flows through Angola, Namibia, and Botswana, forming a significant alluvial fan in northwestern Botswana. This fan creates a Delta that plays a vital role in the country’s GDP through tourism. While research has primarily focused [...] Read more.
The Okavango River is a transboundary waterway that flows through Angola, Namibia, and Botswana, forming a significant alluvial fan in northwestern Botswana. This fan creates a Delta that plays a vital role in the country’s GDP through tourism. While research has primarily focused on the Delta, the river’s catchment area in the Angolan highlands—its main water source and critical for downstream flow—has been largely overlooked. The basin is under pressure from development, water abstraction, and population growth in the surrounding areas, which negatively affect the environment. These challenges are intensified by climate change, leading to increased water scarcity that necessitates improved management strategies. Currently, there is a lack of published research on the basin’s hydrology, leaving many hydrological parameters related to streamflow in the catchments inadequately understood. Most existing studies have employed single-site calibration methods, which fail to capture the diverse characteristics of the basin’s catchments. To address this, a SWAT model has been developed to simulate the hydrologic behaviour of the basin using sequential multisite calibration with data from five gauging stations, including the main river systems: Cubango and Cuito. The SUFI2 program was used for sensitivity analysis, calibration, and validation. The initial sensitivity analysis identified several key parameters: the Soil Evaporation Compensation Factor (ESCO), the SCS curve number under moisture condition II (CN2), Saturated Hydraulic Conductivity (SOL_K), and Moist Bulk Density (SOL_BD) as the most influential. The calibration and validation results were generally satisfactory, with a coefficient of determination ranging from 0.47 to 0.72. Analysis of the water balance and parameter sensitivities revealed the varied hydrologic responses of different sub-watersheds with distinct soil profiles. Average annual precipitation varies from 1116 mm upstream to 369 mm downstream, with an evapotranspiration-to-precipitation ratio ranging from 0.47 to 0.95 and a water yield ratio between 0.51 and 0.03, thereby revealing their spatial gradients, notably increasing evapotranspiration and decreasing water yield downstream. The SWAT model’s water balance components provided promising results, with soil moisture data aligned with the TerraClimate dataset, achieving a coefficient of determination of 0.63. Additionally, the model captured the influence of the El Niño–Southern Oscillation (ENSO) on local hydrology. However, limitations were noted in simulating peak and low flows due to sparse gauge coverage, data gaps (e.g., groundwater abstraction, point sources), and the use of coarse-resolution climate inputs. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

Back to TopTop