Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (166)

Search Parameters:
Keywords = hybrid solar collectors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3300 KB  
Article
Electro-Thermal Transient Characteristics of Photovoltaic–Thermal (PV/T)–Heat Pump System
by Wenlong Zou, Gang Yu and Xiaoze Du
Energies 2025, 18(17), 4513; https://doi.org/10.3390/en18174513 (registering DOI) - 25 Aug 2025
Abstract
This study investigates the electro-thermal transient response of a photovoltaic–thermal (PV/T)–heat pump system under dynamic disturbances to optimize operational stability. A dynamic model integrating a PV/T collector and a heat pump was developed by the transient heat current method, enabling high-fidelity simulations of [...] Read more.
This study investigates the electro-thermal transient response of a photovoltaic–thermal (PV/T)–heat pump system under dynamic disturbances to optimize operational stability. A dynamic model integrating a PV/T collector and a heat pump was developed by the transient heat current method, enabling high-fidelity simulations of step perturbations: solar irradiance reduction, compressor operation, condenser water flow rate variations, and thermal storage tank volume changes. This study highlights the thermal storage tank’s critical role. For Vtank = 2 m3, water tank volume significantly suppresses the water tank and PV/T collector temperature fluctuations caused by solar irradiance reduction. PV/T collector temperature fluctuation suppression improved by 46.7%. For the PV/T heat pump system in this study, the water tank volume was selected between 1 and 1.5 m3 to optimize the balance of thermal inertia and cost. Despite PV cell electrical efficiency gains from PV cell temperature reductions caused by solar irradiance reduction, power recovery remains limited. Compressor dynamic performance exhibits asymmetry: the hot water temperature drop caused by speed reduction exceeds the rise from speed increase. Load fluctuations reveal heightened risk: load reduction triggers a hot water 7.6 °C decline versus a 2.2 °C gain under equivalent load increases. Meanwhile, water flow rate variation in condenser identifies electro-thermal time lags (100 s thermal and 50 s electrical stabilization), necessitating predictive compressor control to prevent temperature and compressor operation oscillations caused by system condition changes. These findings advance hybrid renewable systems by resolving transient coupling mechanisms and enhancing operational resilience, offering actionable strategies for PV/T–heat pump deployment in building energy applications. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

19 pages, 474 KB  
Review
A Review on the Technologies and Efficiency of Harvesting Energy from Pavements
by Shijing Chen, Luxi Wei, Chan Huang and Yinghong Qin
Energies 2025, 18(15), 3959; https://doi.org/10.3390/en18153959 - 24 Jul 2025
Viewed by 759
Abstract
Dark asphalt surfaces, absorbing about 95% of solar radiation and warming to 60–70 °C during summer, intensify urban heat while providing substantial prospects for energy extraction. This review evaluates four primary technologies—asphalt solar collectors (ASCs, including phase change material (PCM) integration), photovoltaic (PV) [...] Read more.
Dark asphalt surfaces, absorbing about 95% of solar radiation and warming to 60–70 °C during summer, intensify urban heat while providing substantial prospects for energy extraction. This review evaluates four primary technologies—asphalt solar collectors (ASCs, including phase change material (PCM) integration), photovoltaic (PV) systems, vibration-based harvesting, thermoelectric generators (TEGs)—focusing on their principles, efficiencies, and urban applications. ASCs achieve up to 30% efficiency with a 150–300 W/m2 output, reducing pavement temperatures by 0.5–3.2 °C, while PV pavements yield 42–49% efficiency, generating 245 kWh/m2 and lowering temperatures by an average of 6.4 °C. Piezoelectric transducers produce 50.41 mW under traffic loads, and TEGs deliver 0.3–5.0 W with a 23 °C gradient. Applications include powering sensors, streetlights, and de-icing systems, with ASCs extending pavement life by 3 years. Hybrid systems, like PV/T, achieve 37.31% efficiency, enhancing UHI mitigation and emissions reduction. Economically, ASCs offer a 5-year payback period with a USD 3000 net present value, though PV and piezoelectric systems face cost and durability challenges. Environmental benefits include 30–40% heat retention for winter use and 17% increased PV self-use with EV integration. Despite significant potential, high costs and scalability issues hinder adoption. Future research should optimize designs, develop adaptive materials, and validate systems under real-world conditions to advance sustainable urban infrastructure. Full article
Show Figures

Figure 1

24 pages, 3957 KB  
Article
Steam Generation for Industry Using Linear Fresnel Solar Collectors and PV-Driven High-Temperature Heat Pumps: Techno-Economic Analysis
by Antonio Famiglietti and Ruben Abbas
Solar 2025, 5(2), 27; https://doi.org/10.3390/solar5020027 - 17 Jun 2025
Viewed by 568
Abstract
Steam is widely used in industry as a heat carrier for thermal processes and is primarily generated by gas-fired steam boilers. The decarbonization of industrial thermal demand relies on the capability of clean and renewable technologies to provide steam through reliable and cost-effective [...] Read more.
Steam is widely used in industry as a heat carrier for thermal processes and is primarily generated by gas-fired steam boilers. The decarbonization of industrial thermal demand relies on the capability of clean and renewable technologies to provide steam through reliable and cost-effective systems. Concentrating solar thermal technologies are attracting attention as a heat source for industrial steam generation. In addition, electricity-driven high-temperature heat pumps can provide heat using either renewable or grid electricity by upgrading ambient or waste heat to the required temperature level. In this study, linear Fresnel solar collectors and high-temperature heat pumps driven by photovoltaics are considered heat sources for steam generation in industrial processes. Energetic and economic analyses are performed across the European countries to assess and compare their performances. The results demonstrate that for a given available area for the solar field, solar thermal systems provide a higher annual energy yield in southern countries and at lower costs than heat pumps. On the other hand, heat pumps driven by photovoltaics provide higher annual energy for decreasing solar radiation conditions (central and northern Europe), although it leads to higher costs than solar thermal systems. A hybrid scheme combining the two technologies is the favorable option in central Europe, allowing a trade-off between the costs and the energy yield per unit area. Full article
Show Figures

Figure 1

17 pages, 2496 KB  
Article
High-Precision Experimental Data for Thermal Model Validation of Flat-Plate Hybrid Water PV/T Collectors
by Fahad Maoulida, Rabah Djedjig, Mourad Rahim, Mohamed Aboudou Kassim and Mohammed El Ganaoui
Energies 2025, 18(11), 2972; https://doi.org/10.3390/en18112972 - 4 Jun 2025
Viewed by 1661
Abstract
An experimental setup was developed, incorporating a monitored DualSun® photovoltaic–thermal (PV/T) panel and a weather station to continuously record real-time climatic conditions. This setup enables an hour-by-hour comparison between the actual performance observed under real-world conditions and the predictions generated by the [...] Read more.
An experimental setup was developed, incorporating a monitored DualSun® photovoltaic–thermal (PV/T) panel and a weather station to continuously record real-time climatic conditions. This setup enables an hour-by-hour comparison between the actual performance observed under real-world conditions and the predictions generated by the thermal model. The generated dataset was used to evaluate a thermal model derived from the literature, comparing its predictions with measured data. The model adopts a quasi-steady-state, one-dimensional approach based on heat balance equations applied to both the photovoltaic cells and the heat transfer fluid. Conducted during the summer of 2022, the experiment provides valuable insights into the accuracy of the literature-based thermal model under summer meteorological conditions. The results show a good correlation between the experimental data and the model’s predictions. The average deviation observed for the outlet fluid temperature is 0.1 °C during the day and 1.3 °C at night. Consequently, the findings underscore the model’s effectiveness for evaluating daytime performance, while also pointing out its limitations for nighttime predictions, especially when hybrid PV/T collectors are used for applications such as nighttime free cooling. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

23 pages, 5215 KB  
Article
Experimental Evaluation of Hybrid Renewable and Thermal Energy Storage Systems for a Net-Zero Energy Greenhouse: A Case Study of Yeoju-Si
by Misbaudeen Aderemi Adesanya, Anis Rabiu, Qazeem Opeyemi Ogunlowo, Min-Hwi Kim, Timothy Denen Akpenpuun, Wook-Ho Na, Kuljeet Singh Grewal and Hyun-Woo Lee
Energies 2025, 18(10), 2635; https://doi.org/10.3390/en18102635 - 20 May 2025
Viewed by 661
Abstract
The implementation of renewable energy systems (RESs) in the agricultural sector has significant potential to mitigate the negative effects of fossil fuel-based products on the global climate, reduce operational costs, and enhance crop production. However, the intermittent nature of RESs poses a major [...] Read more.
The implementation of renewable energy systems (RESs) in the agricultural sector has significant potential to mitigate the negative effects of fossil fuel-based products on the global climate, reduce operational costs, and enhance crop production. However, the intermittent nature of RESs poses a major challenge to realizing these benefits. To address this, thermal energy storage (TES) and hybrid heat pump (HHP) systems are integrated with RESs to balance the mismatch between thermal energy production and demand. In pursuit of clean energy solutions in the agricultural sector, a 3942 m2 greenhouse in Yeoju-si, South Korea, is equipped with 231 solar thermal (ST) collectors, 117 photovoltaic thermal (PVT) collectors, four HHPs, two ground-source heat pumps (GSHPs), a 28,500 m3 borehole TES (BTES) unit, a 1040 m3 tank TES (TTES) unit, and three short-term TES units with capacities of 150 m3, 30 m3, and 30 m3. This study evaluates the long-term performance of the integrated hybrid renewable energy and thermal energy storage systems (HRETESSs) in meeting the greenhouse’s heating and cooling demands. Results indicate that the annual system performance efficiencies range from 25.3% to 68.5% for ST collectors and 31.9% to 72.2% for PVT collectors. The coefficient of performance (COP) during the heating season is 3.3 for GSHPs, 2.5 for HHPs using BTES as a source, and 3.6 for HHPs using TTES as a source. During the cooling season, the COP ranges from 5.3 to 5.7 for GSHPs and 1.84 to 2.83 for ASHPs. Notably, the HRETESS supplied 3.4% of its total heating energy directly from solar energy, 89.3% indirectly via heat pump utilization, and 7.3% is provided by auxiliary heating. This study provides valuable insights into the integration of HRETESSs to maximize greenhouse energy efficiency and supports the development of sustainable agricultural energy solutions, contributing to reduced greenhouse gas emissions and operational costs. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

55 pages, 6070 KB  
Review
A Comprehensive Review of Solar Still Technologies and Cost: Innovations in Materials, Design, and Techniques for Enhanced Water Desalination Efficiency
by Mohammed Oudah Khalaf, Mehmed Rafet Özdemir and Hussein S. Sultan
Water 2025, 17(10), 1515; https://doi.org/10.3390/w17101515 - 17 May 2025
Cited by 2 | Viewed by 2711
Abstract
The global scarcity of freshwater, particularly in arid regions, has intensified interest in sustainable desalination technologies. Among these, solar still (SS) systems stand out for their low operational costs and environmental compatibility. This review presents a comprehensive analysis of recent advancements in solar [...] Read more.
The global scarcity of freshwater, particularly in arid regions, has intensified interest in sustainable desalination technologies. Among these, solar still (SS) systems stand out for their low operational costs and environmental compatibility. This review presents a comprehensive analysis of recent advancements in solar still technologies, with a particular emphasis on innovative materials, thermal management strategies, and hybrid systems aimed at improving water productivity and cost-efficiency. Key technologies such as phase change materials (PCMs) and thermoelectric modules (TEMs) are examined in detail, showing up to 140% and 6.7-fold improvements in productivity, respectively, in select configurations. The review also synthesizes results from various studies using a comparative lens, highlighting combinations such as double-glazed glass with fins and TEMs (5.7-fold increase) and CuO–water nanofluids coupled with TEMs and vibration (5.3-fold increase). Cost analyses reveal that some configurations achieve water production at as low as 0.011 USD/L under real-world conditions in Rajshahi, Bangladesh, using an integrated system with an external condenser and solar collector. Unlike general reviews, this work systematically compares performance metrics, cost-effectiveness, and design innovations across multiple studies to provide a clearer perspective on technology viability. Future directions suggest the integration of hybrid approaches using PCM, TEM, nanotechnology, and advanced geometries to overcome current limitations and further advance solar desalination efficiency. Full article
Show Figures

Graphical abstract

26 pages, 8225 KB  
Article
Dynamic Simulation of Solar-Assisted Medium-Depth Ground Heat Exchanger Direct Heating System
by Le Chang, Lingjun Kong, Yangyang Jing, Wenshuo Zhang, Sifang Fu, Xueming Lu, Haiqing Yao, Xiaona Xie and Ping Cui
Buildings 2025, 15(10), 1690; https://doi.org/10.3390/buildings15101690 - 16 May 2025
Cited by 1 | Viewed by 347
Abstract
The global challenges of rising energy consumption and carbon emissions underscore the urgent need for efficient and sustainable heating solutions in the building sector. The implementation of high-performance buildings that envelope insulation and the increasing adoption of low-temperature radiant heating systems have significantly [...] Read more.
The global challenges of rising energy consumption and carbon emissions underscore the urgent need for efficient and sustainable heating solutions in the building sector. The implementation of high-performance buildings that envelope insulation and the increasing adoption of low-temperature radiant heating systems have significantly reduced the water temperature required from heat sources, enabling greater compatibility with renewable energy systems. In this study, we propose a renewable energy heating system incorporating a solar-assisted medium-depth ground heat exchanger (MDGHE). A dynamic simulation model of the solar-assisted MDGHE system was developed in TRNSYS, featuring a novel MDGHE module specifically developed to improve simulation accuracy. A case study of a residential building in China was conducted to evaluate the performance of the proposed system. The simulation results demonstrate that while the standalone MDGHE covers 71.9% of the building’s heating demand, integrating solar collectors with the MDGHE can increase this coverage to 99.9%, enabling full compliance with heating requirements without relying on conventional heat pumps. The results revealed that the system’s COP reached 9.26. Compared with the traditional medium-depth ground source heat pump system with the COP of 4.84, the energy efficiency of this system has been enhanced by 47.7%. A static payback period of 7 years has been obtained compared with the cost of central heating service for residential buildings. These findings highlight the potential of solar-geothermal hybrid systems as a sustainable alternative to traditional heating methods. Full article
Show Figures

Figure 1

37 pages, 727 KB  
Review
Next-Generation CSP: The Synergy of Nanofluids and Industry 4.0 for Sustainable Solar Energy Management
by Mohamed Shameer Peer, Tsega Y. Melesse, Pier Francesco Orrù, Mattia Braggio and Mario Petrollese
Energies 2025, 18(8), 2083; https://doi.org/10.3390/en18082083 - 17 Apr 2025
Cited by 1 | Viewed by 901
Abstract
The growing demand for efficient and sustainable energy solutions underscores the importance of advancing solar energy technologies, particularly Concentrated Solar Power (CSP) systems. This review presents a structured evaluation of two key innovation domains in CSP: the application of nanofluids and the adoption [...] Read more.
The growing demand for efficient and sustainable energy solutions underscores the importance of advancing solar energy technologies, particularly Concentrated Solar Power (CSP) systems. This review presents a structured evaluation of two key innovation domains in CSP: the application of nanofluids and the adoption of Industry 4.0 technologies. The first part analyzes experimental and simulation-based studies on nanofluid-enhanced CSP systems, covering four major collector types—parabolic trough, solar power tower, solar dish, and Fresnel reflectors. Nanofluids have been shown to significantly enhance thermal efficiency, with hybrid formulations offering the greatest improvements. The second part examines the role of Industry 4.0 technologies—including artificial intelligence (AI), machine learning (ML), and digital twins (DT)—in improving CSP system monitoring, performance prediction, and operational reliability. Although a few recent studies explore the combined use of nanofluids and Industry 4.0 tools in CSP systems, most research addresses these areas independently. This review identifies this lack of integration as a gap in the current literature. By presenting separate yet complementary analyses, the study offers a comprehensive overview of emerging pathways for CSP optimization. Key research challenges and future directions are highlighted, particularly in nanofluid stability, system cost-efficiency, and digital implementation at scale. Full article
Show Figures

Figure 1

30 pages, 7540 KB  
Article
Radiated Free Convection of Dissipative and Chemically Reacting Flow Suspension of Ternary Nanoparticles
by Rekha Satish, Raju B. T, S. Suresh Kumar Raju, Fatemah H. H. Al Mukahal, Basma Souayeh and S. Vijaya Kumar Varma
Processes 2025, 13(4), 1030; https://doi.org/10.3390/pr13041030 - 30 Mar 2025
Cited by 1 | Viewed by 426
Abstract
This study investigates magnetohydrodynamic (MHD) heat and mass transport in a water-based ternary hybrid nanofluid flowing past an exponentially accelerated vertical porous plate. Two critical scenarios are analyzed: (i) uniform heat flux with variable mass diffusion and (ii) varying heat source with constant [...] Read more.
This study investigates magnetohydrodynamic (MHD) heat and mass transport in a water-based ternary hybrid nanofluid flowing past an exponentially accelerated vertical porous plate. Two critical scenarios are analyzed: (i) uniform heat flux with variable mass diffusion and (ii) varying heat source with constant species diffusion. The model integrates thermal radiation, heat sink/source, thermal diffusion, and chemical reaction effects to assess flow stability and thermal performance. Governing equations are non-dimensionalized and solved analytically using the Laplace transform method, with results validated against published data and finite difference method outcomes. Ternary hybrid nanofluids exhibit a significantly higher Nusselt number compared to hybrid and conventional nanofluids, demonstrating superior heat transfer capabilities. Magnetic field intensity reduces fluid velocity, while porosity enhances momentum transfer. Thermal radiation amplifies temperature profiles, critical for energy systems. Concentration boundary layer thickness decreases with higher chemical reaction rates, optimizing species diffusion. These findings contribute to the development of advanced thermal management systems, such as solar energy collectors and nuclear reactors, enhance energy-efficient industrial processes, and support biomedical technologies that require precise heat and mass control. This study positions ternary hybrid nanofluids as a transformative solution for optimizing high-performance thermal systems. Full article
Show Figures

Figure 1

30 pages, 14090 KB  
Article
Integrated Technologies for Smart Building Energy Systems Refurbishment: A Case Study in Italy
by Lorenzo Villani, Martina Casciola and Davide Astiaso Garcia
Buildings 2025, 15(7), 1041; https://doi.org/10.3390/buildings15071041 - 24 Mar 2025
Cited by 1 | Viewed by 651
Abstract
This study presents an integrated approach for adapting building energy systems using Machine Learning (ML), the Internet of Things (IoT), and Building Information Modeling (BIM) in a hotel retrofit in Italy. In a concise multi-stage process, long-term climatic data and on-site technical documentation [...] Read more.
This study presents an integrated approach for adapting building energy systems using Machine Learning (ML), the Internet of Things (IoT), and Building Information Modeling (BIM) in a hotel retrofit in Italy. In a concise multi-stage process, long-term climatic data and on-site technical documentation were analyzed to create a detailed BIM model. This model enabled energy simulations using the Carrier–Pizzetti method and supported the design of a hybrid HVAC system—integrating VRF and hydronic circuits—further enhanced by a custom ML algorithm for adaptive, predictive energy management through BIM and IoT data fusion. The study also incorporated photovoltaic panels and solar collectors, reducing reliance on non-renewable energy sources. Results demonstrate the effectiveness of smart energy management, showcasing significant potential for scalability in similar building typologies. Future improvements include integrating a temporal evolution model, refining feature selection using advanced optimization techniques, and expanding validation across multiple case studies. This research highlights the transformative role of ML, IoT, and BIM in achieving sustainable, smart, and efficient building energy systems, offering a replicable framework for sustainable renovations in the hospitality sector. Full article
(This article belongs to the Special Issue Sustainable and Smart Energy Systems in the Built Environment)
Show Figures

Figure 1

40 pages, 7221 KB  
Review
Advancements in Integrated Thermoelectric Power Generation and Water Desalination Technologies: A Comprehensive Review
by Oranit Traisak, Pranjal Kumar, Sara Vahaji, Yihe Zhang and Abhijit Date
Energies 2025, 18(6), 1454; https://doi.org/10.3390/en18061454 - 16 Mar 2025
Cited by 2 | Viewed by 1573
Abstract
This paper reviews recent advancements in integrated thermoelectric power generation and water desalination technologies, driven by the increasing global demand for electricity and freshwater. The growing population and reliance on fossil fuels for electricity generation pose challenges related to environmental pollution and resource [...] Read more.
This paper reviews recent advancements in integrated thermoelectric power generation and water desalination technologies, driven by the increasing global demand for electricity and freshwater. The growing population and reliance on fossil fuels for electricity generation pose challenges related to environmental pollution and resource depletion, necessitating the exploration of alternative energy sources and desalination techniques. While thermoelectric generators are capable of converting low-temperature thermal energy into electricity and desalination processes that can utilize low-temperature thermal energy, their effective integration remains largely unexplored. Currently available hybrid power and water systems, such as those combining conventional heat engine cycles (e.g., the Rankine and Kalina cycles) with reverse osmosis, multi-effect distillation, and humidification–dehumidification, are limited in effectively utilizing low-grade thermal energy for simultaneous power generation and desalination, while solid-state heat-to-work conversion technology, such as thermoelectric generators, have low heat-to-work conversion efficiency. This paper identifies a key research gap in the limited effective integration of thermoelectric generators and desalination, despite their complementary characteristics. The study highlights the potential of hybrid systems, which leverage low-grade thermal energy for simultaneous power generation and desalination. The review also explores emerging material innovations in high figure of merit thermoelectric materials and advanced MD membranes, which could significantly enhance system performance. Furthermore, hybrid power–desalination systems incorporating thermoelectric generators with concentrated photovoltaic cells, solar thermal collectors, geothermal energy, and organic Rankine cycles (ORCs) are examined to highlight their potential for sustainable energy and water production. The findings underscore the importance of optimizing material properties, system configurations, and operating conditions to maximize efficiency and output while reducing economic and environmental costs. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

19 pages, 3145 KB  
Article
Solar Thermal Collector Roughened with S-Shaped Ribs: Parametric Optimization Using AHP-MABAC Technique
by Khushmeet Kumar, Sushil Kumar, Deoraj Prajapati, Sushant Samir, Sashank Thapa and Raj Kumar
Fluids 2025, 10(3), 67; https://doi.org/10.3390/fluids10030067 - 10 Mar 2025
Cited by 4 | Viewed by 798
Abstract
The current examination used a multi-criteria decision-making (MCDM) approach to optimize the roughness parameters of S-shaped ribs (SSRs) in a solar thermal collector (STC) duct using air as the working fluid. Different SSRs were tested to identify the combination of parameters resulting in [...] Read more.
The current examination used a multi-criteria decision-making (MCDM) approach to optimize the roughness parameters of S-shaped ribs (SSRs) in a solar thermal collector (STC) duct using air as the working fluid. Different SSRs were tested to identify the combination of parameters resulting in the best performance. Geometrical parameters such as relative roughness pitch (PR/eRH) varied from 4 to 12, relative roughness height (eRH/Dhd) from 0.022 to 0.054, arc angle (αArc) from 30° to 75°, and relative roughness width (WDuct/wRS) from 1 to 4. The Nusselt number (NuRP) and friction factor (fRP), findings which impact the STC performance, rely on SSRs. The performance measurements show that no combination of SSR parameters lead to the best enhancement heat transfer rate at low enhancement in the friction. So, a hybrid multi-criteria decision-making strategy using the Analytical Hierarchy Process (AHP) for criterion significance and Multi Attributive Border Approximation Area Comparison (MABAC) for alternative ranking was used to determine which combination of geometrical parameters will result in the optimum performance of a roughened STC. This work employs a hybrid MCDM technique to optimise the effectiveness of an STC roughened with SSRs. To optimize the SSR design parameters, this study used the hybrid AHP-MABAC technique for analytical assessment of a roughened STC. The optimization results showed that the STC roughened with SSRs achieved the optimum performance at PR/eRH = 8, eRH/Dhd = 0.043, αArc = 60° and WDuct/wRS = 3. Full article
Show Figures

Figure 1

24 pages, 7497 KB  
Article
Experimental Analysis of Vacuum Solar Collectors as an Auxiliary Heating Source for Residential Buildings
by Rafał Urbaniak, Bartosz Ciupek and Paweł Grobelny
Energies 2025, 18(5), 1093; https://doi.org/10.3390/en18051093 - 24 Feb 2025
Cited by 1 | Viewed by 732
Abstract
This study presents an experimental analysis of two vacuum solar air collectors designed for residential heating applications. The research was conducted from November 2022 to April 2024 in real operating conditions. This study focused on assessing the thermal performance, energy efficiency, and feasibility [...] Read more.
This study presents an experimental analysis of two vacuum solar air collectors designed for residential heating applications. The research was conducted from November 2022 to April 2024 in real operating conditions. This study focused on assessing the thermal performance, energy efficiency, and feasibility of integrating these systems into hybrid heating solutions. The first collector (Solar Dragon 2022) utilized five vacuum tubes and achieved a total thermal energy output of 397.67 kWh over five months, with a peak thermal power of 0.55 kW. The second system (Solar Dragon 2023), equipped with 24 vacuum tubes, demonstrated a significantly higher performance, generating 911.69 kWh over the same period, with a peak thermal power of 1.8 kW. The study also identified challenges related to airflow distribution and excessive outlet air temperatures, reaching up to 84 °C in the modified system, which could negatively impact indoor comfort. The findings highlight the potential of vacuum solar collectors as an auxiliary heating source, particularly in transitional seasons, while emphasizing the need for optimized airflow control and thermal regulation strategies to enhance their practical application. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

24 pages, 4583 KB  
Article
Comparative Analysis of Solar Photovoltaic/Thermal Assisted Heat Pump Systems Coupled with PCM Storage and EV Charging with Reference to the UK’s National Carbon Intensity
by Cagri Kutlu, Abdullah Dik, Mehmet Tahir Erdinc, Yuehong Su and Saffa Riffat
Energies 2025, 18(4), 920; https://doi.org/10.3390/en18040920 - 14 Feb 2025
Cited by 1 | Viewed by 1061
Abstract
Emerging trends in heat pump (HP) and electric vehicle (EV) adoption within communities aim to reduce carbon emissions in the heating and transportation sectors. However, these technologies rely on grid electricity, whose carbon intensity varies over time. This study explores how the carbon-saving [...] Read more.
Emerging trends in heat pump (HP) and electric vehicle (EV) adoption within communities aim to reduce carbon emissions in the heating and transportation sectors. However, these technologies rely on grid electricity, whose carbon intensity varies over time. This study explores how the carbon-saving potential of these technologies can be further enhanced through demand-shifting operations and renewable energy integration. The research compares photovoltaic–thermal (PV/T) and hybrid solar heat pump systems that integrate EV charging and PCM-enhanced heat storage to improve space heating efficiency under low solar irradiance in the UK while reducing CO2 emissions. The study simulates solar collector configurations and sizes, combining PV modules and heat pumps to enhance system performance. Control systems synchronize operations with periods of low grid CO2 intensity, minimizing the environmental impact. The analysis evaluates PV/T systems, separate PV and thermal collectors, highlighting their energy efficiency and CO2 reduction potential. Control systems further optimize HP operation and EV charging during periods of high renewable energy availability, preventing uncontrolled use that could result in elevated emissions. Using real weather data and a detailed building model, the findings show that a solar-assisted HP with 100% thermal collectors achieves a daily COP of 3.49. Reducing thermal collectors to 60% lowers the COP to 2.57, but PV output compensates, maintaining similar emission levels. The system achieves the lowest emission with high-efficiency evacuated flat plate PV/T collectors. Full article
Show Figures

Figure 1

19 pages, 4716 KB  
Article
Evaluating a Solar–Biogas Hybrid Renewable Power Plant by Heating the Anaerobic Digester Using the Rejected Heat of Rankine Cycle in Idlib, Syria
by Ayman Abdul Karim Alhijazi, Ahmad Firas Alloush and Radwan A. Almasri
Appl. Sci. 2024, 14(24), 12027; https://doi.org/10.3390/app142412027 - 23 Dec 2024
Viewed by 2004
Abstract
This research includes modeling and studying the performance improvement of a hybrid renewable energy power plant using the modeling software Greenius in Idlib, Syria. The system consists of solar parabolic trough collectors and an anaerobic digester for generating biogas. This study included a [...] Read more.
This research includes modeling and studying the performance improvement of a hybrid renewable energy power plant using the modeling software Greenius in Idlib, Syria. The system consists of solar parabolic trough collectors and an anaerobic digester for generating biogas. This study included a practical experiment for generating biogas using five identical digesters operating at five different temperatures. The raw material was a mixture of 81% food waste and 19% human waste, and average temperatures were as follows: 49.6, 45.9, 43.5, 37.5, and 33.2 °C. Modeling operations were conducted for each case, as well as for the case corresponding to the highest growth rate of methanogenic bacteria theoretically. The modeling processes were conducted at 11 different values for the storage capacity from Full Load Hours (FLHs) 0 to 10 and by varying the solar multiple factor (SM) from 1 to 8. This study showed that when operating as a net solar plant, the lowest value for the cost of produced electricity (LCOE) was 0.1785 EUR/kWh at FLHs = 5 h and SM = 2, while the annual electricity production was 25.21 GWh. The maximum annual electricity production was 48.66 GWh, achieved at FLHs = 10 h, SM = 8, and the LCOE = 0.2896 EUR/kWh. It is possible to obtain annual electrical energy of 39.7 GWh, which was about 82% of the maximum possible annual production, at a cost of LCOE = 0.1864 EUR/kWh, which is less than 5% higher than the lowest possible cost. When operating as a hybrid plant with an annual capacity factor of 1 (full load), it is discovered that the lowest value of energy produced is in the third scenario at tAD = 43.52 °C and tc = 63.5 °C, with FLHs = 0 h and SM = 1, with the LCOE = 0.1283 EUR/kWh. Full article
(This article belongs to the Topic Multi-Energy Systems, 2nd Edition)
Show Figures

Figure 1

Back to TopTop