Solar Thermal Collector Roughened with S-Shaped Ribs: Parametric Optimization Using AHP-MABAC Technique
Abstract
:1. Introduction
2. Experimental Investigation
2.1. Experimental Setup
2.2. Methodology for Data Reduction
2.2.1. The Mean Plate Temperature () and Mean Fluid Temperature ()
2.2.2. Mass Flow Rate of Fluid ()
2.2.3. Velocity of Fluid () and Reynolds Number ()
2.2.4. Convective Heat Transfer Coefficient ()
2.2.5. Pumping Power (
2.2.6. Nusselt Number ()
2.2.7. Friction Factor ()
2.2.8. Thermal Efficiency () and Effective Efficiency ()
3. Methodology
3.1. Selection of Alternatives and Criteria
3.2. Weight Computation of the Criteria Using the AHP Method
3.3. Final Ranking of the Alternatives: The MABAC Approach
4. Results and Discussion
4.1. Weightage to Each Criterion
4.2. Final Ranking of the Alternatives: The MABAC Approach
5. Conclusions
- The and of the STC are strongly affected by the characteristics of roughness.
- The presence of ribs creates turbulence, improving convective heat transmission by disturbing the thermal boundary layer and producing secondary vortices. Flow reattachment zones enhance the heat exchange efficiency. Nevertheless, heightened turbulence also elevates the friction factor, resulting in increased pressure losses. The optimization of the rib parameters ensures a balance between the enhancement of heat transmission and the resistance to flow. Comprehending these fluid flow principles is essential for the design of efficient STCs, minimizing energy losses, and enhancing the overall thermal performance.
- The STC with SSRs having parameters of of 8, of 0.043, of 60°, and of 3 is considered the ideal design.
- For the best design/rank-1 alternative, the maximum value of was obtained.
- It was discovered that the hybrid AHP-MABAC technique has the highest level of agreement between its analytical and experimental results.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Abs | Absorber plate |
ALTs | Alternatives |
Ambient air temperature, K | |
Air density, kg/m3 | |
Air dynamic viscosity, kg/ms | |
Alternative’s total distance from the estimated border area | |
AHP | Analytical Hierarchy Process |
Area of absorber plate, m2 | |
Arc angle, ° | |
Consistency ratio | |
Coefficient of discharge for the orifice plate | |
Efficiency of conversion from mechanical to thermal power | |
CRITIC | Criteria Importance Through Intercriteria Correlation |
COPRAS | Complex Proportional Assessment |
Efficiency of the fan | |
Efficiency of the electric motor | |
Efficiency of the electrical transmission and of the thermal power plant | |
Efficiency of the thermal power plant | |
IP | Exergetic improvement potential |
Friction factor | |
Friction factor for a roughened plate | |
Hydraulic diameter of the duct, m | |
Heat transfer coefficient, W/m2K | |
Inlet temperature of the fluid, K | |
Insolation/solar radiation intensity, W/m2 | |
Length of the absorber plate, m | |
length of the test section, m | |
m | Mass flow rate of fluid, m3/s |
Mean fluid temperature, K | |
Mean plate temperature, K | |
Matrix’s random index | |
MABAC | Multi Attributive Border Approximation Area Comparison |
MCDM | Multi-Criteria Decision Making |
MOORA | Multi-Objective optimization via Ratio Analysis |
MOPSO | Multi-Objective Particle Swarm Optimization |
Nusselt number | |
Nusselt number for a roughened plate | |
Normalized value of the Pij | |
Outlet temperature of air, K | |
Orifice meter area, mm2 | |
Pressure across the orifice plate | |
Pressure drop across the test section of the duct | |
Pumping power, Watt | |
Performance matrix | |
Pitch, m | |
Ratio of the orifice meter to the pipe diameter | |
Roughness element height, m | |
RSM | Response surface methodology |
Relative roughness height | |
Relative roughness pitch | |
Relative roughness width | |
Reynolds number | |
SSRs | S-shaped ribs |
SAH | Solar air heater |
STC | Solar thermal collector |
Specific heat of air, J/kgK | |
Thermal conductivity of air, W/mK | |
Thermo-hydraulic performance parameter | |
TOPSIS | Technique for Order of Preference by Similarity to Ideal Solution |
Velocity of air, m/s | |
Weighted normalized decision matrix’s element | |
Weighted normalized performance matrix | |
Width of a single S-shape rib, m | |
Width of the duct, m | |
WASPAS | Weighted aggregated sum product assessment |
References
- Pourasl, H.H.; Barenji, R.V.; Khojastehnezhad, V.M. Solar Energy Status in the World: A Comprehensive Review. Energy Rep. 2023, 10, 3474–3493. [Google Scholar] [CrossRef]
- Ashraf, M.; Ayaz, M.; Khan, M.; Adil, S.F.; Farooq, W.; Ullah, N.; Nawaz Tahir, M. Recent Trends in Sustainable Solar Energy Conversion Technologies: Mechanisms, Prospects, and Challenges. Energy Fuels 2023, 37, 6283–6301. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Khalid, M.; Vaka, M.; Walvekar, R.; Numan, A.; Rasheed, A.K.; Mubarak, N.M. Recent Progress in Solar Water Heaters and Solar Collectors: A Comprehensive Review. Therm. Sci. Eng. Prog. 2021, 25, 100981. [Google Scholar] [CrossRef]
- Gorjian, S.; Ebadi, H.; Calise, F.; Shukla, A.; Ingrao, C. A Review of Recent Advancements in Performance Enhancement Techniques for Low-Temperature Solar Collectors. Energy Convers. Manag. 2020, 222, 113246. [Google Scholar] [CrossRef]
- Ucar, A.; Inallı, M. Thermal and Exergy Analysis of Solar Air Collectors with Passive Augmentation Techniques. Int. Commun. Heat Mass Transf. 2006, 33, 1281–1290. [Google Scholar] [CrossRef]
- Thapa, S.; Samir, S.; Kumar, K.; Singh, S. A Review Study on the Active Methods of Heat Transfer Enhancement in Heat Exchangers Using Electroactive and Magnetic Materials. Mater. Today Proc. 2020, 45, 4942–4947. [Google Scholar] [CrossRef]
- Dharmaraj, S.K.; Ramasubbu, H.; Rajendran, V.; Ravichandran, P. Effect of Graphene Nanopaint on Performance of Solar Air Heater Attached with Inclined and Winglet Baffles. Environ. Sci. Pollut. Res. 2023, 30, 87330–87342. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.; Kumar, R. A Review on Effect of Various Artificial Roughness on Heat Transfer Enhancement in a Channel Flow. J. Therm. Eng. 2021, 7, 5. [Google Scholar] [CrossRef]
- Sahu, M.K.; Gorai, V.K.; Saha, B.C. Applications of Extended Surfaces for Improvement in the Performance of Solar Air Heaters—A Detailed Systematic Review. Environ. Sci. Pollut. Res. 2023, 30, 54429–54447. [Google Scholar] [CrossRef]
- Aldawi, F. Effect of Spring-Wire Turbulators with Different Shapes on Heat Transfer Improvement of Solar Air Heaters: A Numerical Simulation. Clean. Eng. Technol. 2024, 21, 100777. [Google Scholar] [CrossRef]
- Safaei, M.R.; Ahmadi, G.; Goodarzi, M.S.; Kamyar, A.; Kazi, S.N. Boundary Layer Flow and Heat Transfer of FMWCNT/Water Nanofluids over a Flat Plate. Fluids 2016, 1, 31. [Google Scholar] [CrossRef]
- Thapa, S.; Samir, S.; Kumar, K. A Review Study on the Performance of a Parabolic Trough Receiver Using Twisted Tape Inserts. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2021, 236, 699–711. [Google Scholar] [CrossRef]
- Stanek, B.; Ochmann, J.; Węcel, D.; Bartela, Ł. Study of Twisted Tape Inserts Segmental Application in Low-Concentrated Solar Parabolic Trough Collectors. Energies 2023, 16, 3716. [Google Scholar] [CrossRef]
- Al-Chlaihawi, K.K.; Hasan, M.R.; Ekaid, A.L. Thermohydraulic Performance Assessment of a Solar Air Heater with Equilateral-Triangular, Trapezoidal, and Square Sectional Ribs on the Absorber Plate: A Comparative Study. Heat Transf. 2024, 53, 441–471. [Google Scholar] [CrossRef]
- Prasad, J.S.; Datta, A.; Mondal, S. Flow and Thermal Behavior of Solar Air Heater with Grooved Roughness. Renew. Energy 2024, 220, 119698. [Google Scholar] [CrossRef]
- Abuşka, M.; Şevik, S.; Özdilli, Ö. A Comparative Experimental Performance Evaluation of Solar Air Collector Having Absorber Plate with Convex Oval-Trench Dimple. Heat Mass Transf. 2023, 59, 1871–1894. [Google Scholar] [CrossRef]
- Shuilian, L.; Zeng, F.; Wei, X. Numerical Simulation and Experimental Study for Solar Air Collector with Hemispherical Protrusions on the Absorption Plate. Appl. Sol. Energy 2024, 60, 9–19. [Google Scholar] [CrossRef]
- Gupta, D.; Solanki, S.C.; Saini, J.S. Thermohydraulic Performance of Solar Air Heaters with Roughened Absorber Plates. Sol. Energy 1997, 61, 33–42. [Google Scholar] [CrossRef]
- Thakur, S.; Thakur, N.S. Investigational Analysis of Roughened Solar Air Heater Channel Having W-Shaped Ribs with Symmetrical Gaps Along with Staggered Ribs. Energy Sources Part A Recover. Util. Environ. Eff. 2023, 45, 7389–7404. [Google Scholar] [CrossRef]
- Wang, D.; Liu, J.; Liu, Y.; Wang, Y.; Li, B.; Liu, J. Evaluation of the Performance of an Improved Solar Air Heater with “S” Shaped Ribs with Gap. Sol. Energy 2020, 195, 89–101. [Google Scholar] [CrossRef]
- Shayan, M.E.; Ghasemzadeh, F.; Rouhani, S.H. Energy Storage Concentrates on Solar Air Heaters with Artificial S-Shaped Irregularity on the Absorber Plate. J. Energy Storage 2023, 74, 109289. [Google Scholar] [CrossRef]
- Benhamza, A.; Boubekri, A.; Atia, A.; El Ferouali, H.; Hadibi, T.; Arıcı, M.; Abdenouri, N. Multi-Objective Design Optimization of Solar Air Heater for Food Drying Based on Energy, Exergy, and Improvement Potential. Renew. Energy 2021, 169, 1190–1209. [Google Scholar] [CrossRef]
- Mohanty, C.P.; Behura, A.K.; Singh, M.R.; Prasad, B.N.; Kumar, A.; Dwivedi, G.; Verma, P. Parametric Performance Optimization of Three Sides Roughened Solar Air Heater. Energy Sources Part A Recover. Util. Environ. Eff. 2024, 46, 7214–7234. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, S.; Ağbulut, Ü.; Gürel, A.E.; Alwetaishi, M.; Shaik, S.; Saleel, C.A.; Lee, D. Parametric Optimization of an Impingement Jet Solar Air Heater for Active Green Heating in Buildings Using Hybrid CRITIC-COPRAS Approach. Int. J. Therm. Sci. 2024, 197, 108760. [Google Scholar] [CrossRef]
- Mishra, P.K.; Nadda, R.; Kumar, R.; Rana, A.; Sethi, M.; Ekileski, A. Optimization of Multiple Arcs Protrusion Obstacle Parameters Using AHP-TOPSIS Approach in an Impingement Jet Solar Air Passage. Heat Mass Transf. 2018, 54, 3797–3808. [Google Scholar] [CrossRef]
- Chauhan, R.; Kim, S.C. Thermo-Hydraulic Characterization and Design Optimization of Dimpled/Protruded Absorbers in Solar Heat Collectors. Appl. Therm. Eng. 2019, 154, 217–227. [Google Scholar] [CrossRef]
- Singh, R.; Pathak, V.K.; Kumar, R.; Dikshit, M.; Aherwar, A.; Singh, V.; Singh, T. A Historical Review and Analysis on MOORA and Its Fuzzy Extensions for Different Applications. Heliyon 2024, 10, e25453. [Google Scholar] [CrossRef]
- Goel, V.; Dwivedi, A.; Choudhary, A.K. Parametric Optimization of Hybrid Artificial Roughness Used in Solar Air Heaters Using Multiple Criteria Decision-Making Techniques. Proc. Inst. Mech. Eng. Part A J. Power Energy 2023, 237, 1823–1841. [Google Scholar] [CrossRef]
- Salman, M.; Chauhan, R.; Singh, T.; Prabakaran, R.; Kim, S.C. Experimental Investigation and Optimization of Dimple-Roughened Impinging Jet Solar Air Collector Using a Novel AHP-MABAC Approach. Environ. Sci. Pollut. Res. 2023, 30, 36259–36275. [Google Scholar] [CrossRef]
- Kumar, K.; Prajapati, D.; Samir, S. Heat Transfer and Friction Factor Correlations Development for Solar Air Heater Duct Artificially Roughened with ‘S’ Shape Ribs. Exp. Therm. Fluid Sci. 2017, 82, 249–261. [Google Scholar] [CrossRef]
- Singh, S.; Chander, S.; Saini, J. Investigations on thermo-hydraulic performance due to flow-attack-angle in V-down rib with gap in a rectangular duct of solar air heater. Appl. Energy 2012, 97, 907–912. [Google Scholar] [CrossRef]
- Gupta, M.; Kaushik, S. Performance evaluation of solar air heater for various artificial roughness geometries based on energy, effective and exergy efficiencies. Renew. Energy 2009, 34, 465–476. [Google Scholar] [CrossRef]
- Cortés, A.; Piacentini, R. Improvement of the efficiency of a bare solar collector by means of turbulence promoters. Appl. Energy 1990, 36, 253–261. [Google Scholar] [CrossRef]
- Singh, T. An Integrated Multicriteria Decision-Making Framework for the Selection of Waste Cement Dust Filled Automotive Brake Friction Composites. Sci. Rep. 2024, 14, 6817. [Google Scholar] [CrossRef] [PubMed]
Sr. No. | Parameter | Range |
---|---|---|
1 | 2400–20,000 | |
2 | 0.022–0.054 | |
3 | 30–75° | |
4 | 4–16 | |
5 | 1–4 |
ALTs | ||||
---|---|---|---|---|
A-1 | 4 | 1 | 60° | 0.043 |
A-2 | 4 | 2 | 60° | 0.043 |
A-3 | 4 | 3 | 60° | 0.043 |
A-4 | 4 | 4 | 60° | 0.043 |
A-5 | 8 | 1 | 60° | 0.043 |
A-6 | 8 | 2 | 60° | 0.043 |
A-7 | 8 | 3 | 60° | 0.043 |
A-8 | 8 | 4 | 60° | 0.043 |
A-9 | 12 | 1 | 60° | 0.043 |
A-10 | 12 | 2 | 60° | 0.043 |
A-11 | 12 | 3 | 60° | 0.043 |
A-12 | 12 | 4 | 60° | 0.043 |
A-13 | 16 | 1 | 60° | 0.043 |
A-14 | 16 | 2 | 60° | 0.043 |
A-15 | 16 | 3 | 60° | 0.043 |
A-16 | 16 | 4 | 60° | 0.043 |
A-17 | 8 | 1 | 30° | 0.043 |
A-18 | 8 | 2 | 30° | 0.043 |
A-19 | 8 | 3 | 30° | 0.043 |
A-20 | 8 | 4 | 30° | 0.043 |
A-21 | 8 | 1 | 45° | 0.043 |
A-22 | 8 | 2 | 45° | 0.043 |
A-23 | 8 | 3 | 45° | 0.043 |
A-24 | 8 | 4 | 45° | 0.043 |
A-25 | 8 | 1 | 75° | 0.043 |
A-26 | 8 | 2 | 75° | 0.043 |
A-27 | 8 | 3 | 75° | 0.043 |
A-28 | 8 | 4 | 75° | 0.043 |
A-29 | 8 | 3 | 60° | 0.022 |
A-30 | 8 | 3 | 60° | 0.032 |
A-31 | 8 | 3 | 60° | 0.054 |
ALTs | (Cr-I) | (Cr-II) | (Cr-III) |
---|---|---|---|
A-1 | 216.82 | 0.0156 | 0.63794 |
A-2 | 240.06 | 0.0164 | 0.68131 |
A-3 | 257.29 | 0.0168 | 0.71298 |
A-4 | 248.83 | 0.0174 | 0.69609 |
A-5 | 252.3 | 0.0173 | 0.70095 |
A-6 | 280.18 | 0.0189 | 0.74009 |
A-7 | 311.53 | 0.0201 | 0.80187 |
A-8 | 305.35 | 0.0214 | 0.77918 |
A-9 | 242.22 | 0.0163 | 0.68832 |
A-10 | 266.18 | 0.0177 | 0.72578 |
A-11 | 303.39 | 0.0193 | 0.78014 |
A-12 | 286.46 | 0.0194 | 0.75436 |
A-13 | 234.13 | 0.0145 | 0.68421 |
A-14 | 253.26 | 0.0157 | 0.70724 |
A-15 | 285.46 | 0.0156 | 0.76649 |
A-16 | 275.02 | 0.0163 | 0.73836 |
A-17 | 219.08 | 0.0127 | 0.65665 |
A-18 | 232.03 | 0.0135 | 0.67421 |
A-19 | 263.2 | 0.0172 | 0.72305 |
A-20 | 256.21 | 0.0162 | 0.71024 |
A-21 | 234.2 | 0.0154 | 0.68197 |
A-22 | 261.16 | 0.0157 | 0.72469 |
A-23 | 294.23 | 0.0183 | 0.77210 |
A-24 | 286.44 | 0.0194 | 0.75176 |
A-25 | 240.87 | 0.0156 | 0.68783 |
A-26 | 256.95 | 0.0163 | 0.71210 |
A-27 | 305.06 | 0.0191 | 0.79174 |
A-28 | 290.26 | 0.0202 | 0.76464 |
A-29 | 249.02 | 0.0154 | 0.70164 |
A-30 | 265.06 | 0.0172 | 0.72582 |
A-31 | 283.73 | 0.0189 | 0.74804 |
ALTs | (Cr-I) | (Cr-II) | (Cr-III) |
---|---|---|---|
Cr-1 | 1 | 3 | 2 |
Cr-II | 1/3 | 1 | 1/2 |
Cr-III | ½ | 2 | 1 |
Consistency Parameters | Weight |
---|---|
0.540 | |
RI = 0.58 | 0.163 |
CR = 0.0079 | 0.297 |
Cr-I | Cr-II | Cr-III | |
---|---|---|---|
A-1 | 0.00000 | 0.66667 | 0.00000 |
A-2 | 0.24538 | 0.57471 | 0.26456 |
A-3 | 0.42730 | 0.52874 | 0.45775 |
A-4 | 0.33798 | 0.45977 | 0.35475 |
A-5 | 0.37462 | 0.47126 | 0.38434 |
A-6 | 0.66899 | 0.28736 | 0.62316 |
A-7 | 1.00000 | 0.14943 | 1.00000 |
A-8 | 0.93475 | 0.00000 | 0.86161 |
A-9 | 0.26819 | 0.58621 | 0.30735 |
A-10 | 0.52117 | 0.42529 | 0.53585 |
A-11 | 0.91405 | 0.24138 | 0.86748 |
A-12 | 0.73530 | 0.22989 | 0.71018 |
A-13 | 0.18277 | 0.79310 | 0.28226 |
A-14 | 0.38475 | 0.65517 | 0.42277 |
A-15 | 0.72474 | 0.66667 | 0.78420 |
A-16 | 0.61451 | 0.58621 | 0.61256 |
A-17 | 0.02386 | 1.00000 | 0.11413 |
A-18 | 0.16060 | 0.90805 | 0.22127 |
A-19 | 0.48971 | 0.48276 | 0.51918 |
A-20 | 0.41590 | 0.59770 | 0.44102 |
A-21 | 0.18351 | 0.68966 | 0.26857 |
A-22 | 0.46817 | 0.65517 | 0.52920 |
A-23 | 0.81734 | 0.35632 | 0.81843 |
A-24 | 0.73509 | 0.22989 | 0.69433 |
A-25 | 0.25393 | 0.66667 | 0.30432 |
A-26 | 0.42371 | 0.58621 | 0.45240 |
A-27 | 0.93169 | 0.26437 | 0.93825 |
A-28 | 0.77542 | 0.13793 | 0.77292 |
A-29 | 0.33999 | 0.68966 | 0.38860 |
A-30 | 0.50934 | 0.48276 | 0.53606 |
A-31 | 0.70647 | 0.28736 | 0.67165 |
Cr-I | Cr-II | Cr-III | |
---|---|---|---|
A-1 | 0.54000 | 0.27167 | 0.29700 |
A-2 | 0.67251 | 0.25668 | 0.37558 |
A-3 | 0.77074 | 0.24918 | 0.43295 |
A-4 | 0.72251 | 0.23794 | 0.40236 |
A-5 | 0.74229 | 0.23982 | 0.41115 |
A-6 | 0.90125 | 0.20984 | 0.48208 |
A-7 | 1.08000 | 0.18736 | 0.59400 |
A-8 | 1.04476 | 0.16300 | 0.55290 |
A-9 | 0.68482 | 0.25855 | 0.38828 |
A-10 | 0.82143 | 0.23232 | 0.45615 |
A-11 | 1.03359 | 0.20234 | 0.55464 |
A-12 | 0.93706 | 0.20047 | 0.50792 |
A-13 | 0.63869 | 0.29228 | 0.38083 |
A-14 | 0.74777 | 0.26979 | 0.42256 |
A-15 | 0.93136 | 0.27167 | 0.52991 |
A-16 | 0.87183 | 0.25855 | 0.47893 |
A-17 | 0.55289 | 0.32600 | 0.33090 |
A-18 | 0.62672 | 0.31101 | 0.36272 |
A-19 | 0.80444 | 0.24169 | 0.45120 |
A-20 | 0.76459 | 0.26043 | 0.42798 |
A-21 | 0.63909 | 0.27541 | 0.37676 |
A-22 | 0.79281 | 0.26979 | 0.45417 |
A-23 | 0.98136 | 0.22108 | 0.54007 |
A-24 | 0.93695 | 0.20047 | 0.50322 |
A-25 | 0.67712 | 0.27167 | 0.38738 |
A-26 | 0.76881 | 0.25855 | 0.43136 |
A-27 | 1.04311 | 0.20609 | 0.57566 |
A-28 | 0.95873 | 0.18548 | 0.52656 |
A-29 | 0.72359 | 0.27541 | 0.41241 |
A-30 | 0.81505 | 0.24169 | 0.45621 |
A-31 | 0.92150 | 0.20984 | 0.49648 |
(Cr-I) | (Cr-II) | (Cr-III) |
---|---|---|
0.79172 | 0.22961 | 0.43380 |
ALTs | Distance of Alternatives from Border Approximate Area | Ranking | |||
---|---|---|---|---|---|
A-1 | −0.25172 | 0.04206 | −0.13680 | −0.34646 | 31 |
A-2 | −0.11921 | 0.02707 | −0.05822 | −0.15037 | 27 |
A-3 | −0.02098 | 0.01957 | −0.00085 | −0.00225 | 19 |
A-4 | −0.06921 | 0.00833 | −0.03144 | −0.09232 | 23 |
A-5 | −0.04943 | 0.01021 | −0.02265 | −0.06187 | 22 |
A-6 | 0.10953 | −0.01977 | 0.04828 | 0.13804 | 12 |
A-7 | 0.28828 | −0.04225 | 0.16020 | 0.40623 | 1 |
A-8 | 0.25304 | −0.06661 | 0.11910 | 0.30553 | 4 |
A-9 | −0.10690 | 0.02894 | −0.04552 | −0.12348 | 25 |
A-10 | 0.02971 | 0.00271 | 0.02235 | 0.05477 | 15 |
A-11 | 0.24187 | −0.02727 | 0.12084 | 0.33544 | 3 |
A-12 | 0.14534 | −0.02914 | 0.07412 | 0.19033 | 8 |
A-13 | −0.15303 | 0.06267 | −0.05297 | −0.14333 | 26 |
A-14 | −0.04395 | 0.04018 | −0.01124 | −0.01501 | 20 |
A-15 | 0.13964 | 0.04206 | 0.09611 | 0.27780 | 6 |
A-16 | 0.08011 | 0.02894 | 0.04513 | 0.15419 | 11 |
A-17 | −0.23883 | 0.09639 | −0.10290 | −0.24535 | 30 |
A-18 | −0.16500 | 0.08140 | −0.07108 | −0.15468 | 28 |
A-19 | 0.01272 | 0.01208 | 0.01740 | 0.04220 | 16 |
A-20 | −0.02713 | 0.03082 | −0.00582 | −0.00214 | 18 |
A-21 | −0.15263 | 0.04580 | −0.05704 | −0.16386 | 29 |
A-22 | 0.00109 | 0.04018 | 0.02037 | 0.06165 | 13 |
A-23 | 0.18964 | −0.00853 | 0.10627 | 0.28739 | 5 |
A-24 | 0.14523 | −0.02914 | 0.06942 | 0.18550 | 9 |
A-25 | −0.11460 | 0.04206 | −0.04642 | −0.11896 | 24 |
A-26 | −0.02291 | 0.02894 | −0.00244 | 0.00359 | 17 |
A-27 | 0.25139 | −0.02352 | 0.14186 | 0.36973 | 2 |
A-28 | 0.16701 | −0.04413 | 0.09276 | 0.21564 | 7 |
A-29 | −0.06813 | 0.04580 | −0.02139 | −0.04371 | 21 |
A-30 | 0.02333 | 0.01208 | 0.02241 | 0.05782 | 14 |
A-31 | 0.12978 | −0.01977 | 0.06268 | 0.17268 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, K.; Kumar, S.; Prajapati, D.; Samir, S.; Thapa, S.; Kumar, R. Solar Thermal Collector Roughened with S-Shaped Ribs: Parametric Optimization Using AHP-MABAC Technique. Fluids 2025, 10, 67. https://doi.org/10.3390/fluids10030067
Kumar K, Kumar S, Prajapati D, Samir S, Thapa S, Kumar R. Solar Thermal Collector Roughened with S-Shaped Ribs: Parametric Optimization Using AHP-MABAC Technique. Fluids. 2025; 10(3):67. https://doi.org/10.3390/fluids10030067
Chicago/Turabian StyleKumar, Khushmeet, Sushil Kumar, Deoraj Prajapati, Sushant Samir, Sashank Thapa, and Raj Kumar. 2025. "Solar Thermal Collector Roughened with S-Shaped Ribs: Parametric Optimization Using AHP-MABAC Technique" Fluids 10, no. 3: 67. https://doi.org/10.3390/fluids10030067
APA StyleKumar, K., Kumar, S., Prajapati, D., Samir, S., Thapa, S., & Kumar, R. (2025). Solar Thermal Collector Roughened with S-Shaped Ribs: Parametric Optimization Using AHP-MABAC Technique. Fluids, 10(3), 67. https://doi.org/10.3390/fluids10030067