Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = hybrid skin (H-skin)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 19674 KiB  
Article
Nanogel Dressing with Targeted Glucose Reduction and pH/Hyaluronidase Dual-Responsive Release for Synergetic Therapy of Diabetic Bacterial Wounds
by Wanhe Luo, Yongtao Jiang, Jinhuan Liu, Samah Attia Algharib, Ali Sobhy Dawood and Shuyu Xie
Gels 2025, 11(6), 380; https://doi.org/10.3390/gels11060380 - 22 May 2025
Cited by 1 | Viewed by 502
Abstract
The hyperglycemic microenvironment in diabetic wounds predisposes them to bacterial infections, sustains chronic inflammation, and hinders therapeutic efficacy. In this study, antibiotic-loaded fast-crosslinked hybrid nanogel wound dressings (florfenicol nanogels) based on Schiff’s base bond were obtained through N, O-carboxymethyl chitosan (N, O-CMCS) and [...] Read more.
The hyperglycemic microenvironment in diabetic wounds predisposes them to bacterial infections, sustains chronic inflammation, and hinders therapeutic efficacy. In this study, antibiotic-loaded fast-crosslinked hybrid nanogel wound dressings (florfenicol nanogels) based on Schiff’s base bond were obtained through N, O-carboxymethyl chitosan (N, O-CMCS) and oxidized hyaluronic acid (OHA). The successfully prepared florfenicol N, O-CMCS/OHA nanogels exhibited obvious pH- and HAase-responsiveness release, which allowed it to quickly release florfenicol at infected wounds to exert on-demand antibacterial activity, as well as accelerate diabetic bacterial-infected wound healing. The nanogel dressings showed excellent antibacterial activity by destroying the bacterial cell membrane and wall. More specifically, the glucose oxidase in the dressings can catalyze the breakdown of high-concentration glucose, generating abundant ROS that directly cause cellular damage. According to the results of wound healing, the dressings showed satisfactory anti-inflammatory and therapeutic effects for the full-thickness mouse skin defect wounds. The nanogel dressings are anticipated to be excellent wound dressings to synergistically overcome the theraputic difficulty of diabetic bacterial wounds. Full article
(This article belongs to the Special Issue Functional Gels Applied in Drug Delivery)
Show Figures

Graphical abstract

26 pages, 5293 KiB  
Article
New Benzothiazole–Monoterpenoid Hybrids as Multifunctional Molecules with Potential Applications in Cosmetics
by Desislava Kirkova, Yordan Stremski, Maria Bachvarova, Mina Todorova, Bogdan Goranov, Stela Statkova-Abeghe and Margarita Docheva
Molecules 2025, 30(3), 636; https://doi.org/10.3390/molecules30030636 - 31 Jan 2025
Viewed by 1446
Abstract
The Thymus vulgaris and Origanum vulgare essential oils (contained thymol and carvacrol in a range of 35–80%) are used in various products in the fields of medicine, cosmetics, and foods. Molecular hybridization between benzothiazole (BT) and phenolic monoterpenoids is a promising method for [...] Read more.
The Thymus vulgaris and Origanum vulgare essential oils (contained thymol and carvacrol in a range of 35–80%) are used in various products in the fields of medicine, cosmetics, and foods. Molecular hybridization between benzothiazole (BT) and phenolic monoterpenoids is a promising method for the development of biologically active compounds. New benzothiazole–monoterpenoid hybrids were synthesized through a regioselective α-amidoalkylation reaction of thymol and carvacrol with high yields (70–96%). This approach is both simple and cost-effective, employing easily accessible and inexpensive reagents to produce target molecules. The structure of the synthesized compounds was characterized spectrally using 1H-, 13C-NMR, FT-IR, and HRMS data. The newly obtained compounds are structural analogues of the UVB filter PBSA, which is used in cosmetics. The spectral properties of the aromatic products thymol hybrid (2-(4-hydroxy-5-isopropyl-2-methylphenyl)benzo[d]thiazole) and carvacrol hybrid (2-(4-hydroxy-2-isopropyl-5-methylphenyl)benzo[d]thiazole) were successfully examined, using a validated spectrophotometric method. SPF values varied from 31 to 36, compared to the PBSA (30), and were observed at concentrations of 1–0.25 mM. 2-Hydroxyphenylbenzothiazoles are known antimicrobial and antioxidant agents that have potential applications in the food industry and cosmetics as preservatives and antioxidants. In this context, antimicrobial activity of the hybrid compounds was evaluated using the agar diffusion method against E. coli, S. aureus, P. aeruginosa, and C. albicans. Compounds of methyl-2-(4-hydroxy-2-isopropyl-5-methylphenyl)benzo[d]thiazole-3(2H)-carboxylate containing carvacrol fragments showed high activity against Staphylococcus aureus ATCC 25923 (with 0.044 μmol content). The radical scavenging activity was determined using ABTS and DPPH assays, the highest activity was exhibited by the thymol hybrids ethyl-2-(4-hydroxy-5-isopropyl-2-methylphenyl)benzo[d]thiazole-3(2H)-carboxylate (IC50—133.70 ± 10 µM) and methyl-2-(4-hydroxy-5-isopropyl-2-methylphenyl)benzo[d]thiazole-3(2H)-carboxylate (IC50—157.50 ± 10 µM), defined by ABTS. The aromatic benzothiazole–monoterpenoid hybrids are classified using in silico analyses as non-mutagenic, with low toxicity, and they are non-irritating to the skin. These compounds were identified as new hit scaffolds for multifunctional molecules in cosmetics. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

24 pages, 9140 KiB  
Article
Design, Synthesis, and Antioxidant and Anti-Tyrosinase Activities of (Z)-5-Benzylidene-2-(naphthalen-1-ylamino)thiazol-4(5H)-one Analogs: In Vitro and In Vivo Insights
by Hee Jin Jung, Hye Jin Kim, Hyeon Seo Park, Hye Soo Park, Jeongin Ko, Dahye Yoon, Yujin Park, Pusoon Chun, Hae Young Chung and Hyung Ryong Moon
Molecules 2025, 30(2), 289; https://doi.org/10.3390/molecules30020289 - 13 Jan 2025
Cited by 1 | Viewed by 1299
Abstract
Fifteen compounds (115) constructed on a hybrid structure combining a β-phenyl-α,β-unsaturated carbonyl template and a 2-aminothiazol-4(5H)-one scaffold were designed and synthesized as potential novel anti-tyrosinase substances. Two compounds (10 and 15) showed more potent inhibition [...] Read more.
Fifteen compounds (115) constructed on a hybrid structure combining a β-phenyl-α,β-unsaturated carbonyl template and a 2-aminothiazol-4(5H)-one scaffold were designed and synthesized as potential novel anti-tyrosinase substances. Two compounds (10 and 15) showed more potent inhibition against mushroom tyrosinase than kojic acid, and the inhibitory activity of 10 (IC50 value: 1.60 μM) was 11 times stronger than that of kojic acid. Lineweaver–Burk plots indicated that these two compounds were competitive inhibitors that bound to the mushroom tyrosinase active site, which was supported by in silico experiments. Compound 10 was an anti-tyrosinase and anti-melanogenic substance in B16F10 cells and was more potent than kojic acid, without cytotoxicity. Compound 15 exhibited the most potent effect on zebrafish larval depigmentation and showed a depigmentation effect comparable to kojic acid, even at a concentration 200 times lower. Compounds 8 and 10 exhibited strong antioxidant capacities, scavenging 2,2-diphenyl-1-picrylhydrazyl, (2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid)+ radicals, and reactive oxygen species. Hybrid compounds 10 and 15 are potential therapeutic agents for skin hyperpigmentation disorders. Full article
Show Figures

Figure 1

16 pages, 2665 KiB  
Article
Using Hybrid Deep Learning Models to Predict Dust Storm Pathways with Enhanced Accuracy
by Mahdis Yarmohamadi, Ali Asghar Alesheikh and Mohammad Sharif
Climate 2025, 13(1), 16; https://doi.org/10.3390/cli13010016 - 12 Jan 2025
Cited by 1 | Viewed by 2115
Abstract
As a potential consequence of climate change, the intensity and frequency of dust storms are increasing. A dust storm arises when strong winds blow loose dust from a dry surface, transporting soil particles from one place to another. The environmental and human health [...] Read more.
As a potential consequence of climate change, the intensity and frequency of dust storms are increasing. A dust storm arises when strong winds blow loose dust from a dry surface, transporting soil particles from one place to another. The environmental and human health impacts of dust storms are substantial. Accordingly, studying the monitoring of this phenomenon and predicting its pathways for early decision making and warning are vital. This study employs deep learning methods to predict dust storm pathways. Specifically, hybrid CNN-LSTM and ConvLSTM models have been proposed for the 24 h-ahead prediction of dust storms in the region under study. The Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) product that includes the dust particles and the meteorological information, such as surface wind speed and direction, relative humidity, surface air temperature, and skin temperature, is used to train the proposed models. These contextual features are selected utilizing the random forest feature importance method. The results indicate an improvement in the performance of both models by considering the contextual information. Moreover, a 0.2 increase in the Kappa coefficient criterion across all forecast hours indicates the CNN-LSTM model outperforms the ConvLSTM model when contextual information is considered. Full article
(This article belongs to the Special Issue Addressing Climate Change with Artificial Intelligence Methods)
Show Figures

Figure 1

19 pages, 1887 KiB  
Article
Comparative Analysis of Biochemical Parameters, Thermal Behavior, Rheological Features, and Gelling Characteristics of Thai Ligor Hybrid Chicken and Broiler Meats
by Ngassa Julius Mussa, Chantira Wongnen, Warangkana Kitpipit, Worawan Panpipat, Mingyu Yin, Siriporn Riebroy Kim and Manat Chaijan
Foods 2025, 14(1), 55; https://doi.org/10.3390/foods14010055 - 27 Dec 2024
Cited by 2 | Viewed by 1287
Abstract
Genetic differences typically cause differences in the structure and function of proteins in meat. The objective of this research was to examine the biochemical characteristics and functional behavior of proteins in fresh composite meat from Thai Ligor hybrid chicken (LC) and commercial broiler [...] Read more.
Genetic differences typically cause differences in the structure and function of proteins in meat. The objective of this research was to examine the biochemical characteristics and functional behavior of proteins in fresh composite meat from Thai Ligor hybrid chicken (LC) and commercial broiler chicken (BC). The composite meat samples, which comprise minced breast and thigh without skin from 20 chicken carcasses in a 1:1 (w/w) ratio, were randomly selected for analysis using the completely randomized design (CRD). Results showed that BC meat exhibited higher ultimate pH after 24 h, Ca2+-ATPase activity, and trichloroacetic acid (TCA)-soluble peptide content compared to LC meat (p < 0.05). While both meat types showed non-significant differences in reactive sulfhydryl (SH) levels (p > 0.05), LC meat exhibited higher hydrophobicity compared to BC meat (p < 0.05). Differential scanning calorimetry (DSC) analysis revealed a single transition peak in all samples. LC meat exhibited higher thermal stability than BC meat, with transition peaks at 91 °C and 81 °C, respectively, in non-sodium chloride (NaCl) treated samples. Samples treated with 2.5% NaCl exhibited transition peaks around 70 °C for BC and 79 °C for LC. LC meat showed higher storage modulus (G′) and loss modulus (G″) values than BC meat, suggesting a stronger gel-forming tendency. LC meat gels exhibited higher hardness, cohesiveness, gumminess, and chewiness, and a slightly lower pH (6.14 vs. 5.97) compared to BC meat gels (p < 0.05). LC meat gels displayed larger expressible moisture content (p < 0.05), although the value was approximately 6%. Compared to LC meat gels, BC meat gels appeared slightly whiter (p < 0.05). To compare the lipid oxidation of BC and LC meat gels day by day, the thiobarbituric acid reactive substances (TBARS) of gels stored at 4 °C in polyethylene bags were measured on Days 0, 4, and 8. Both BC and LC meat gels showed acceptable lipid oxidation-based rancid off-flavor after short-term storage at 4 °C, with TBARS values below 2 mg malondialdehyde (MDA) equivalent/kg on Day 8. Understanding these variations in biochemical properties and functional behavior can help optimize processing methods and produce meat products of superior quality that meet consumer preferences. Full article
Show Figures

Figure 1

19 pages, 6978 KiB  
Article
Phenotypic Characters and Inheritance Tendency of Agronomic Traits in F1 Progeny of Chinese Cherry
by Zhenshan Liu, Shuaiwei Yang, Lisu Hao, Hao Wang, Jing Zhang, Wen He, Mengyao Li, Yuanxiu Lin, Yunting Zhang, Qing Chen, Yong Zhang, Ya Luo, Haoru Tang, Yan Wang and Xiaorong Wang
Agronomy 2024, 14(12), 2862; https://doi.org/10.3390/agronomy14122862 - 30 Nov 2024
Cited by 2 | Viewed by 841
Abstract
Chinese cherry [Prunus. pseudocerasus Lindl., syn. Cerasus. pseudocerasus (Lindl.) G.Don], an economically important tetraploid fruit crop native to southwestern China, is celebrated as “the earliest fruit of spring”. Understanding the inheritance and heterosis of major agronomical traits is essential for advancing its [...] Read more.
Chinese cherry [Prunus. pseudocerasus Lindl., syn. Cerasus. pseudocerasus (Lindl.) G.Don], an economically important tetraploid fruit crop native to southwestern China, is celebrated as “the earliest fruit of spring”. Understanding the inheritance and heterosis of major agronomical traits is essential for advancing its breeding. In this study, we conducted a three-year observation and inheritance analysis of 32 economic traits in the reciprocal F1 populations (NH, n = 114; HN, n = 87) derived from Chinese cherry landraces “Nanzaohong” and “Hongfei”. The results revealed a broad segregation for all traits in F1 offspring. Fruit size exhibited an inheritance tendency toward smaller dimensions, with some individuals displaying extreme values (Fruit weight, HH = 3.90~12.15%) that highlighted the potential for selecting larger fruits. The hybrids showed a tendency for sweeter fruit flavor, with total soluble solids (RHm = 7.00~19.35%) and soluble sugar (RHm = 11.09% and 17.47%) exhibiting hybrid vigor, along with a decreasing tendency in titratable acid (RHm = −16.08~−1.05%). The flowering and fruiting phenology tended to occur earlier, with extremely early and late flowering lines offering the potential to extend the ornamental and harvesting periods. Fruit bitterness (H2 = 0.98 and 0.95) and fruit skin color (H2 = 0.93 and 0.89) displayed the highest heritability. Correlation analysis revealed strong internal correlations among trait categories, confirming the reliability of the data collection and analysis. Moreover, no significant differences were observed between the maternal and the paternal effect on the inheritance for agronomic traits attributes. This study systematically clarifies the inheritance trends of agronomic traits in Chinese cherry, providing a foundation for the rational selection of parental lines in breeding strategies and laying the groundwork for future molecular genetic research. Full article
Show Figures

Figure 1

18 pages, 7401 KiB  
Article
Hydrogels and Carbon Nanotubes: Composite Electrode Materials for Long-Term Electrocardiography Monitoring
by Leszek Kolodziej, Olga Iwasińska-Kowalska, Grzegorz Wróblewski, Tomasz Giżewski, Małgorzata Jakubowska and Agnieszka Lekawa-Raus
J. Funct. Biomater. 2024, 15(5), 113; https://doi.org/10.3390/jfb15050113 - 23 Apr 2024
Cited by 4 | Viewed by 2271
Abstract
This paper presents methods for developing high-performance interface electrode materials designed to enhance signal collection efficacy during long-term (over 24 h) electrocardiography (ECG) monitoring. The electrode materials are fabricated by integrating commercial ECG liquid hydrogels with carbon nanotubes (CNTs), which are widely utilized [...] Read more.
This paper presents methods for developing high-performance interface electrode materials designed to enhance signal collection efficacy during long-term (over 24 h) electrocardiography (ECG) monitoring. The electrode materials are fabricated by integrating commercial ECG liquid hydrogels with carbon nanotubes (CNTs), which are widely utilized in dry-electrode technologies and extensively discussed in the current scientific literature. The composite materials are either prepared by dispersing CNTs within the commercial liquid hydrogel matrix or by encasing the hydrogels in macroscopic CNT films. Both approaches ensure the optimal wetting of the epidermis via the hydrogels, while the CNTs reduce material impedance and stabilize the drying process. The resulting electrode materials maintain their softness, allowing for micro-conformal skin attachment, and are biocompatible. Empirical testing confirms that the ECG electrodes employing these hybrid hydrogels adhere to relevant standards for durations exceeding 24 h. These innovative hybrid solutions merge the benefits of both wet and dry ECG electrode technologies, potentially facilitating the extended monitoring of ECG signals and thus advancing the diagnosis and treatment of various cardiac conditions. Full article
(This article belongs to the Section Biomaterials and Devices for Healthcare Applications)
Show Figures

Figure 1

10 pages, 2075 KiB  
Article
Differences in the Behavior of Anthocyanin Coloration in Wines Made from Vitis vinifera and Non-vinifera Grapes
by Tohru Okuda, Kyohei Maeda, Itsuki Serizawa, Fumie Watanabe-Saito and Masashi Hisamoto
Fermentation 2024, 10(4), 216; https://doi.org/10.3390/fermentation10040216 - 15 Apr 2024
Viewed by 1995
Abstract
The skins of Vitis vinifera species contain 3-glucosyl anthocyanins (3G), but some non-vinifera species, such as ‘Yama Sauvignon’ (YS), contain a large amount of 3,5-diglucosyl anthocyanins (35DG), and the behavior of anthocyanin coloration with respect to pH is quite different. The anthocyanins [...] Read more.
The skins of Vitis vinifera species contain 3-glucosyl anthocyanins (3G), but some non-vinifera species, such as ‘Yama Sauvignon’ (YS), contain a large amount of 3,5-diglucosyl anthocyanins (35DG), and the behavior of anthocyanin coloration with respect to pH is quite different. The anthocyanins of YS showed a very weak color at a pH of 3 or higher but a very strong color below a pH of 3. Furthermore, when we investigated the effect of co-pigmentation in commercially available wines, we found that YS red wine contained a large amount of co-pigmented anthocyanins, and even wine aged for about 4 years contained a large amount of co-pigmented anthocyanins. Due to concerns regarding disease resistance, many hybrid varieties of V. vinifera and non-vinifera species have been bred, but it is important to take these special properties of 35DG into consideration when producing wine. Full article
(This article belongs to the Section Fermentation Process Design)
Show Figures

Figure 1

20 pages, 889 KiB  
Article
Entropy Generation and Thermal Radiation Impact on Magneto-Convective Flow of Heat-Generating Hybrid Nano-Liquid in a Non-Darcy Porous Medium with Non-Uniform Heat Flux
by Nora M. Albqmi and Sivasankaran Sivanandam
Computation 2024, 12(3), 43; https://doi.org/10.3390/computation12030043 - 29 Feb 2024
Cited by 4 | Viewed by 2224
Abstract
The principal objective of the study is to examine the impact of thermal radiation and entropy generation on the magnetohydrodynamic hybrid nano-fluid, Al2O3/H2O, flow in a Darcy–Forchheimer porous medium with variable heat flux when subjected to an [...] Read more.
The principal objective of the study is to examine the impact of thermal radiation and entropy generation on the magnetohydrodynamic hybrid nano-fluid, Al2O3/H2O, flow in a Darcy–Forchheimer porous medium with variable heat flux when subjected to an electric field. Investigating the impact of thermal radiation and non-uniform heat flux on the hybrid nano-liquid magnetohydrodynamic flow in a non-Darcy porous environment produces novel and insightful findings. Thus, the goal of the current study is to investigate this. The non-linear governing equation can be viewed as a set of ordinary differential equations by applying the proper transformations. The resultant dimensionless model is numerically solved in Matlab using the bvp4c command. We obtain numerical results for the temperature and velocity distributions, skin friction, and local Nusselt number across a broad range of controlling parameters. We found a significant degree of agreement with other research that has been compared with the literature. The results show that an increase in the Reynolds and Brinckmann numbers corresponds to an increase in entropy production. Furthermore, a high electric field accelerates fluid velocity, whereas the unsteadiness parameter and the presence of a magnetic field slow it down. This study is beneficial to other researchers as well as technical applications in thermal science because it discusses the factors that lead to the working hybrid nano-liquid thermal enhancement. Full article
Show Figures

Figure 1

19 pages, 4410 KiB  
Article
Series Solutions of Three-Dimensional Magnetohydrodynamic Hybrid Nanofluid Flow and Heat Transfer
by Xiangcheng You and Yanbin Wang
Nanomaterials 2024, 14(3), 316; https://doi.org/10.3390/nano14030316 - 4 Feb 2024
Cited by 10 | Viewed by 1946
Abstract
Hybrid nanofluids have many real-world applications. Research has shown that mixed nanofluids facilitate heat transfer better than nanofluids with one type of nanoparticle. New applications for this type of material include microfluidics, dynamic sealing, and heat dissipation. In this study, we began by [...] Read more.
Hybrid nanofluids have many real-world applications. Research has shown that mixed nanofluids facilitate heat transfer better than nanofluids with one type of nanoparticle. New applications for this type of material include microfluidics, dynamic sealing, and heat dissipation. In this study, we began by placing copper into H2O to prepare a Cu-H2O nanofluid. Next, Cu-H2O was combined with Al2O3 to create a Cu-Al2O3-H2O hybrid nanofluid. In this article, we present an analytical study of the estimated flows and heat transfer of incompressible three-dimensional magnetohydrodynamic hybrid nanofluids in the boundary layer. The application of similarity transformations converts the interconnected governing partial differential equations of the problem into a set of ordinary differential equations. Utilizing the homotopy analysis method (HAM), a uniformly effective series solution was obtained for the entire spatial region of 0 < η < ∞. The errors in the HAM calculation are smaller than 1 × 10−9 when compared to the results from the references. The volume fractions of the hybrid nanofluid and magnetic fields have significant impacts on the velocity and temperature profiles. The appearance of magnetic fields can alter the properties of hybrid nanofluids, thereby altering the local reduced friction coefficient and Nusselt numbers. As the volume fractions of nanoparticles increase, the effective viscosity of the hybrid nanofluid typically increases, resulting in an increase in the local skin friction coefficient. The increased interaction between the nanoparticles in the hybrid nanofluid leads to a decrease in the Nusselt number distribution. Full article
Show Figures

Figure 1

28 pages, 7440 KiB  
Article
Topical Formulations Based on Ursolic Acid-Loaded Nanoemulgel with Potential Application in Psoriasis Treatment
by Małgorzata Miastkowska, Agnieszka Kulawik-Pióro, Elwira Lasoń, Karolina Śliwa, Magdalena Anna Malinowska, Elżbieta Sikora, Tomasz Kantyka, Ewa Bielecka, Anna Maksylewicz, Emilia Klimaszewska, Marta Ogorzałek, Małgorzata Tabaszewska, Łukasz Skoczylas and Krzysztof Nowak
Pharmaceutics 2023, 15(11), 2559; https://doi.org/10.3390/pharmaceutics15112559 - 31 Oct 2023
Cited by 11 | Viewed by 3778
Abstract
Psoriasis is a chronic disorder that causes a rash with itchy, scaly patches. It affects nearly 2–5% of the worldwide population and has a negative effect on patient quality of life. A variety of therapeutic approaches, e.g., glucocorticoid topical therapy, have shown limited [...] Read more.
Psoriasis is a chronic disorder that causes a rash with itchy, scaly patches. It affects nearly 2–5% of the worldwide population and has a negative effect on patient quality of life. A variety of therapeutic approaches, e.g., glucocorticoid topical therapy, have shown limited efficacy with systemic adverse reactions. Therefore, novel therapeutic agents and physicochemical formulations are in constant need and should be obtained and tested in terms of effectiveness and minimization of side effects. For that reason, the aim of our study was to design and obtain various hybrid systems, nanoemulgel–macroemulsion and nanoemulgel–oleogel (bigel), as vehicles for ursolic acid (UA) and to verify their potential as topical formulations used in psoriasis treatment. Obtained topical formulations were characterized by conducting morphological, rheological, texture, and stability analysis. To determine the safety and effectiveness of the prepared ursolic acid carriers, in vitro studies on human keratinocyte cell-like HaCaT cells were performed with cytotoxicity analysis for individual components and each formulation. Moreover, a kinetic study of ursolic acid release from the obtained systems was conducted. All of the studied UA-loaded systems were well tolerated by keratinocyte cells and had suitable pH values and stability over time. The obtained formulations exhibit an apparent viscosity, ensuring the appropriate time of contact with the skin, ease of spreading, soft consistency, and adherence to the skin, which was confirmed by texture tests. The release of ursolic acid from each of the formulations is followed by a slow, controlled release according to the Korsmeyer–Peppas and Higuchi models. The elaborated systems could be considered suitable vehicles to deliver triterpene to psoriatic skin. Full article
Show Figures

Graphical abstract

17 pages, 5232 KiB  
Article
Antipsychotics Affect Satellite III (1q12) Copy Number Variations in the Cultured Human Skin Fibroblasts
by Elizaveta S. Ershova, Ekaterina A. Savinova, Larisa V. Kameneva, Lev N. Porokhovnik, Roman V. Veiko, Tatiana A. Salimova, Vera L. Izhevskaya, Sergey I. Kutsev, Natalia N. Veiko and Svetlana V. Kostyuk
Int. J. Mol. Sci. 2023, 24(14), 11283; https://doi.org/10.3390/ijms241411283 - 10 Jul 2023
Cited by 2 | Viewed by 1565
Abstract
The fragment of satellite III (f-SatIII) is located in pericentromeric heterochromatin of chromosome 1. Cell with an enlarged f-SatIII block does not respond to various stimuli and are highly stress-susceptible. The fraction of f-SatIII in the cells of schizophrenia patients changed during antipsychotic [...] Read more.
The fragment of satellite III (f-SatIII) is located in pericentromeric heterochromatin of chromosome 1. Cell with an enlarged f-SatIII block does not respond to various stimuli and are highly stress-susceptible. The fraction of f-SatIII in the cells of schizophrenia patients changed during antipsychotic therapy. Therefore, antipsychotics might reduce the f-SatIII content in the cells. We studied the action of haloperidol, risperidone and olanzapine (3 h, 24 h, 96 h) on human skin fibroblast lines (n = 10). The f-SatIII contents in DNA were measured using nonradioactive quantitative hybridization. RNASATIII were quantified using RT-qPCR. The levels of DNA damage markers (8-oxodG, γ-H2AX) and proteins that regulate apoptosis and autophagy were determined by flow cytometry. The antipsychotics reduced the f-SatIII content in DNA and RNASATIII content in RNA from HSFs. After an exposure to the antipsychotics, the autophagy marker LC3 significantly increased, while the apoptosis markers decreased. The f-SatIII content in DNA positively correlated with RNASATIII content in RNA and with DNA oxidation marker 8-oxodG, while negatively correlated with LC3 content. The antipsychotics arrest the process of f-SatIII repeat augmentation in cultured skin fibroblasts via the transcription suppression and/or through upregulated elimination of cells with enlarged f-SatIII blocks with the help of autophagy. Full article
Show Figures

Figure 1

13 pages, 4938 KiB  
Communication
MHD Hybrid Nanofluid Flow over a Stretching/Shrinking Sheet with Skin Friction: Effects of Radiation and Mass Transpiration
by Angadi Basettappa Vishalakshi, Rudraiah Mahesh, Ulavathi Shettar Mahabaleshwar, Alaka Krishna Rao, Laura M. Pérez and David Laroze
Magnetochemistry 2023, 9(5), 118; https://doi.org/10.3390/magnetochemistry9050118 - 27 Apr 2023
Cited by 30 | Viewed by 3624
Abstract
The study of inclined magnetohydrodynamics (MHD) mixed convective incompressible flow of a fluid with hybrid nanoparticles containing a colloidal combination of nanofluids and base fluid is presented in the current research. Al2O3-Cu/H2O hybrid nanofluid [...] Read more.
The study of inclined magnetohydrodynamics (MHD) mixed convective incompressible flow of a fluid with hybrid nanoparticles containing a colloidal combination of nanofluids and base fluid is presented in the current research. Al2O3-Cu/H2O hybrid nanofluid is utilized in the current analysis to enhance the heat transfer analysis. The impact of radiation is also placed at energy equation. The main research methodology includes that the problem provided equations are first transformed into non-dimensional form, and then they are obtained in ordinary differential equations (ODEs) form. Then using the solutions of momentum and transfers equations to solve the given ODEs to get the root of the equation. The main purpose includes the resulting equations are then analytically resolved with the aid of suitable boundary conditions. The results can be discussed with various physical parameters viz., stretched/shrinked-Rayleigh number, stretching/shrinking parameter, Prandtl number, etc. Besides, skin friction and heat transfer coefficient can be examined with suitable similarity transformations. The main significance of the present work is to explain the mixed convective fluid flow on the basis of analytical method. Main findings at the end we found that the transverse and tangential velocities are more for more values of stretched/shrinked-Rayleigh number and mass transpiration for both suction and injection cases. This is the special method it includes stretched/shrinked-Rayleigh number, it contributes major role in this analysis. The purpose of finding the present work is to understand the analytical solution on the basis of mixed convective method. Full article
Show Figures

Figure 1

14 pages, 2721 KiB  
Article
Functionalised Hybrid Collagen-Elastin for Acellular Cutaneous Substitute Applications
by Nurkhuzaiah Kamaruzaman, Mh Busra Fauzi, Yasuhiko Tabata and Salma Mohamad Yusop
Polymers 2023, 15(8), 1929; https://doi.org/10.3390/polym15081929 - 18 Apr 2023
Cited by 4 | Viewed by 2519
Abstract
Wound contracture, which commonly happens after wound healing, may lead to physical distortion, including skin constriction. Therefore, the combination of collagen and elastin as the most abundant extracellular matrix (ECM) skin matrices may provide the best candidate biomaterials for cutaneous wound injury. This [...] Read more.
Wound contracture, which commonly happens after wound healing, may lead to physical distortion, including skin constriction. Therefore, the combination of collagen and elastin as the most abundant extracellular matrix (ECM) skin matrices may provide the best candidate biomaterials for cutaneous wound injury. This study aimed to develop a hybrid scaffold containing green natural resources (ovine tendon collagen type-I and poultry-based elastin) for skin tissue engineering. Briefly, freeze-drying was used to create the hybrid scaffolds, which were then crosslinked with 0.1% (w/v) genipin (GNP). Next, the physical characteristics (pore size, porosity, swelling ratio, biodegradability and mechanical strength) of the microstructure were assessed. Energy dispersive X-ray spectroscopy (EDX) and Fourier transform infrared (FTIR) spectrophotometry were used for the chemical analysis. The findings showed a uniform and interconnected porous structure with acceptable porosity (>60%) and high-water uptake capacity (>1200%), with pore sizes ranging between 127 ± 22 and 245 ± 35 µm. The biodegradation rate of the fabricated scaffold containing 5% elastin was lower (<0.043 mg/h) compared to the control scaffold (collagen only; 0.085 mg/h). Further analysis with EDX identified the main elements of the scaffold: it contained carbon (C) 59.06 ± 1.36–70.66 ± 2.89%, nitrogen (N) 6.02 ± 0.20–7.09 ± 0.69% and oxygen (O) 23.79 ± 0.65–32.93 ± 0.98%. FTIR analysis revealed that collagen and elastin remained in the scaffold and exhibited similar functional amides (amide A: 3316 cm−1, amide B: 2932 cm−1, amide I: 1649 cm−1, amide II: 1549 cm−1 and amide III: 1233 cm−1). The combination of elastin and collagen also produced a positive effect via increased Young’s modulus values. No toxic effect was identified, and the hybrid scaffolds significantly supported human skin cell attachment and viability. In conclusion, the fabricated hybrid scaffolds demonstrated optimum physicochemical and mechanical properties and may potentially be used as an acellular skin substitute in wound management. Full article
(This article belongs to the Special Issue Biomaterials for Tissue Engineering and Regeneration II)
Show Figures

Figure 1

14 pages, 4978 KiB  
Article
Electrospun Hyaluronan Nanofiber Membrane Immobilizing Aromatic Doxorubicin as Therapeutic and Regenerative Biomaterial
by Xiaowen Han, Mingda Zhao, Ruiling Xu, Yaping Zou, Yuxiang Wang, Jie Liang, Qing Jiang, Yong Sun, Yujiang Fan and Xingdong Zhang
Int. J. Mol. Sci. 2023, 24(8), 7023; https://doi.org/10.3390/ijms24087023 - 10 Apr 2023
Cited by 10 | Viewed by 2648
Abstract
Lesioned tissue requires synchronous control of disease and regeneration progression after surgery. It is necessary to develop therapeutic and regenerative scaffolds. Here, hyaluronic acid (HA) was esterified with benzyl groups to prepare hyaluronic acid derivative (HA-Bn) nanofibers via electrospinning. Electrospun membranes with average [...] Read more.
Lesioned tissue requires synchronous control of disease and regeneration progression after surgery. It is necessary to develop therapeutic and regenerative scaffolds. Here, hyaluronic acid (HA) was esterified with benzyl groups to prepare hyaluronic acid derivative (HA-Bn) nanofibers via electrospinning. Electrospun membranes with average fiber diameters of 407.64 ± 124.8 nm (H400), 642.3 ± 228.76 nm (H600), and 841.09 ± 236.86 nm (H800) were obtained by adjusting the spinning parameters. These fibrous membranes had good biocompatibility, among which the H400 group could promote the proliferation and spread of L929 cells. Using the postoperative treatment of malignant skin melanoma as an example, the anticancer drug doxorubicin (DOX) was encapsulated in nanofibers via hybrid electrospinning. The UV spectroscopy of DOX-loaded nanofibers (HA-DOX) revealed that DOX was successfully encapsulated, and there was a π–π interaction between aromatic DOX and HA-Bn. The drug release profile confirmed the sustained release of about 90%, achieved within 7 days. In vitro cell experiments proved that the HA-DOX nanofiber had a considerable inhibitory effect on B16F10 cells. Therefore, the HA-Bn electrospun membrane could facilitate the potential regeneration of injured skin tissues and be incorporated with drugs to achieve therapeutic effects, offering a powerful approach to developing therapeutic and regenerative biomaterial. Full article
(This article belongs to the Special Issue Biofabrication for Tissue Engineering Applications 2.0)
Show Figures

Figure 1

Back to TopTop