Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = hybrid wind–wave energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1282 KB  
Article
Multi-Objective Optimization for PTO Damping of Floating Offshore Wind–Wave Hybrid Systems Under Extreme Conditions
by Suchun Yang, Shuo Zhang, Fan Zhang, Xianzhi Wang and Dongsheng Qiao
J. Mar. Sci. Eng. 2025, 13(11), 2084; https://doi.org/10.3390/jmse13112084 - 1 Nov 2025
Viewed by 349
Abstract
Floating offshore wind–wave hybrid systems, as a novel structural form integrating floating wind turbine foundations and WECs, can effectively enhance the efficiency of renewable energy utilization when properly designed. A numerical model is established to investigate the dynamic responses of a wind–wave hybrid [...] Read more.
Floating offshore wind–wave hybrid systems, as a novel structural form integrating floating wind turbine foundations and WECs, can effectively enhance the efficiency of renewable energy utilization when properly designed. A numerical model is established to investigate the dynamic responses of a wind–wave hybrid system comprising a semi-submersible FOWT and PA wave energy converters. The optimal damping values of the PTO system for the wind–wave hybrid system are determined based on an NSGA-II. Subsequently, a comparative analysis of dynamic responses is carried out for the PTO system with different states: latching, fully released, and optimal damping. Under the same extreme irregular wave conditions, the pitch motion of the FOWT with optimal damping is reduced to 71% and 50% compared to the latching and fully released states, respectively. The maximum mooring line tension in the optimal damping state is similar to that in the fully released state, but nearly 40% lower than in the latching state. This optimal control strategy not only sustains power generation but also enhances structural stability and efficiency compared to traditional survival strategies, offering a promising approach for cost-effective offshore wind and wave energy utilization. Full article
(This article belongs to the Special Issue Optimized Design of Offshore Wind Turbines)
Show Figures

Figure 1

25 pages, 5464 KB  
Article
A Computational Framework for Fully Coupled Time-Domain Aero-Hydro-Servo-Elastic Analysis of Hybrid Offshore Wind and Wave Energy Systems by Deploying Generalized Modes
by Nikos Mantadakis, Eva Loukogeorgaki and Peter Troch
J. Mar. Sci. Eng. 2025, 13(11), 2047; https://doi.org/10.3390/jmse13112047 - 25 Oct 2025
Viewed by 494
Abstract
In this paper, a generic computational framework, based on the generalized-mode approach, is developed for the fully coupled time-domain aero-hydro-servo-elastic analysis of Hybrid Offshore Wind and Wave Energy Systems (HOWiWaESs), consisting of a Floating Offshore Wind Turbine (FOWT) and several wave energy converters [...] Read more.
In this paper, a generic computational framework, based on the generalized-mode approach, is developed for the fully coupled time-domain aero-hydro-servo-elastic analysis of Hybrid Offshore Wind and Wave Energy Systems (HOWiWaESs), consisting of a Floating Offshore Wind Turbine (FOWT) and several wave energy converters (WECs) mechanically connected to it. The FOWT’s platform and the WECs of the HOWiWaES are modeled as a single floating body with conventional rigid-body modes, while the motions of the WECs relative to the FOWT are described as additional generalized modes of motion. A numerical tool is established by appropriately modifying/extending the OpenFAST source code. The frequency-dependent exciting forces and hydrodynamic coefficients, as well as hydrostatic stiffness terms, are obtained using the traditional boundary integral equation method, whilst the generalized-mode shapes are determined by developing appropriate 3D vector shape functions. The tool is applied for a 5 MW FOWT with a spar-type floating platform and a conic WEC buoy hinged on it via a mechanical arm, and results are compared with those of other investigators utilizing the multi-body approach. Two distinctive cases of a pitching and a heaving WEC are considered. A quite good agreement is established, indicating the potential of the developed tool to model floating HOWiWaESs efficiently. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

10 pages, 204 KB  
Perspective
Predicting Extreme Environmental Values with Hybrid Models: A Perspective Across Air Quality, Wind Energy, and Sensor Networks
by George Efthimiou
Sensors 2025, 25(21), 6523; https://doi.org/10.3390/s25216523 - 23 Oct 2025
Viewed by 955
Abstract
This Perspective synthesizes recent (2023–2025) progress in predicting extreme environmental values by combining empirical formulations, physics-based simulation outputs, and sensor-network data. We argue that hybrid approaches—spanning physics-informed machine learning, digital/operational twins, and edge/embedded AI—can deliver faster and more robust maxima estimates than standalone [...] Read more.
This Perspective synthesizes recent (2023–2025) progress in predicting extreme environmental values by combining empirical formulations, physics-based simulation outputs, and sensor-network data. We argue that hybrid approaches—spanning physics-informed machine learning, digital/operational twins, and edge/embedded AI—can deliver faster and more robust maxima estimates than standalone CFD or purely data-driven models, particularly for urban air quality and wind-energy applications. We distill lessons from cross-domain case studies and highlight five open challenges (uncertainty quantification, reproducibility and benchmarks, sensor layout optimization, real-time inference at the edge, and trustworthy model governance). Building on these, we propose a 2025–2030 research agenda: (i) standardized, open benchmarks with sensor–CFD pairs; (ii) physics-informed learners for extremes; (iii) adaptive source-term estimation pipelines; (iv) lightweight inference for embedded sensing; (v) interoperable digital-twin workflows; and (vi) reporting standards for uncertainty and ethics. The goal is a pragmatic path that couples scientific validity with deployability in operational environments. This Perspective is intended for researchers and practitioners in environmental sensing, urban dispersion, and renewable energy who seek actionable, cross-disciplinary directions for the next wave of extreme-value prediction. For instance, in validation studies using CFD-RANS and sensor data, the proposed hybrid models achieved prediction accuracies for peak pollutant concentrations and wind speeds within ~90–95% of high-fidelity simulations, with a computational cost reduction of over 80%. These results underscore the practical viability of the approach for operational use cases such as urban air quality alerts and wind farm micro-siting. Full article
(This article belongs to the Special Issue Advanced Sensing Techniques for Environmental and Energy Systems)
26 pages, 6714 KB  
Article
Techno-Economic Analysis of Marine Hybrid Clusters for Use in Chile and Mexico
by Emiliano Gorr-Pozzi, Jorge Olmedo-González, Diego Selman-Caro, Manuel Corrales-González, Héctor García-Nava, Fabiola García-Vega, Itxaso Odériz, Giuseppe Giorgi, Rosa de G. González-Huerta, José A. Zertuche-González and Rodolfo Silva
Energies 2025, 18(20), 5543; https://doi.org/10.3390/en18205543 - 21 Oct 2025
Viewed by 597
Abstract
This study assesses the feasibility and profitability of marine hybrid clusters, combining wave energy converters (WECs) and offshore wind turbines (OWTs) to power households and marine aquaculture. Researchers analyzed two coastal sites: La Serena, Chile, with high and consistent wave energy resources, and [...] Read more.
This study assesses the feasibility and profitability of marine hybrid clusters, combining wave energy converters (WECs) and offshore wind turbines (OWTs) to power households and marine aquaculture. Researchers analyzed two coastal sites: La Serena, Chile, with high and consistent wave energy resources, and Ensenada, Mexico, with moderate and more variable wave power. Two WEC technologies, Wave Dragon (WD) and Pelamis (PEL), were evaluated alongside lithium-ion battery storage and green hydrogen production for surplus energy storage. Results show that La Serena’s high wave power (26.05 kW/m) requires less hybridization than Ensenada’s (13.88 kW/m). The WD device in La Serena achieved the highest energy production, while PEL arrays in Ensenada were more effective. The PEL-OWT cluster proved the most cost-effective in Ensenada, whereas the WD-OWT performed better in La Serena. Supplying electricity for seaweed aquaculture, particularly in La Serena, proves more profitable than for households. Ensenada’s clusters generate more surplus electricity, suitable for the electricity market or hydrogen conversion. This study emphasizes the importance of tailoring emerging WEC systems to local conditions, optimizing hybridization strategies, and integrating consolidated industries, such as aquaculture, to enhance both economic and environmental benefits. Full article
(This article belongs to the Special Issue Advanced Technologies for the Integration of Marine Energies)
Show Figures

Figure 1

19 pages, 7379 KB  
Article
Criterion Circle-Optimized Hybrid Finite Element–Statistical Energy Analysis Modeling with Point Connection Updating for Acoustic Package Design in Electric Vehicles
by Jiahui Li, Ti Wu and Jintao Su
World Electr. Veh. J. 2025, 16(10), 563; https://doi.org/10.3390/wevj16100563 - 2 Oct 2025
Viewed by 374
Abstract
This research is based on the acoustic package design of new energy vehicles, investigating the application of the hybrid Finite Element–Statistical Energy Analysis (FE-SEA) model in predicting the high-frequency dynamic response of automotive structures, with a focus on the modeling and correction methods [...] Read more.
This research is based on the acoustic package design of new energy vehicles, investigating the application of the hybrid Finite Element–Statistical Energy Analysis (FE-SEA) model in predicting the high-frequency dynamic response of automotive structures, with a focus on the modeling and correction methods for hybrid point connections. New energy vehicles face unique acoustic challenges due to the special nature of their power systems and operating conditions, such as high-frequency noise from electric motors and electronic devices, wind noise, and road noise at low speeds, which directly affect the vehicle’s ride comfort. Therefore, optimizing the acoustic package design of new energy vehicles to reduce in-cabin noise and improve acoustic quality is an important issue in automotive engineering. In this context, this study proposes an improved point connection correction factor by optimizing the division range of the decision circle. The factor corrects the dynamic stiffness of point connections based on wave characteristics, aiming to improve the analysis accuracy of the hybrid FE-SEA model and enhance its ability to model boundary effects. Simulation results show that the proposed method can effectively improve the model’s analysis accuracy, reduce the degrees of freedom in analysis, and increase efficiency, providing important theoretical support and reference for the acoustic package design and NVH performance optimization of new energy vehicles. Full article
Show Figures

Figure 1

27 pages, 15345 KB  
Article
Advanced Drone Routing and Scheduling for Emergency Medical Supply Chains in Essex
by Shabnam Sadeghi Esfahlani, Sarinova Simanjuntak, Alireza Sanaei and Alex Fraess-Ehrfeld
Drones 2025, 9(9), 664; https://doi.org/10.3390/drones9090664 - 22 Sep 2025
Viewed by 1058
Abstract
Rapid access to defibrillators, blood products, and time-critical medicines can improve survival, yet urban congestion and fragmented infrastructure delay deliveries. We present and evaluate an end-to-end framework for beyond-visual-line-of-sight (BVLOS) UAV logistics in Essex (UK), integrating (I) strategic depot placement, (II) a hybrid [...] Read more.
Rapid access to defibrillators, blood products, and time-critical medicines can improve survival, yet urban congestion and fragmented infrastructure delay deliveries. We present and evaluate an end-to-end framework for beyond-visual-line-of-sight (BVLOS) UAV logistics in Essex (UK), integrating (I) strategic depot placement, (II) a hybrid obstacle-aware route planner, and (III) a time-window-aware (TWA) Mixed-Integer Linear Programming (MILP) scheduler coupled to a battery/temperature feasibility model. Four global planners—Ant Colony Optimisation (ACO), Genetic Algorithm (GA), Particle Swarm Optimisation (PSO), and Rapidly Exploring Random Tree* (RRT*)—are paired with lightweight local refiners, Simulated Annealing (SA) and Adaptive Large-Neighbourhood Search (ALNS). Benchmarks over 12 destinations used real Civil Aviation Authority no-fly zones and energy constraints. RRT*-based hybrids delivered the shortest mean paths: RRT* + SA and RRT* + ALNS tied for the best average length, while RRT* + SA also achieved the co-lowest runtime at v=60kmh1. The TWA-MILP reached proven optimality in 0.11 s, showing that a minimum of seven UAVs are required to satisfy all 20–30 min delivery windows in a single wave; a rolling demand of one request every 15 min can be sustained with three UAVs if each sortie (including service/recharge) completes within 45 min. To validate against a state-of-the-art operations-research baseline, we also implemented a Vehicle Routing Problem with Time Windows (VRPTW) in Google OR-Tools, confirming that our hybrid planners generate competitive or shorter NFZ-aware routes in complex corridors. Digital-twin validation in AirborneSIM confirmed CAP 722-compliant, flyable trajectories under wind and sensor noise. By hybridising a fast, probabilistically complete sampler (RRT*) with a sub-second refiner (SA/ALNS) and embedding energy-aware scheduling, the framework offers an actionable blueprint for emergency medical UAV networks. Full article
Show Figures

Figure 1

29 pages, 8271 KB  
Review
A Review of Offshore Renewable Energy for Advancing the Clean Energy Transition
by Annette von Jouanne, Emmanuel Agamloh and Alex Yokochi
Energies 2025, 18(18), 4798; https://doi.org/10.3390/en18184798 - 9 Sep 2025
Cited by 2 | Viewed by 1678
Abstract
Offshore renewable energy resources are abundant and widely available worldwide, offering significant contributions to the clean energy net-zero carbon emission targets. This paper reviews strong and emerging offshore renewable energy sources, including wind (fixed bottom and floating), hydrokinetic wave and tidal energy, floating [...] Read more.
Offshore renewable energy resources are abundant and widely available worldwide, offering significant contributions to the clean energy net-zero carbon emission targets. This paper reviews strong and emerging offshore renewable energy sources, including wind (fixed bottom and floating), hydrokinetic wave and tidal energy, floating solar photovoltaics (FPVs) and hybrid energy systems. A literature review of recent sources yields a timely comprehensive comparison of the levelized cost of electricity (LCOE), technology readiness levels (TRLs), capacity factors (CFs) and global generation installed and potential, where offshore wind is recognized as being the strongest contributor to the clean energy transition and thus receives the most attention. Offshore wind grid integration, converter technologies, criticality, resiliency and energy storage integration are presented, in addition to challenges and research directions. While wave, tidal and FPV will never dominate the global grid, they have vital roles to play in the global energy transition; thus, they are reviewed, including technologies, installations, potential, challenges and research directions. Offshore hybrid energy systems, combining different offshore renewable energy sources, are also discussed along with example installations. The paper concludes with a discussion of the potential environmental impacts of offshore renewable energy development, including recommendations. Full article
(This article belongs to the Special Issue Sustainable Energy, Environment and Low-Carbon Development)
Show Figures

Figure 1

34 pages, 9260 KB  
Review
Recent Advances in the Analysis of Functional and Structural Polymer Composites for Wind Turbines
by Francisco Lagos, Brahim Menacer, Alexis Salas, Sunny Narayan, Carlos Medina, Rodrigo Valle, César Garrido, Gonzalo Pincheira, Angelo Oñate, Renato Hunter-Alarcón and Víctor Tuninetti
Polymers 2025, 17(17), 2339; https://doi.org/10.3390/polym17172339 - 28 Aug 2025
Viewed by 2870
Abstract
Achieving the full potential of wind energy in the global renewable transition depends critically on enhancing the performance and reliability of polymer composite components. This review synthesizes recent advances from 2022 to 2025, including the development of next-generation hybrid composites and the application [...] Read more.
Achieving the full potential of wind energy in the global renewable transition depends critically on enhancing the performance and reliability of polymer composite components. This review synthesizes recent advances from 2022 to 2025, including the development of next-generation hybrid composites and the application of high-fidelity computational methods—finite element analysis (FEA), computational fluid dynamics (CFD), and fluid–structure interaction (FSI)—to optimize structural integrity and aerodynamic performance. It also explores the transformative role of artificial intelligence (AI) in structural health monitoring (SHM) and the integration of Internet of Things (IoT) systems, which are becoming essential for predictive maintenance and lifecycle management. Special focus is given to harsh offshore environments, where polymer composites must withstand extreme wind and wave conditions. This review further addresses the growing importance of circular economy strategies for managing end-of-life composite blades. While innovations such as the geometric redesign of floating platforms and the aerodynamic refinement of blade components have yielded substantial gains—achieving up to a 30% mass reduction in PLA prototypes—more conservative optimizations of internal geometry configurations in GFRP blades provide only around 7% mass reduction. Nevertheless, persistent challenges related to polymer composite degradation and fatigue under severe weather conditions are driving the adoption of real-time hybrid predictive models. A bibliometric analysis of over 1000 publications confirms more than 25 percent annual growth in research across these interconnected areas. This review serves as a comprehensive reference for engineers and researchers, identifying three strategic frontiers that will shape the future of wind turbine blade technology: advanced composite materials, integrated computational modeling, and scalable recycling solutions. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

35 pages, 5653 KB  
Review
A Review Concerning the Offshore Wind and Wave Energy Potential in the Black Sea
by Adriana Silion and Liliana Rusu
J. Mar. Sci. Eng. 2025, 13(9), 1643; https://doi.org/10.3390/jmse13091643 - 27 Aug 2025
Viewed by 3256
Abstract
This paper aims to analyze the Black Sea region’s potential for renewable energy, focusing on offshore wind and waves. The study highlights the Black Sea as a new region for marine renewables exploitation in the context of climate objectives and the European shift [...] Read more.
This paper aims to analyze the Black Sea region’s potential for renewable energy, focusing on offshore wind and waves. The study highlights the Black Sea as a new region for marine renewables exploitation in the context of climate objectives and the European shift to renewable energy. It also incorporates results from different previous studies, when data from in situ measurements, satellite observations, and numerical simulations and climate reanalysis have been considered and analyzed. The reviewed studies cover a wide time span from historical data in the late 20th century to projections extending until 2100, considering the climate change impact. They focus on both localized coastal regions (predominantly Romanian waters) and the larger Black Sea Basin. The comparative analysis identifies the northwestern part of the sea as the most favorable region for the development of offshore wind farms. The present work also discusses the environmental implications and technological development of different types of wave energy converters (WECs) and their use in hybrid systems integrating multiple marine energy resources. The review concludes by highlighting the region’s outstanding potential for renewable energy and stressing the need for technological development, regional policy integration, and investment in infrastructure to enable sustainable marine energy harnessing. Full article
(This article belongs to the Special Issue New Developments of Ocean Wind, Wave and Tidal Energy)
Show Figures

Figure 1

26 pages, 2354 KB  
Article
Site Suitability Assessment and Grid-Forming Battery Energy Storage System Configuration for Hybrid Offshore Wind-Wave Energy Systems
by Yijin Li, Zihao Zhang, Jibo Wang, Zhanqin Wang, Wenhao Xu and Geng Niu
J. Mar. Sci. Eng. 2025, 13(9), 1601; https://doi.org/10.3390/jmse13091601 - 22 Aug 2025
Viewed by 930
Abstract
Hybrid offshore wind-wave systems play an important role in renewable energy transition. To maximize energy utilization efficiency, a comprehensive assessment to select optimal locations is urgently needed. The hydraulic power characteristics of these systems cause power fluctuations that reduce grid frequency stability. Thus, [...] Read more.
Hybrid offshore wind-wave systems play an important role in renewable energy transition. To maximize energy utilization efficiency, a comprehensive assessment to select optimal locations is urgently needed. The hydraulic power characteristics of these systems cause power fluctuations that reduce grid frequency stability. Thus, a site suitability assessment and a grid-forming battery energy storage system (BESS) configuration method are proposed. Considering energy efficiency, dynamic complementary characteristics, and output stability, a framework integrating three indices of Composite Energy Output Index (CEOI), Time-Shifted Cross-Covariance Index (TS-CCI), and Energy Penetration Balance Index (EPBI) is constructed to assess site suitability. To ensure secure and stable operation of microgrid, the frequency response characteristics of the hybrid system are analyzed, and the corresponding frequency constraint is given. A BESS configuration method considering frequency constraint is developed to minimize life cycle costs and maintain grid stability. Applied to a case study along China’s southeast coast, the assessment method successfully identified the optimal offshore station, confirming its practical applicability. The BESS configuration method is validated on a modified IEEE 30-bus system, with a 6.35% decrease in life cycle cost and complete renewable utilization. This research provides a technical and cost-effective solution for integrating hybrid wind-wave energy into island microgrids. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

25 pages, 4591 KB  
Article
Dynamic Response Analysis of a New Combined Concept of a Spar Wind Turbine and Multi-Section Wave Energy Converter Under Operational Conditions
by Jiahao Xu, Ling Wan, Guochun Xu, Jianjian Xin, Wei Shi, Kai Wang and Constantine Michalides
J. Mar. Sci. Eng. 2025, 13(8), 1538; https://doi.org/10.3390/jmse13081538 - 11 Aug 2025
Viewed by 766
Abstract
To achieve the ‘zero carbon’ target, offshore renewable energy exploration plays a key role in many countries. Offshore wind energy and wave energy are both important offshore renewable energies. With the target to reduce the cost of energy, a new combined wind and [...] Read more.
To achieve the ‘zero carbon’ target, offshore renewable energy exploration plays a key role in many countries. Offshore wind energy and wave energy are both important offshore renewable energies. With the target to reduce the cost of energy, a new combined wind and wave energy converter is proposed in this work. The new concept consists of a spar-type floating wind turbine and a multi-section pitch-type wave energy converter (WEC). The WEC is attached to the spar column and consists of multiple sections with different lengths to absorb wave energy at different wave frequencies, i.e., multi-band absorption. Through multi-band wave energy absorption, the total power is expected to increase. In addition, through synergetic design, the dynamic motions of the platform are expected to decrease. In this paper, a fully coupled numerical model of the concept is established, based on the hybrid time–frequency-domain simulation framework. The frequency-domain hydrodynamic properties were transferred to the time domain. Then, the dynamic performance of the combined concept under wind–wave conditions was studied, especially under operational conditions. Mechanical couplings among multiple floating bodies were taken into account. To demonstrate the WEC effects on the floating wind turbine, the dynamic performance of the combined wind–wave energy converter concept was compared with the segregated floating wind turbine, with a focus on motions and output power. It was expected that the average overall output power of the multi-section WEC could be above 160 kW. The advantages of the combined concept are demonstrated. Full article
(This article belongs to the Special Issue Optimized Design of Offshore Wind Turbines)
Show Figures

Figure 1

37 pages, 11435 KB  
Article
Hybrid Energy-Powered Electrochemical Direct Ocean Capture Model
by James Salvador Niffenegger, Kaitlin Brunik, Todd Deutsch, Michael Lawson and Robert Thresher
Clean Technol. 2025, 7(3), 52; https://doi.org/10.3390/cleantechnol7030052 - 23 Jun 2025
Viewed by 1217
Abstract
Offshore synthetic fuel production and marine carbon dioxide removal can be enabled by direct ocean capture, which extracts carbon dioxide from the ocean that then can be used as a feedstock for fuel production or sequestered underground. To maximize carbon capture, plants require [...] Read more.
Offshore synthetic fuel production and marine carbon dioxide removal can be enabled by direct ocean capture, which extracts carbon dioxide from the ocean that then can be used as a feedstock for fuel production or sequestered underground. To maximize carbon capture, plants require a variety of low-carbon energy sources to operate, such as variable renewable energy. However, the impacts of variable power on direct ocean capture have not yet been thoroughly investigated. To facilitate future deployments, a generalizable model for electrodialysis-based direct ocean capture plants is created to evaluate plant performance and electricity costs under intermittent power availability. This open-source Python-based model captures key aspects of the electrochemistry, ocean chemistry, post-processing, and operation scenarios under various conditions. To incorporate realistic energy supply dynamics and cost estimates, the model is coupled with the National Renewable Energy Laboratory’s H2Integrate tool, which simulates hybrid energy system performance profiles and costs. This integrated framework is designed to provide system-level insights while maintaining computational efficiency and flexibility for scenario exploration. Initial evaluations show similar results to those predicted by the industry, and demonstrate how a given plant could function with variable power in different deployment locations, such as with wind energy off the coast of Texas and with wind and wave energy off the coast of Oregon. The results suggest that electrochemical systems with greater tolerances for power variability and low minimum power requirements may offer operational advantages in variable-energy contexts. However, further research is needed to quantify these benefits and evaluate their implications across different deployment scenarios. Full article
(This article belongs to the Topic CO2 Capture and Renewable Energy, 2nd Edition)
Show Figures

Figure 1

17 pages, 4761 KB  
Article
Research on Power Conversion and Control Technology of Ocean Buoy Tidal Energy Power Supply System
by Changpo Song, Fengyong Sun and Fan Yang
J. Mar. Sci. Eng. 2025, 13(6), 1129; https://doi.org/10.3390/jmse13061129 - 5 Jun 2025
Viewed by 704
Abstract
This paper proposes a Boost + LLC converter-based power controller for ocean buoy tidal energy systems. To optimize output power across a wide input voltage range (40–120 V) and achieve effective power tracking control, we introduce two key innovations as follows: (1) a [...] Read more.
This paper proposes a Boost + LLC converter-based power controller for ocean buoy tidal energy systems. To optimize output power across a wide input voltage range (40–120 V) and achieve effective power tracking control, we introduce two key innovations as follows: (1) a variable-mode inverter hybrid control strategy, combining smooth-mode switching with inverter control to enable wide gain range regulation. (2) An improved Grey Wolf Optimization (GWO) algorithm, enhanced by integrating a PSO-based elite wolf search strategy preventing local optima and maximizing power capture. Saber and Matlab simulations demonstrate that the proposed approach yields faster power tracking response and increases output power by 5–10% compared to traditional methods. The combined controller and improved GWO algorithm provide a stable and efficient solution for small-scale ocean energy systems, offering practical insights for power regulation in other marine energy sources like wave, wind, and solar. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

22 pages, 5472 KB  
Article
Optimization of Offshore Wind and Wave Energy Co-Generation System Based on Improved Seagull Optimization Algorithm
by Xiaoshi Zhuang, Honglue Wan, Dongran Song, Xinyu Fan, Yuchen Wang, Qian Huang and Jian Yang
Energies 2025, 18(11), 2846; https://doi.org/10.3390/en18112846 - 29 May 2025
Viewed by 823
Abstract
To address the high complexity layout optimization problem of an offshore wind and wave energy co-generation system, an improved seagull optimization algorithm-based method is proposed. Firstly, the levelized cost of electricity (LCOE) model, based on the whole-life-cycle cost, serves as the optimization objective. [...] Read more.
To address the high complexity layout optimization problem of an offshore wind and wave energy co-generation system, an improved seagull optimization algorithm-based method is proposed. Firstly, the levelized cost of electricity (LCOE) model, based on the whole-life-cycle cost, serves as the optimization objective. Therein, the synergistic effect between wind turbines and wave energy generators is taken into consideration to decouple the problem and establish a two-layer optimization framework. Secondly, the seagull optimization algorithm is enhanced by integrating three strategies: the nonlinear adjustment strategy for control factors, the Gaussian–Cauchy hybrid variational strategy, and the multiple swarm strategy, thereby improving the global search capability. Finally, a case study in the South China Sea validates the effectiveness of the model and algorithm. Using the improved algorithm, the optimal layout of the co-generation system and the optimal wind turbine parameters are obtained. The results indicate that the optimized system achieves a LCOE of 0.6561 CNY/kWh, which is 0.29% lower than that achieved by traditional algorithms. The proposed method provides a reliable technical solution for the economic optimization of the co-generation system. Full article
Show Figures

Figure 1

19 pages, 2286 KB  
Article
Numerical Analysis of Nonlinear Hydrodynamic Performance in an Innovative Composite Monopile Foundation for Offshore Wind Turbines Using a Fully Nonlinear Potential Flow Model
by Shuang Liang, Lin Lin, Fayun Liang, Panpan Shen and Shilun Zhao
Sustainability 2025, 17(11), 4769; https://doi.org/10.3390/su17114769 - 22 May 2025
Viewed by 830
Abstract
Offshore wind turbines serve as critical infrastructure components in marine renewable energy systems, enabling sustainable energy extraction within offshore engineering frameworks. Monopile foundations for offshore wind turbines in deep-water environments are subjected to strong nonlinear wave actions. This study introduces a novel composite [...] Read more.
Offshore wind turbines serve as critical infrastructure components in marine renewable energy systems, enabling sustainable energy extraction within offshore engineering frameworks. Monopile foundations for offshore wind turbines in deep-water environments are subjected to strong nonlinear wave actions. This study introduces a novel composite monopile foundation specifically designed for deep-sea applications, with its fully nonlinear hydrodynamic performance systematically investigated using potential flow theory. The novel hybrid monopile incorporates a concrete-filled double-skin steel tubular (CFDST) configuration to reduce pile diameter at water level. In the numerical model, the higher-order boundary element method (HOBEM) is implemented to resolve boundary value problems at each temporal iteration. Following numerical validation, nonlinear wave loading and run-up characteristics for the CFDST hybrid structure are quantified, while the limitations of Morison’s equation for large-scale structures under strongly nonlinear wave conditions are concurrently assessed. Results indicate that CFDST implementation effectively attenuates both nonlinear hydrodynamic forces and wave run-up amplitudes, enabling safer and more economical design approaches for deep-water offshore wind turbine foundations. Full article
Show Figures

Figure 1

Back to TopTop