Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Keywords = hybrid reinforced concrete beams

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5436 KiB  
Article
Flexural Testing of Steel-, GFRP-, BFRP-, and Hybrid Reinforced Beams
by Yazeed Elbawab, Youssef Elbawab, Zeina El Zoughby, Omar ElKadi, Mohamed AbouZeid and Ezzeldin Sayed-Ahmed
Polymers 2025, 17(15), 2027; https://doi.org/10.3390/polym17152027 - 25 Jul 2025
Viewed by 409
Abstract
The construction industry is exploring alternatives to traditional steel reinforcement in concrete due to steel’s corrosion vulnerability. Glass Fiber Reinforced Polymer (GFRP) and Basalt Fiber Reinforced Polymer (BFRP), known for their high tensile strength and corrosion resistance, are viable options. This study evaluates [...] Read more.
The construction industry is exploring alternatives to traditional steel reinforcement in concrete due to steel’s corrosion vulnerability. Glass Fiber Reinforced Polymer (GFRP) and Basalt Fiber Reinforced Polymer (BFRP), known for their high tensile strength and corrosion resistance, are viable options. This study evaluates the flexural performance of concrete beams reinforced with GFRP, BFRP, and hybrid systems combining these materials with steel, following ACI 440.1R-15 guidelines. Twelve beams were assessed under three-point bending to compare their flexural strength, ductility, and failure modes against steel reinforcement. The results indicate that GFRP and BFRP beams achieve 8% and 12% higher ultimate load capacities but 38% and 58% lower deflections at failure than steel, respectively. Hybrid reinforcements enhance both load capacity and deflection performance (7% to 17% higher load with 11% to 58% lower deflection). However, GFRP and BFRP beams show reduced energy absorption, suggesting that hybrid systems could better support critical applications like seismic and impact-prone structures by improving ductility and load handling. In addition, BFRP beams predominantly failed due to debonding and concrete crushing, while GFRP beams failed due to bar rupture, reflecting key differences in their flexural failure mechanisms. Full article
(This article belongs to the Special Issue Fibre-Reinforced Polymer Laminates: Structure and Properties)
Show Figures

Figure 1

14 pages, 3260 KiB  
Article
Performance of Hybrid Strengthening System for Reinforced Concrete Member Using CFRP Composites Inside and over Transverse Groove Technique
by Ahmed H. Al-Abdwais and Adil K. Al-Tamimi
Fibers 2025, 13(7), 93; https://doi.org/10.3390/fib13070093 - 8 Jul 2025
Viewed by 289
Abstract
The use of a carbon-fiber-reinforced polymer (CFRP) for structural strengthening has been widely adopted in recent decades. Early studies focused on externally bonded (EB) techniques, but premature delamination of CFRP from concrete surfaces often limited their efficiency. To address this, alternative methods, such [...] Read more.
The use of a carbon-fiber-reinforced polymer (CFRP) for structural strengthening has been widely adopted in recent decades. Early studies focused on externally bonded (EB) techniques, but premature delamination of CFRP from concrete surfaces often limited their efficiency. To address this, alternative methods, such as Externally Bonded Reinforcement Over Grooves (EBROG) and Externally Bonded Reinforcement Inside Grooves (EBRIG), were developed to enhance the bond strength and delay delamination. While most research has examined longitudinal groove layouts, this study investigates a hybrid system combining a CFRP fabric bonded inside transverse grooves (EBRITG) with externally bonded layers over the grooves (EBROTG). The system leverages the grooves’ surface area to anchor the CFRP and improve the bonding strength. Seven RC beams were tested in two stages: five beams with varied strengthening methods (EBROG, EBRIG, and hybrid) in the first stage and two beams with a hybrid system and concrete cover anchorage in the second stage. Results demonstrated significant flexural capacity improvement—57% and 72.5% increase with two and three CFRP layers, respectively—compared to the EBROG method, confirming the hybrid system’s superior bonding efficiency. Full article
Show Figures

Figure 1

22 pages, 4758 KiB  
Article
Analysis of Interface Sliding in a Composite I-Steel–Concrete Beam Reinforced by a Composite Material Plate: The Effect of Concrete–Steel Connection Modes
by Tahar Hassaine Daouadji, Boussad Abbès, Tayeb Bensatallah and Fazilay Abbès
J. Compos. Sci. 2025, 9(6), 273; https://doi.org/10.3390/jcs9060273 - 29 May 2025
Cited by 1 | Viewed by 891
Abstract
This study investigates interface sliding behavior in composite I-steel–concrete beams reinforced with a composite material plate by analyzing various connection configurations combining shear stud connectors and adhesive bonding. The degree of composite action, governed by the shear stiffness at the steel–concrete interface, plays [...] Read more.
This study investigates interface sliding behavior in composite I-steel–concrete beams reinforced with a composite material plate by analyzing various connection configurations combining shear stud connectors and adhesive bonding. The degree of composite action, governed by the shear stiffness at the steel–concrete interface, plays a critical role in structural performance. An analytical model was developed based on the elasticity theory and the strain compatibility approach, assuming constant shear and normal stress across the interface. Five connection modes were considered, ranging from fully mechanical (100% shear studs) to fully adhesive (100% bonding), as well as mixed configurations. The model was validated against finite element simulations, demonstrating strong agreement with relative differences between 0.3% and 10.7% across all cases. A parametric study explored the influence of key factors such as interface layer stiffness and composite plate reinforcement material on the overall interface behavior. The results showed that adhesive bonding significantly reduces slippage at the steel–concrete interface, enhancing bond integrity, while purely mechanical connections tend to increase interface slippage. The findings provide valuable guidance for designing hybrid connection systems in composite structures to optimize performance, durability, and construction efficiency. Full article
(This article belongs to the Special Issue Sustainable Composite Construction Materials, Volume II)
Show Figures

Figure 1

16 pages, 5542 KiB  
Article
Prediction of Shear Strength of Steel Fiber-Reinforced Concrete Beams with Stirrups Using Hybrid Machine Learning and Deep Learning Models
by B. R. Kavya, A. S. Shrikanth and K. S. Sreekeshava
Buildings 2025, 15(8), 1265; https://doi.org/10.3390/buildings15081265 - 11 Apr 2025
Viewed by 425
Abstract
The shear behavior of beams cast with steel fiber reinforced concrete and provided with stirrups is a complex phenomenon that depends on various factors. In the present research effort, a hybrid support vector regression model combined with a particle swarm optimization algorithm is [...] Read more.
The shear behavior of beams cast with steel fiber reinforced concrete and provided with stirrups is a complex phenomenon that depends on various factors. In the present research effort, a hybrid support vector regression model combined with a particle swarm optimization algorithm is provided, to explore the relationship between the material and dimensional characteristics of a concrete beam and its shear strength. A database with diverse material properties associated with the shear strength of a steel fiber reinforced concrete beam was established from numerous reliable published research articles and was utilized for the development and evaluation of the model. The obtained results from the hybrid support vector regression model were then validated through the results of the artificial neural network and convolutional neural network models combined with the particle swarm optimization algorithm. In conclusion, the adopted hybrid support vector regression approach was proven to be a successful engineering technique that can be used in structural and construction engineering problems. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 3932 KiB  
Article
A Predictive Model for the Shear Capacity of Ultra-High-Performance Concrete Deep Beams Reinforced with Fibers Using a Hybrid ANN-ANFIS Algorithm
by Hossein Mirzaaghabeik, Nuha S. Mashaan and Sanjay Kumar Shukla
Appl. Mech. 2025, 6(2), 27; https://doi.org/10.3390/applmech6020027 - 4 Apr 2025
Cited by 2 | Viewed by 671
Abstract
Ultra-high-performance concrete (UHPC) has attracted considerable attention from both the construction industry and researchers due to its outstanding durability and exceptional mechanical properties, particularly its high compressive strength. Several factors influence the shear capacity of UHPC deep beams, including compressive strength, the shear [...] Read more.
Ultra-high-performance concrete (UHPC) has attracted considerable attention from both the construction industry and researchers due to its outstanding durability and exceptional mechanical properties, particularly its high compressive strength. Several factors influence the shear capacity of UHPC deep beams, including compressive strength, the shear span-to-depth ratio (λ), fiber content (FC), vertical web reinforcement (ρsv), horizontal web reinforcement (ρsh), and longitudinal web reinforcement (ρs). Considering these factors, this research proposes a novel hybrid algorithm that combines an adaptive neuro-fuzzy inference system (ANFIS) with an artificial neural network (ANN) to predict the shear capacity of UHPC deep beams. To achieve this, ANN and ANFIS algorithms were initially employed individually to predict the shear capacity of UHPC deep beams using available experimental data for training. Subsequently, a novel hybrid algorithm, integrating an ANN and ANFIS, was developed to enhance prediction accuracy by utilizing numerical data as input for training. To evaluate the accuracy of the algorithms, the performance metrics R2 and RMSE were selected. The research findings indicate that the accuracy of the ANN, ANFIS, and the hybrid ANN-ANFIS algorithm was observed as R2 = 0.95, R2 = 0.99, and R2 = 0.90, respectively. This suggests that despite not using experimental data as input for training, the ANN-ANFIS algorithm accurately predicted the shear capacity of UHPC deep beams, achieving an accuracy of up to 90.90% and 94.74% relative to the ANFIS and ANN algorithms trained on experimental results. Finally, the shear capacity of UHPC deep beams predicted using the ANN, ANFIS, and the hybrid ANN-ANFIS algorithm was compared with the values calculated based on ACI 318-19. Subsequently, a novel reliability factor was proposed, enabling the prediction of the shear capacity of UHPC deep beams reinforced with fibers with a 0.66 safety margin compared to the experimental results. This indicates that the proposed model can be effectively employed in real-world design applications. Full article
(This article belongs to the Topic Advances on Structural Engineering, 3rd Edition)
Show Figures

Figure 1

29 pages, 10636 KiB  
Article
Development of an Environmentally Friendly Steel Structural Framework: Evaluation of Bending Stiffness and Yield Bending Moment of Cross-Laminated Timber Slab–H-Shaped Steel Composite Beams for Component Reuse
by Sachi Furukawa, Ryohei Iwami and Yoshihiro Kimura
Sustainability 2025, 17(5), 2073; https://doi.org/10.3390/su17052073 - 27 Feb 2025
Cited by 2 | Viewed by 1050
Abstract
The building and construction sector accounts for nearly 40% of global greenhouse gas emissions, with steel-framed buildings being a significant contributor due to high CO2 emissions during production. To mitigate this issue, integrating Cross-Laminated Timber (CLT) into structural systems has emerged as [...] Read more.
The building and construction sector accounts for nearly 40% of global greenhouse gas emissions, with steel-framed buildings being a significant contributor due to high CO2 emissions during production. To mitigate this issue, integrating Cross-Laminated Timber (CLT) into structural systems has emerged as a sustainable alternative. CLT, known for its carbon sequestration properties, offers an environmentally friendly replacement for reinforced-concrete slabs, particularly when paired with steel structures to enhance material reuse and reduce lifecycle impacts. This study focuses on hybrid systems combining H-shaped steel beams and CLT floor panels connected using high-strength friction bolts. A four-point bending test, simulating a secondary beam, was conducted, demonstrating that the composite effect significantly enhances flexural stiffness and strength. Additionally, a simplified method for evaluating the flexural stiffness and yielding strength of these composite beams, based on material and joint properties, was shown to successfully evaluate the test results. Full article
(This article belongs to the Section Green Building)
Show Figures

Graphical abstract

30 pages, 3174 KiB  
Article
Optimal Seismic Retrofit Alternative for Shear Deficient RC Beams: A Multiple Criteria Decision-Making Approach
by Paola Villalba, Byron Guaygua and Víctor Yepes
Appl. Sci. 2025, 15(5), 2424; https://doi.org/10.3390/app15052424 - 24 Feb 2025
Cited by 1 | Viewed by 952
Abstract
The vulnerability of existing buildings to recent earthquakes underscores the critical need to explore effective retrofit solutions thoroughly. This study presents a comprehensive methodology for ranking seismic retrofit alternatives for reinforced concrete beams with shear deficiencies. It evaluates five alternatives to ensure a [...] Read more.
The vulnerability of existing buildings to recent earthquakes underscores the critical need to explore effective retrofit solutions thoroughly. This study presents a comprehensive methodology for ranking seismic retrofit alternatives for reinforced concrete beams with shear deficiencies. It evaluates five alternatives to ensure a 50-year service life, meeting current seismic standards and incorporating specific preventive maintenance measures for each option. A cradle-to-grave life cycle assessment was used to analyze the impacts associated with the sustainability of each alternative. Hybridization of emerging multi-criteria decision-making methods was applied for criteria weighting and final ranking, and a hierarchical model including economic, environmental, social, and functional criteria was developed. The results highlight carbon fiber reinforcements and steel plates with epoxy adhesives as optimal solutions due to their lower environmental and social impact, along with improvements in execution time and minimal architectural impact. This study underscores the necessity of a comprehensive approach to identifying optimal retrofitting alternatives, demonstrating the imperative to complement the conventional structural engineering objective of ensuring safety while minimizing investment. Full article
(This article belongs to the Special Issue Structural Seismic Design and Evaluation)
Show Figures

Figure 1

28 pages, 10795 KiB  
Article
Advanced Structural Technologies Implementation in Designing and Constructing RC Elements with C-FRP Bars, Protected Through SHM Assessment
by Georgia M. Angeli, Maria C. Naoum, Nikos A. Papadopoulos, Parthena-Maria K. Kosmidou, George M. Sapidis, Chris G. Karayannis and Constantin E. Chalioris
Fibers 2024, 12(12), 108; https://doi.org/10.3390/fib12120108 - 5 Dec 2024
Cited by 1 | Viewed by 1307
Abstract
The need to strengthen the existing reinforced concrete (RC) elements is becoming increasingly crucial for modern cities as they strive to develop resilient and sustainable structures and infrastructures. In recent years, various solutions have been proposed to limit the undesirable effects of corrosion [...] Read more.
The need to strengthen the existing reinforced concrete (RC) elements is becoming increasingly crucial for modern cities as they strive to develop resilient and sustainable structures and infrastructures. In recent years, various solutions have been proposed to limit the undesirable effects of corrosion in RC elements. While C-FRP has shown promise in corrosion-prone environments, its use in structural applications is limited by cost, bonding, and anchorage challenges with concrete. To address these, the present research investigates the structural performance of RC beams reinforced with C-FRP bars under static loading using Structural Health Monitoring (SHM) with an Electro-Mechanical Impedance (EMI) system employing Lead Zirconate Titanate (PZT) piezoelectric transducers which are applied to detect damage development and enhance the protection of RC elements and overall, RC structures. This study underscores the potential of C-FRP bars for durable tensile reinforcement in RC structures, particularly in hybrid designs that leverage steel for compression strength. The study focuses on critical factors such as stiffness, maximum load capacity, deflection at each loading stage, and the development of crack widths, all analyzed through voltage responses recorded by the PZT sensors. Particular emphasis is placed on the bond conditions and anchorage lengths of the tensile C-FRP bars, exploring how local confinement conditions along the anchorage length influence the overall behavior of the beams. Full article
Show Figures

Figure 1

23 pages, 10425 KiB  
Article
Hybrid Reinforced Concrete Frames with Engineering Cementitious Composites: Experimental and Numerical Investigations
by Abdulrahman Metawa, Moussa Leblouba and Samer Barakat
Sustainability 2024, 16(22), 10085; https://doi.org/10.3390/su162210085 - 19 Nov 2024
Cited by 1 | Viewed by 1180
Abstract
Reinforced concrete (RC) structures are vulnerable to damage under dynamic loads such as earthquakes, necessitating innovative solutions that enhance both performance and sustainability. This study investigates the integration of Engineered Cementitious Composites (ECC) in RC frames to improve ductility, durability, and energy dissipation [...] Read more.
Reinforced concrete (RC) structures are vulnerable to damage under dynamic loads such as earthquakes, necessitating innovative solutions that enhance both performance and sustainability. This study investigates the integration of Engineered Cementitious Composites (ECC) in RC frames to improve ductility, durability, and energy dissipation while considering cost-effectiveness. To achieve this, the partial replacement of concrete with ECC at key structural locations, such as beam–column joints, was explored through experimental testing and numerical simulations. Small-scale beams with varying ECC replacements were tested for failure modes, load–deflection responses, and crack propagation patterns. Additionally, nonlinear quasi-static cyclic and modal analyses were performed on full RC frames, ECC-reinforced frames, and hybrid frames with ECC at the joints. The results demonstrate that ECC reduces the need for shear reinforcement due to its crack-bridging ability, enhances ductility by up to 25% in cyclic loading scenarios, and lowers the formation of plastic hinges, thereby contributing to improved structural resilience. These findings suggest that ECC is a viable, sustainable solution for achieving resilient infrastructure in seismic regions, with an optimal balance between performance and cost. Full article
(This article belongs to the Special Issue Research Advances in Sustainable Materials and Structural Engineering)
Show Figures

Figure 1

19 pages, 7231 KiB  
Article
Numerical Investigation on the Hysteretic Performance of Self-Centering Precast Steel–Concrete Hybrid Frame
by Shiqiang Feng, Yong Yang, Yicong Xue and Yunlong Yu
Buildings 2024, 14(10), 3202; https://doi.org/10.3390/buildings14103202 - 8 Oct 2024
Cited by 2 | Viewed by 988
Abstract
To improve the construction performance and seismic resilience of precast reinforced-concrete frame structures, an innovative self-centering precast steel–concrete hybrid frame has been proposed and subjected to cyclic loading tests. In this paper, a comprehensive numerical analysis was conducted to further investigate the frame’s [...] Read more.
To improve the construction performance and seismic resilience of precast reinforced-concrete frame structures, an innovative self-centering precast steel–concrete hybrid frame has been proposed and subjected to cyclic loading tests. In this paper, a comprehensive numerical analysis was conducted to further investigate the frame’s hysteretic behavior. Initially, a numerical model was developed using the finite element software OpenSees. Numerical analyses of two frame specimens were conducted, demonstrating good agreement between the numerical and experimental hysteretic characteristics, thus validating the model’s accuracy. Subsequently, based on the numerical simulations, a quantitative comparison of hysteretic performance between a novel frame and a traditional reinforced-concrete frame of the same scale was performed. While the proposed frame exhibited slightly lower initial stiffness and energy dissipation capacity than the traditional frame, it outperformed in terms of load-carrying capacity and self-centering ability. Finally, parametric analyses were carried out to assess the influence of various design parameters on the hysteretic performance, including friction force in the web frictions devices, initial post-tensioned force of the prefabricated steel–concrete hybrid beams, the steel arm length, and the column longitudinal reinforcement ratio. The results showed that increases in these four parameters improved the load-carrying capacity and initial stiffness of the proposed frame. Additionally, an increase in the friction force, steel arm length, or column longitudinal reinforcement ratio enhanced the frame’s energy dissipation capacity, while an increase in the initial post-tensioned force or a decrease in the friction force enhanced the frame’s self-centering capacity. Full article
(This article belongs to the Special Issue Earthquake Resistant and Vibration Control of Concrete Structures)
Show Figures

Figure 1

17 pages, 8974 KiB  
Article
Interface Fatigue Test of Hybrid-Bonded Fiber-Reinforced Plastic-Reinforced Concrete Specimen
by Kun Zhou, Qian Wei, Jiabin Wang, Lei Gao, Chao Dong, Zejun Zhang, Kunhao Fu and Ziqin Cheng
Buildings 2024, 14(10), 3080; https://doi.org/10.3390/buildings14103080 - 26 Sep 2024
Viewed by 930
Abstract
This research produced five hybrid-bonded fiber-reinforced plastic (HB-FRP)-reinforced beam specimens, and different fatigue load amplitudes were used as parameter variables for the fatigue performance tests of the FRP–concrete interface. The results show that FRP sliding with the number of cycles can be roughly [...] Read more.
This research produced five hybrid-bonded fiber-reinforced plastic (HB-FRP)-reinforced beam specimens, and different fatigue load amplitudes were used as parameter variables for the fatigue performance tests of the FRP–concrete interface. The results show that FRP sliding with the number of cycles can be roughly divided into fatigue initiation stage, fatigue development stage, and fatigue damage stage, and finally, because the load is too large and friction, pin, and bonding cannot provide a greater inhibition effect, FRP adhesive length is not enough to withstand the stripping load and failure. FRP slip increases with increasing fatigue load amplitude for the same number of fatigue cycles; for the specimens with fatigue damage, the interfacial stiffness of FRP–concrete decreases with the increase in the number of cyclic, and the rate of stiffness damage at the FRP–concrete interface accelerates with increasing fatigue load amplitude. For fatigue load magnitudes higher than 0.6, the slopes of fatigue bond–slip curves decrease with the increase in the number of cycles. When the fatigue load magnitude is lower than 0.4, the slope of the fatigue bond–slip curve increases with the number of cycles and is close to the slope of the monotonically loaded curve. Due to the difference in load class, the bond strength of HB-F-1 continues to decrease with the increase in fatigue times, decreasing by 26% after 100 fatigue cycles and decreasing to 7.33 MPa after 5000 fatigue cycles. The bond strength of the sample HB-F-2 first increased and then decreased with the increase in fatigue times. After 10,000 fatigue cycles, the bond strength decreased by 8%, and at 11,133,300 fatigue breaks, the bond strength of the sample HB-F-3 continued to increase with the increase in fatigue times. At 2 million fatigue load cycles, the bond strength increased to 7 MPa, far from reaching the peak strength. The empirical formulas for the fatigue life curve of HB-FRP-reinforced specimens under single steel fasteners are proposed. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

22 pages, 12819 KiB  
Article
Experimental Analysis of Shear-Strengthened RC Beams with Jute and Jute–Glass Hybrid FRPs Using the EBR Technique
by Luciana P. Maciel, Paulo S. B. Leão Júnior, Manoel J. M. Pereira Filho, Wassim R. El Banna, Roberto T. Fujiyama, Maurício P. Ferreira and Aarão F. Lima Neto
Buildings 2024, 14(9), 2893; https://doi.org/10.3390/buildings14092893 - 12 Sep 2024
Cited by 3 | Viewed by 1292
Abstract
The hybridisation of fibre-reinforced polymers (FRPs), particularly with the combination of natural and synthetic fibres, is a prominent option for their development. In the context of the construction industry, there is a notable gap in research on the use of jute and glass [...] Read more.
The hybridisation of fibre-reinforced polymers (FRPs), particularly with the combination of natural and synthetic fibres, is a prominent option for their development. In the context of the construction industry, there is a notable gap in research on the use of jute and glass fibres for the strengthening of concrete structures. This paper presents comprehensive experimental results from tests on seven reinforced concrete (RC) beams strengthened for shear using synthetic, natural, and hybrid jute–glass FRP composites. The beams were reinforced using the externally bonded reinforcement (EBR) technique with U-wrap bonding. A beam without any strengthening was tested and set as a reference for the other beams. Two beams were tested with synthetic FRP shear strengthenings, one with carbon fibre-reinforced polymer (CFRP) and another with glass fibre-reinforced polymer (GFRP). The remaining tests were on RC beams strengthened with natural jute fibre-reinforced polymer (JFRP) and hybrid jute–glass FRP. The paper discusses the experimental behaviour of the tested beams in terms of vertical displacements, crack widths, and strains on steel bars, concrete, and FRP. The experimental strengths are also compared with theoretical estimates obtained using ACI 440.2R and fib Bulletin 90. The tests confirm the effectiveness of natural jute FRP and jute–glass hybrid FRP as an option for the shear strengthening of reinforced concrete beams. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

32 pages, 24132 KiB  
Article
Numerical Assessment of the Effect of CFRP Anchorages on the Flexural and Shear Strengthening Performance of RC Beams
by Pedram Ayyobi, Joaquim António Oliveira Barros and Salvador José Esteves Dias
J. Compos. Sci. 2024, 8(9), 348; https://doi.org/10.3390/jcs8090348 - 5 Sep 2024
Cited by 2 | Viewed by 1236
Abstract
This study investigates the effectiveness of a hybrid solution that combines carbon fiber-reinforced polymer (CFRP) systems for the flexural and shear strengthening of T-cross section reinforced concrete (RC) beams. The hybrid solution consists of near-surface mounted CFRP laminates for flexural enhancement and externally [...] Read more.
This study investigates the effectiveness of a hybrid solution that combines carbon fiber-reinforced polymer (CFRP) systems for the flexural and shear strengthening of T-cross section reinforced concrete (RC) beams. The hybrid solution consists of near-surface mounted CFRP laminates for flexural enhancement and externally bonded U-shaped CFRP strips for shear strengthening. Moreover, an innovative CFRP anchorage system is proposed to prevent premature debonding of the U-CFRP strips and to improve their shear contribution. To address the limitations of the experimental program and propose an efficient and design-oriented simulation approach for NSM-EBR strengthening RC beams with the innovative anchorage system, a comprehensive numerical investigation was conducted by considering the key parameters affecting the performance of the strengthened system. This paper presents the results of an experimental program and a nonlinear finite element analysis that simulate the behavior of the materials up to their failure and the bond conditions between CFRP and concrete. This study also includes a numerical parametric study to assess the effectiveness of the proposed strengthening concept with several possible scenarios, as well as the predictive performance of the fib Bulletin 90 and ACI 440.2R-17 formulations. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

21 pages, 7769 KiB  
Article
Seismic Performance of Embedded Connections for Precast Hybrid Coupled Wall Systems: Experimental Study and Theoretical Analysis
by Hailu Lu, Mingzhou Su, Yadong Wang, Yubo Zhou and Shihao Shen
Buildings 2024, 14(8), 2503; https://doi.org/10.3390/buildings14082503 - 13 Aug 2024
Viewed by 1238
Abstract
The novel precast hybrid coupled wall structure system considers convenience requirements for the production and construction of prefabricated components. In this study, to determine the ultimate shear strength of embedded beam-to-wall connections, four full-scale specimens were meticulously designed using the “weak connections and [...] Read more.
The novel precast hybrid coupled wall structure system considers convenience requirements for the production and construction of prefabricated components. In this study, to determine the ultimate shear strength of embedded beam-to-wall connections, four full-scale specimens were meticulously designed using the “weak connections and strong components” methodology. Under low-cycle loading on a coupling steel beam, the experimental results indicated that the shear strength of the specimen was approximately twice that predicted by the Mattock–Gaafar mechanical model employed in Seismic Provisions for Structural Steel Buildings (ANSI/AISC 341-16). Therefore, a mechanical model was established to analyze the force transfer between the steel beam and concrete wall. Finally, design formulas for the shear strength were proposed, in addition to corresponding suggestions for construction reinforcement in the embedded area and adjacent zones. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 11315 KiB  
Article
Tension Lap Splices in Recycled-Aggregate Concrete Strengthened with Steel–Polyolefin Fibers
by Abdullah Al-Hussein, Fareed H. Majeed and Kadhim Z. Naser
Fibers 2024, 12(8), 60; https://doi.org/10.3390/fib12080060 - 24 Jul 2024
Cited by 1 | Viewed by 1398
Abstract
The bond strength of tension lap splices in recycled-coarse-aggregate-reinforced concrete strengthened with hybrid (steel–polyolefin) fibers was experimentally investigated. This study was conducted with the help of twelve lap-spliced beam specimens. The replacement level of coarse natural aggregates with recycled concrete aggregate (RCA) was [...] Read more.
The bond strength of tension lap splices in recycled-coarse-aggregate-reinforced concrete strengthened with hybrid (steel–polyolefin) fibers was experimentally investigated. This study was conducted with the help of twelve lap-spliced beam specimens. The replacement level of coarse natural aggregates with recycled concrete aggregate (RCA) was 100%. The following variables were investigated: various ranges of steel–polyolefin fibers—100–0%, 75–25%, 50–50%, 25–75%, and 0–100%—in which the total volume fraction of fibers (Vf) remains constant at 1%; and two lengths of lap splices for rebars of 16 mm diameter (db): 10 db and 15 db. The test results showed that the best range of steel–polyolefin fibers that gave the highest bond strength was 50–50%. The ductility of the fiber-reinforced recycled-aggregate (FR-RA) concrete was significantly improved for all the cases of various relative ratios of steel and polyolefin fibers. The bond strength was also predicted using three empirical equations proposed by Orangun et al., Darwin et al., and Harajli. This study showed that the Harajli equation gave a more accurate estimation of the bond strength of reinforcing bars embedded in FR-RA concrete than those proposed by Orangun et al. and Darwin et al. Full article
Show Figures

Figure 1

Back to TopTop