Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (960)

Search Parameters:
Keywords = hydraulic coupling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 978 KiB  
Article
Optimization and Practice of Deep Carbonate Gas Reservoir Acidizing Technology in the Sinian System Formation of Sichuan Basin
by Song Li, Jian Yang, Weihua Chen, Zhouyang Wang, Hongming Fang, Yang Wang and Xiong Zhang
Processes 2025, 13(8), 2591; https://doi.org/10.3390/pr13082591 (registering DOI) - 16 Aug 2025
Abstract
The gas reservoir of the Sinian Dengying Formation (Member 4) in Sichuan Basin exhibits extensive development of inter-clast dissolution pores and vugs within its carbonate reservoirs, characterized by low porosity (average 3.21%) and low permeability (average 2.19 mD). With the progressive development of [...] Read more.
The gas reservoir of the Sinian Dengying Formation (Member 4) in Sichuan Basin exhibits extensive development of inter-clast dissolution pores and vugs within its carbonate reservoirs, characterized by low porosity (average 3.21%) and low permeability (average 2.19 mD). With the progressive development of the Moxi (MX)structure, the existing stimulation techniques require further optimization based on the specific geological characteristics of these reservoirs. Through large-scale true tri-axial physical simulation experiments, this study systematically evaluated the performance of three principal acid systems in reservoir stimulation: (1) Self-generating acid systems, which enhance etching through the thermal decomposition of ester precursors to provide sustained reactive capabilities. (2) Gelled acid systems, characterized by high viscosity and effectiveness in reducing breakdown pressure (18%~35% lower than conventional systems), are ideal for generating complex fracture networks. (3) Diverting acid systems, designed to improve fracture branching density by managing fluid flow heterogeneity. This study emphasizes hybrid acid combinations, particularly self-generating acid prepad coupled with gelled acid systems, to leverage their synergistic advantages. Field trials implementing these optimized systems revealed that conventional guar-based fracturing fluids demonstrated 40% higher breakdown pressures compared to acid systems, rendering hydraulic fracturing unsuitable for MX reservoirs. Comparative analysis confirmed gelled acid’s superiority over diverting acid in tensile strength reduction and fracture network complexity. Field implementations using reservoir-quality-adaptive strategies—gelled acid fracturing for main reservoir sections and integrated self-generating acid prepad + gelled acid systems for marginal zones—demonstrated the technical superiority of the hybrid system under MX reservoir conditions. This optimized protocol enhanced fracture length by 28% and stimulated reservoir volume by 36%, achieving a 36% single-well production increase. The technical framework provides an engineered solution for productivity enhancement in deep carbonate gas reservoirs within the G-M structural domain, with particular efficacy for reservoirs featuring dual low-porosity and low-permeability characteristics. Full article
26 pages, 1481 KiB  
Article
Lagrangian Simulation of Sediment Erosion in Francis Turbines Using a Computational Tool in Python Coupled with OpenFOAM
by Mateo Narváez, Jeremy Guamán, Víctor Hugo Hidalgo, Modesto Pérez-Sánchez and Helena M. Ramos
Machines 2025, 13(8), 725; https://doi.org/10.3390/machines13080725 - 15 Aug 2025
Abstract
Hydraulic erosion from suspended sediment is a major degradation mechanism in Francis turbines of sediment-laden rivers, especially in Andean hydropower plants. This study presents a Python3.9-based computational tool integrating the empirical Oka erosion model within a Lagrangian particle tracking framework, coupled to single-phase [...] Read more.
Hydraulic erosion from suspended sediment is a major degradation mechanism in Francis turbines of sediment-laden rivers, especially in Andean hydropower plants. This study presents a Python3.9-based computational tool integrating the empirical Oka erosion model within a Lagrangian particle tracking framework, coupled to single-phase CFD in OpenFOAM 10. The novelty lies in a reduced-domain approach that omits the spiral casing and replicates its particle-induced swirl via a custom algorithm, lowering meshing complexity and computational cost while preserving erosion prediction accuracy. The method was applied to a full-scale Francis turbine at the San Francisco hydropower plant in Ecuador (nominal discharge 62.4 m3/s, rated output 115 MW, rotational speed 34.27 rad/s), operating under volcanic and erosive sediment loads. Maximum erosion rates reached ~1.2 × 10−4 mm3/kg, concentrated on runner blade trailing edges and guide vane pressure sides. Impact kinematics showed most collisions at near-normal angles (85°–98°, peak at 92°) and 6–9 m/s velocities, with rare 40 m/s impacts causing over 50× more loss than average. The workflow identifies critical wear zones, supports redesign and coating strategies, and offers a transferable, open-source framework for erosion assessment in turbines under diverse sediment-laden conditions. Full article
(This article belongs to the Special Issue Sustainable Manufacturing and Green Processing Methods, 2nd Edition)
30 pages, 8331 KiB  
Article
Fracture Complexity and Mineral Damage in Shale Hydraulic Fracturing Based on Microscale Fractal Analysis
by Xin Liu, Jiaqi Zhang, Tianjiao Li, Zhengzhao Liang, Siwei Meng, Licai Zheng and Na Wu
Fractal Fract. 2025, 9(8), 535; https://doi.org/10.3390/fractalfract9080535 - 15 Aug 2025
Abstract
The geological structural complexity and microscale heterogeneity of shale reservoirs, characterized by the brittleness index and natural fracture density, exert a decisive effect on hydraulic fracturing’s effectiveness. However, the mechanisms underlying the true microscale heterogeneity of shale structures, which is neglected in conventional [...] Read more.
The geological structural complexity and microscale heterogeneity of shale reservoirs, characterized by the brittleness index and natural fracture density, exert a decisive effect on hydraulic fracturing’s effectiveness. However, the mechanisms underlying the true microscale heterogeneity of shale structures, which is neglected in conventional models and influences fracture evolution, remain unclear. Here, high-resolution scanning electron microscopy (SEM) was employed to obtain realistic distributions of mineral components and natural fractures, and hydraulic–mechanical coupled simulation models were developed within the Realistic Failure Process Analysis (RFPA) simulator using digital rock techniques. The analysis examined how the brittleness index and natural fracture density affect the fracture morphology’s complexity, mineral failure behavior, and flow conductivity. Numerical simulations show that the main fractures preferentially propagate toward areas with high local brittleness and dense natural fractures. Both the fracture’s fractal dimension and the stimulated reservoir volume increased with the brittleness index. A moderate natural fracture density promotes the fracture network’s complexity, whereas excessive densities may suppress the main fracture’s propagation. Microscopically, organic matter and silicate minerals are more prone to damage, predominantly tensile failures under external loading. These findings highlight the dominant role of microscale heterogeneity in shale fracturing and provide theoretical support for fracture control and stimulation optimization in complex reservoirs. Full article
(This article belongs to the Special Issue Multiscale Fractal Analysis in Unconventional Reservoirs)
Show Figures

Figure 1

19 pages, 3960 KiB  
Article
Hydraulic Performance of an Angled Oppermann Fine Screen with Guidance Wall
by Cumhur Ozbey, Serhat Kucukali and Reinhard Hassinger
Water 2025, 17(16), 2398; https://doi.org/10.3390/w17162398 - 14 Aug 2025
Viewed by 109
Abstract
Fish protection and guidance are critical factors in the design and operation of water intakes at hydropower plants. In this study, the hydraulic performance of the angled Oppermann fine screen has been investigated in a hybrid model with and without a guidance wall. [...] Read more.
Fish protection and guidance are critical factors in the design and operation of water intakes at hydropower plants. In this study, the hydraulic performance of the angled Oppermann fine screen has been investigated in a hybrid model with and without a guidance wall. The experiments were conducted under two different angles of 30° and 45°, and a bar spacing of 10 mm at a large-scale flume with a width of 2 m. Just up- and downstream of the screen, three-dimensional velocities were measured with Acoustic Doppler Velocimetry (ADV). In the computational fluid dynamics (CFD) model, the Large Eddy Simulation (LES) coupled with the Darcy–Forchheimer law, in which screens were modeled as homogeneous porous media, was employed. The experimental results revealed that velocities less than 0.5 m/s just upstream of the Oppermann fine screen and tangential velocity gradients over the entire cross-section of the screen were found to be 0.04–0.338 m/s/m and 0.04–0.856 m/s/m for α = 30° and α = 45°, respectively, creating favorable hydraulic conditions for effective downstream fish guidance. The CFD model was validated against the experimental data within an acceptable error range, both for the velocity and the turbulent kinetic energy. Numerical simulations showed that implementing a curved guidance wall creates a symmetrical and homogeneous downstream flow field without the formation of recirculation zones behind the angled screen. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

20 pages, 2352 KiB  
Article
Dynamic Interaction Mechanism Between Periphytic Algae and Flow in Open Channels
by Ming-Yang Xu, Wei-Jie Wang, Fei Dong, Yu Han, Jun-Li Yu, Feng-Cong Jia and Cai-Ling Zheng
Processes 2025, 13(8), 2551; https://doi.org/10.3390/pr13082551 - 13 Aug 2025
Viewed by 185
Abstract
Periphytic algae, as representative aquatic epiphytic communities, play a vital role in the material cycling and energy flow in rivers. Through physiological processes such as photosynthetic carbon fixation and nutrient absorption, they perform essential ecological functions in water self-purification, maintenance of primary productivity, [...] Read more.
Periphytic algae, as representative aquatic epiphytic communities, play a vital role in the material cycling and energy flow in rivers. Through physiological processes such as photosynthetic carbon fixation and nutrient absorption, they perform essential ecological functions in water self-purification, maintenance of primary productivity, and microhabitat formation. This study investigates the interaction mechanisms between these highly flexible organisms and the hydrodynamic environment, thereby addressing the limitations of traditional hydraulic theories developed for rigid vegetation. By incorporating the coupled effects of biological flexibility and water flow, an innovative nonlinear resistance model with velocity-dependent response is developed. Building upon this model, a coupled governing equation that integrates water flow dynamics, periphytic algae morphology, and layered Reynolds stress is formulated. An analytical solution for the vertical velocity distribution is subsequently derived using analytical methods. Through Particle Image Velocimetry (PIV) measurements conducted under varying flow velocity conditions in an experimental tank, followed by comprehensive error analysis, the accuracy and applicability of the model were verified. The results demonstrate strong agreement between predicted and measured values, with the coefficient of determination R2 greater than 0.94, thereby highlighting the model’s predictive capacity in capturing flow velocity distributions influenced by periphytic algae. The findings provide theoretical support for advancing the understanding of ecological hydrodynamics and establish mechanical and theoretical foundations for river water environment management and vegetation restoration. Future research will build upon the established nonlinear resistance model to investigate the dynamic coupling mechanisms between multi-species periphytic algae communities and turbulence-induced pulsations, aiming to enhance the predictive modelling of biotic–hydrodynamic feedback processes in aquatic ecosystems. Full article
(This article belongs to the Special Issue Advances in Hydrodynamics, Pollution and Bioavailable Transfers)
Show Figures

Figure 1

27 pages, 3538 KiB  
Article
Novel Dual-Layer Zwitterionic Modification of Electrospun Nanofibrous Membrane for Produced Water Treatment and Reclamation
by Sunith B. Madduri and Raghava R. Kommalapati
Membranes 2025, 15(8), 244; https://doi.org/10.3390/membranes15080244 - 10 Aug 2025
Viewed by 417
Abstract
Produced water, a byproduct of oil and gas extraction, poses significant environmental challenges due to its complex composition and high salinity. Conventional treatment technologies often struggle to achieve efficient contaminant removal while maintaining long-term operational stability. Membrane-based separation processes, particularly forward osmosis (FO), [...] Read more.
Produced water, a byproduct of oil and gas extraction, poses significant environmental challenges due to its complex composition and high salinity. Conventional treatment technologies often struggle to achieve efficient contaminant removal while maintaining long-term operational stability. Membrane-based separation processes, particularly forward osmosis (FO), offer a promising alternative due to their low hydraulic pressure requirements, high selectivity, and ability to mitigate fouling and scaling effects. This study fabricated and evaluated a novel dual-layer zwitterion-modified electrospun nanofibrous membrane for enhanced produced water (PW) treatment. The dual-layer design consists of a highly porous electrospun nanofibrous support layer for improved permeability and mechanical strength, coupled with a zwitterionic-modified selective layer to enhance antifouling properties and selective contaminant rejection. The zwitterionic surface modification imparts superior hydration capacity, reducing organic and biological fouling while improving water transport efficiency. The membranes are characterized using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD), contact angle and tensile strength measurements, and nuclear magnetic resonance (NMR) spectroscopy to assess their morphological, structural, and chemical properties. The performance evaluations demonstrated significantly higher water flux (up to 16.05 L m−2 h−1 for SPW (synthetic produced water) and 6.00 L m−2 h−1 for PW using NaBr) and excellent solid rejection (up to 96.02% for SPW and 88.90% for PW), reduced concentration polarization, and superior antifouling performance compared to conventional FO membranes. Experimental results from bench-scale trials demonstrate that this advanced membrane technology offers enhanced water recovery and contaminant removal efficiency, making it a viable solution for industrial-scale PW treatment and reuse. The findings underscore the potential of next-generation dual-layer FO membranes in promoting sustainable water resource management within the oil and gas sector while minimizing environmental impact. Full article
(This article belongs to the Special Issue Advanced Membranes and Membrane Technologies for Wastewater Treatment)
Show Figures

Figure 1

24 pages, 9320 KiB  
Article
Permian Longtan Shale in Guizhou, China: From Mineralogy and Geochemistry to Paleoenvironments
by Ende Deng, Jinchuan Zhang, Qian Zhang, Zaigang Xu, Pingping Ye, Zhihua Yan and Bingren Jiang
Minerals 2025, 15(8), 850; https://doi.org/10.3390/min15080850 - 10 Aug 2025
Viewed by 259
Abstract
The depositional environment of the Permian Longtan shale (LS) in southwestern Guizhou Province, China, has been analyzed using mineralogical and geochemical approaches. Macroscopic observations of those studied LS samples showed that the LS is rather homogeneous and interbedded with coal strips, suggesting a [...] Read more.
The depositional environment of the Permian Longtan shale (LS) in southwestern Guizhou Province, China, has been analyzed using mineralogical and geochemical approaches. Macroscopic observations of those studied LS samples showed that the LS is rather homogeneous and interbedded with coal strips, suggesting a relatively stable and shallow water environment. A detailed microscopic analysis demonstrated that higher land plants contributed the predominant proportion of organic matter in the LS. Inorganic geochemical analysis revealed a mixed source of materials with relatively larger proportions of basalt and andesite. Semiarid to humid and warm climates corresponding to an overall intensive weathering were deduced in the late Permian periods. The LS was deposited in a brackish-to-marine water environment with an oxic to dysoxic redox condition. Sea level rise/down coupled with changes in climate, water salinity, and redox condition jointly controlled the formation of the Longtan shale. Mineralogical composition indicates that the LS mainly comprises of argillaceous with minor siliceous facies, which will likely bring challenges for hydraulic fracturing. Full article
(This article belongs to the Special Issue Organic Petrology and Geochemistry: Exploring the Organic-Rich Facies)
Show Figures

Figure 1

14 pages, 2310 KiB  
Article
A High-Fidelity Model of the Peach Bottom 2 Turbine-Trip Benchmark Using VERA
by Nicholas Herring, Robert Salko and Mehdi Asgari
J. Nucl. Eng. 2025, 6(3), 28; https://doi.org/10.3390/jne6030028 - 4 Aug 2025
Viewed by 277
Abstract
This work presents a high-fidelity simulation of the Peach Bottom turbine trip (PBTT) benchmark using the Virtual Environment for Reactor Applications (VERA), a multiphysics reactor modeling tool developed by the U.S. Department of Energy’s Consortium for Advanced Simulation of Light Water Reactors energy [...] Read more.
This work presents a high-fidelity simulation of the Peach Bottom turbine trip (PBTT) benchmark using the Virtual Environment for Reactor Applications (VERA), a multiphysics reactor modeling tool developed by the U.S. Department of Energy’s Consortium for Advanced Simulation of Light Water Reactors energy innovation hub. The PBTT benchmark, based on a 1977 transient event at the end of cycle 2 in a General Electric Type-4 boiling water reactor (BWR), is a critical test case for validating core physics models with thermal feedback during rapid reactivity events. VERA was employed to perform end-to-end, pin-resolved simulations from conditions at the beginning of cycle 1 through the turbine-trip transient, incorporating detailed neutron transport, fuel depletion, and subchannel thermal hydraulics. The simulation reproduced key benchmark observables with high accuracy: the peak power excursion occurred at 0.75 s, matching the scram time and closely aligning with the benchmark average of 0.742 s; the simulated maximum power spike was approximately 7600 MW, which is within 3% of the benchmark average of 7400 MW; and void-collapse dynamics were consistent with benchmark expectations. Reactivity predictions during cycles 1 and 2 remained within 1500 pcm and 400 pcm of criticality, respectively. These results confirm VERA’s ability to model complex coupled neutronic and thermal hydraulic behavior in a BWR turbine-trip transient, which will support its use in future studies of modeling dryout, fuel performance, and uncertainty quantification for transients of this type. Full article
(This article belongs to the Special Issue Validation of Code Packages for Light Water Reactor Physics Analysis)
Show Figures

Figure 1

20 pages, 5967 KiB  
Article
Inundation Modeling and Bottleneck Identification of Pipe–River Systems in a Highly Urbanized Area
by Jie Chen, Fangze Shang, Hao Fu, Yange Yu, Hantao Wang, Huapeng Qin and Yang Ping
Sustainability 2025, 17(15), 7065; https://doi.org/10.3390/su17157065 - 4 Aug 2025
Viewed by 307
Abstract
The compound effects of extreme climate change and intensive urban development have led to more frequent urban inundation, highlighting the urgent need for the fine-scale evaluation of stormwater drainage system performance in high-density urban built-up areas. A typical basin, located in Shenzhen, was [...] Read more.
The compound effects of extreme climate change and intensive urban development have led to more frequent urban inundation, highlighting the urgent need for the fine-scale evaluation of stormwater drainage system performance in high-density urban built-up areas. A typical basin, located in Shenzhen, was selected, and a pipe–river coupled SWMM was developed and calibrated via a genetic algorithm to simulate the storm drainage system. Design storm scenario analyses revealed that regional inundation occurred in the central area of the basin and the enclosed culvert sections of the midstream river, even under a 0.5-year recurrence period, while the downstream open river channels maintained a substantial drainage capacity under a 200-year rainfall event. To systematically identify bottleneck zones, two novel metrics, namely, the node cumulative inundation volume and the conduit cumulative inundation length, were proposed to quantify the local inundation severity and spatial interactions across the drainage network. Two critical bottleneck zones were selected, and strategic improvement via the cross-sectional expansion of pipes and river culverts significantly enhanced the drainage efficiency. This study provides a practical case study and transferable technical framework for integrating hydraulic modeling, spatial analytics, and targeted infrastructure upgrades to enhance the resilience of drainage systems in high-density urban environments, offering an actionable framework for sustainable urban stormwater drainage system management. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

25 pages, 30553 KiB  
Article
Optimizing Multi-Cluster Fracture Propagation and Mitigating Interference Through Advanced Non-Uniform Perforation Design in Shale Gas Horizontal Wells
by Guo Wen, Wentao Zhao, Hongjiang Zou, Yongbin Huang, Yanchi Liu, Yulong Liu, Zhongcong Zhao and Chenyang Wang
Processes 2025, 13(8), 2461; https://doi.org/10.3390/pr13082461 - 4 Aug 2025
Viewed by 416
Abstract
The persistent challenge of fracture-driven interference (FDI) during large-scale hydraulic fracturing in the southern Sichuan Basin has severely compromised shale gas productivity, while the existing research has inadequately addressed both FDI risk reductions and the optimization of reservoir stimulation. To bridge this gap, [...] Read more.
The persistent challenge of fracture-driven interference (FDI) during large-scale hydraulic fracturing in the southern Sichuan Basin has severely compromised shale gas productivity, while the existing research has inadequately addressed both FDI risk reductions and the optimization of reservoir stimulation. To bridge this gap, this study developed a mechanistic model of the competitive multi-cluster fracture propagation under non-uniform perforation conditions and established a perforation-based design methodology for the mitigation of horizontal well interference. The results demonstrate that spindle-shaped perforations enhance the uniformity of fracture propagation by 20.3% and 35.1% compared to that under uniform and trapezoidal perforations, respectively, with the perforation quantity (48) and diameter (10 mm) identified as the dominant control parameters for balancing multi-cluster growth. Through a systematic evaluation of the fracture communication mechanisms, three distinct inter-well types of FDI were identified: Type I (natural fracture–stress anisotropy synergy), Type II (natural-fracture-dominated), and Type III (stress-anisotropy-dominated). To mitigate these, customized perforation schemes coupled with geometry-optimized fracture layouts were developed. The surveillance data for the offset well show that the pressure interference decreased from 14.95 MPa and 6.23 MPa before its application to 0.7 MPa and 0 MPa, achieving an approximately 95.3% reduction in the pressure interference in the application wells. The expansion morphology of the inter-well fractures confirmed effective fluid redistribution across clusters and containment of the overextension of planar fractures, demonstrating this methodology’s dual capability to enhance the effectiveness of stimulation while resolving FDI challenges in deep shale reservoirs, thereby advancing both productivity and operational sustainability in complex fracturing operations. Full article
Show Figures

Figure 1

21 pages, 5750 KiB  
Article
Numerical Simulations of Coupled Vapor, Water, and Heat Flow in Unsaturated Deformable Soils During Freezing and Thawing
by Sara Soltanpour and Adolfo Foriero
Geotechnics 2025, 5(3), 51; https://doi.org/10.3390/geotechnics5030051 - 4 Aug 2025
Viewed by 179
Abstract
Freezing and thawing cycles significantly affect the mechanical and hydraulic behavior of soils, posing detrimental challenges for infrastructures in cold climates. This study develops and validates a coupled Thermal–Hydraulic–Mechanical (THM) model using COMSOL Multiphysics (Version 6.3) to demonstrate the complexities of vapor and [...] Read more.
Freezing and thawing cycles significantly affect the mechanical and hydraulic behavior of soils, posing detrimental challenges for infrastructures in cold climates. This study develops and validates a coupled Thermal–Hydraulic–Mechanical (THM) model using COMSOL Multiphysics (Version 6.3) to demonstrate the complexities of vapor and water flux, heat transport, frost heave, and vertical stress build-up in unsaturated soils. The analysis focuses on fine sand, sandy clay, and silty clay by examining their varying susceptibilities to frost action. Silty clay generated the highest amount of frost heave and steepest vertical stress gradients due to its high-water retention and strong capillary forces. Fine sand, on the other hand, produced a minimal amount of frost heave and a polarized vertical stress distribution. The study also revealed that vapor flux is more noticeable in freezing fine sand, while silty clay produces the greatest water flux between the frozen and unfrozen zones. The study also assesses the impact of soil properties including the saturated hydraulic conductivity, the particle thermal conductivity, and particle heat capacity on the frost-induced phenomena. Findings show that reducing the saturated hydraulic conductivity has a greater impact on mitigating frost heave than other variations in thermal properties. Silty clay is most affected by these changes, particularly near the soil surface, while fine sand shows less noticeable responses. Full article
Show Figures

Figure 1

21 pages, 7537 KiB  
Article
Variable Step-Size FxLMS Algorithm Based on Cooperative Coupling of Double Nonlinear Functions
by Jialong Wang, Jian Liao, Lin He, Xiaopeng Tan and Zongbin Chen
Symmetry 2025, 17(8), 1222; https://doi.org/10.3390/sym17081222 - 2 Aug 2025
Viewed by 282
Abstract
Based on the principle of symmetry, we propose a variable step-size FxLMS algorithm with double nonlinear functions cooperative coupling (DNVSS-FxLMS), aiming to optimize the contradiction between convergence rate and steady-state error in the active pressure pulsation control system of hydraulic systems. The algorithm [...] Read more.
Based on the principle of symmetry, we propose a variable step-size FxLMS algorithm with double nonlinear functions cooperative coupling (DNVSS-FxLMS), aiming to optimize the contradiction between convergence rate and steady-state error in the active pressure pulsation control system of hydraulic systems. The algorithm innovatively couples two types of nonlinear mechanisms (rational-fractional and exponential-function-based), constructing a refined error-step mapping relationship to achieve a balance between rapid convergence and low steady-state error. Simulation experiments were conducted considering the complex time-varying operating environment of a simulation-based hydraulic system. The results demonstrate that, when the system undergoes unstable random changes, the DNVSS-FxLMS algorithm converges at least twice as fast as traditional and existing variable step size algorithms, while reducing steady-state error by 2–5 dB. The proposed DNVSS-FxLMS algorithm exhibits significant advantages in convergence rate, steady-state error reduction, and tracking capability, providing a highly efficient and robust solution for real-time active control of hydraulic system pressure pulsation under complex operating conditions. Full article
Show Figures

Figure 1

16 pages, 4733 KiB  
Article
Vibratory Pile Driving in High Viscous Soil Layers: Numerical Analysis of Penetration Resistance and Prebored Hole of CEL Method
by Caihui Li, Changkai Qiu, Xuejin Liu, Junhao Wang and Xiaofei Jing
Buildings 2025, 15(15), 2729; https://doi.org/10.3390/buildings15152729 - 2 Aug 2025
Viewed by 304
Abstract
High-viscosity stratified strata, characterized by complex geotechnical properties such as strong cohesion, low permeability, and pronounced layered structures, exhibit significant lateral friction resistance and high-end resistance during steel sheet pile installation. These factors substantially increase construction difficulty and may even cause structural damage. [...] Read more.
High-viscosity stratified strata, characterized by complex geotechnical properties such as strong cohesion, low permeability, and pronounced layered structures, exhibit significant lateral friction resistance and high-end resistance during steel sheet pile installation. These factors substantially increase construction difficulty and may even cause structural damage. This study addresses two critical mechanical challenges during vibratory pile driving in Fujian Province’s hydraulic engineering project: prolonged high-frequency driving durations, and severe U-shaped steel sheet pile head damage in high-viscosity stratified soils. Employing the Coupled Eulerian–Lagrangian (CEL) numerical method, a systematic investigation was conducted into the penetration resistance, stress distribution, and damage patterns during vibratory pile driving under varying conditions of cohesive soil layer thickness, predrilled hole spacing, and aperture dimensions. The correlation between pile stress and penetration depth was established, with the influence mechanisms of key factors on driving-induced damage in high-viscosity stratified strata under multi-factor coupling effects elucidated. Finally, the feasibility of predrilling techniques for resistance reduction was explored. This study applies the damage prediction model based on the CEL method to U-shaped sheet piles in high-viscosity stratified formations, solving the problem of mesh distortion in traditional finite element methods. The findings provide scientific guidance for steel sheet pile construction in high-viscosity stratified formations, offering significant implications for enhancing construction efficiency, ensuring operational safety, and reducing costs in such challenging geological conditions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

25 pages, 7503 KiB  
Article
A Diagnostic Framework for Decoupling Multi-Source Vibrations in Complex Machinery: An Improved OTPA Application on a Combine Harvester Chassis
by Haiyang Wang, Zhong Tang, Liyun Lao, Honglei Zhang, Jiabao Gu and Qi He
Appl. Sci. 2025, 15(15), 8581; https://doi.org/10.3390/app15158581 - 1 Aug 2025
Viewed by 266
Abstract
Complex mechanical systems, such as agricultural combine harvesters, are subjected to dynamic excitations from multiple coupled sources, compromising structural integrity and operational reliability. Disentangling these vibrations to identify dominant sources and quantify their transmission paths remains a significant engineering challenge. This study proposes [...] Read more.
Complex mechanical systems, such as agricultural combine harvesters, are subjected to dynamic excitations from multiple coupled sources, compromising structural integrity and operational reliability. Disentangling these vibrations to identify dominant sources and quantify their transmission paths remains a significant engineering challenge. This study proposes a robust diagnostic framework to address this issue. We employed a multi-condition vibration test with sequential source activation and an improved Operational Transfer Path Analysis (OTPA) method. Applied to a harvester chassis, the results revealed that vibration energy is predominantly concentrated in the 0–200 Hz frequency band. Path contribution analysis quantified that the “cutting header → conveyor trough → hydraulic cylinder → chassis frame” path is the most critical contributor to vertical vibration, with a vibration acceleration level of 117.6 dB. Further analysis identified the engine (29.3 Hz) as the primary source for vertical vibration, while lateral vibration was mainly attributed to a coupled resonance between the threshing cylinder (58 Hz) and the engine’s second-order harmonic. This study’s theoretical contribution lies in validating a powerful methodology for vibration source apportionment in complex systems. Practically, the findings provide direct, actionable insights for targeted structural optimization and vibration suppression. Full article
Show Figures

Figure 1

21 pages, 6892 KiB  
Article
Nose-Wheel Steering Control via Digital Twin and Multi-Disciplinary Co-Simulation
by Wenjie Chen, Luxi Zhang, Zhizhong Tong and Leilei Liu
Machines 2025, 13(8), 677; https://doi.org/10.3390/machines13080677 - 1 Aug 2025
Viewed by 304
Abstract
The aircraft nose-wheel steering system serves as a critical component for ensuring ground taxiing safety and maneuvering efficiency. However, its dynamic control stability faces significant challenges under complex operational conditions. Existing research predominantly focuses on single-discipline modeling, with insufficient in-depth analysis of the [...] Read more.
The aircraft nose-wheel steering system serves as a critical component for ensuring ground taxiing safety and maneuvering efficiency. However, its dynamic control stability faces significant challenges under complex operational conditions. Existing research predominantly focuses on single-discipline modeling, with insufficient in-depth analysis of the coupling effects between hydraulic system dynamics and mechanical dynamics. Traditional PID controllers exhibit limitations in scenarios involving nonlinear time-varying conditions caused by normal load fluctuations of the landing gear buffer strut during high-speed landing phases, including increased control overshoot and inadequate adaptability to abrupt load variations. These issues severely compromise the stability of high-speed deviation correction and overall aircraft safety. To address these challenges, this study constructs a digital twin model based on real aircraft data and innovatively implements multidisciplinary co-simulation via Simcenter 3D, AMESim 2021.1, and MATLAB R2020a. A fuzzy adaptive PID controller is specifically designed to achieve adaptive adjustment of control parameters. Comparative analysis through co-simulation demonstrates that the proposed mechanical–electrical–hydraulic collaborative control strategy significantly reduces response delay, effectively minimizes control overshoot, and decreases hydraulic pressure-fluctuation amplitude by over 85.2%. This work provides a novel methodology for optimizing steering stability under nonlinear interference scenarios, offering substantial engineering applicability and promotion value. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

Back to TopTop