Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (166)

Search Parameters:
Keywords = hybrid polymer hydrogel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2231 KB  
Review
Microneedle Technologies for Drug Delivery: Innovations, Applications, and Commercial Challenges
by Kranthi Gattu, Deepika Godugu, Harsha Jain, Krishna Jadhav, Hyunah Cho and Satish Rojekar
Micromachines 2026, 17(1), 102; https://doi.org/10.3390/mi17010102 - 13 Jan 2026
Abstract
Microneedle (MN) technologies have emerged as a groundbreaking platform for transdermal and intradermal drug delivery, offering a minimally invasive alternative to oral and parenteral routes. Unlike passive transdermal systems, MNs allow the permeation of hydrophilic macromolecules, such as peptides, proteins, and vaccines, by [...] Read more.
Microneedle (MN) technologies have emerged as a groundbreaking platform for transdermal and intradermal drug delivery, offering a minimally invasive alternative to oral and parenteral routes. Unlike passive transdermal systems, MNs allow the permeation of hydrophilic macromolecules, such as peptides, proteins, and vaccines, by penetrating the stratum corneum barrier without causing pain or tissue damage, unlike hypodermic needles. Recent advances in materials science, microfabrication, and biomedical engineering have enabled the development of various MN types, including solid, coated, dissolving, hollow, hydrogel-forming, and hybrid designs. Each type has unique mechanisms, fabrication techniques, and pharmacokinetic profiles, providing customized solutions for a range of therapeutic applications. The integration of 3D printing technologies and stimulus-responsive polymers into MN systems has enabled patches that combine drug delivery with real-time physiological sensing. Over the years, MN applications have grown beyond vaccines to include the delivery of insulin, anticancer agents, contraceptives, and various cosmeceutical ingredients, highlighting the versatility of this platform. Despite this progress, broader clinical and commercial adoption is still limited by issues such as scalable and reliable manufacturing, patient acceptance, and meeting regulatory expectations. Overcoming these barriers will require coordinated efforts across engineering, clinical research, and regulatory science. This review thoroughly summarizes MN technologies, beginning with their classification and drug-delivery mechanisms, and then explores innovations, therapeutic uses, and translational challenges. It concludes with a critical analysis of clinical case studies and a future outlook for global healthcare. By comparing technological progress with regulatory and commercial hurdles, this article highlights the opportunities and limitations of MN systems as a next-generation drug-delivery platform. Full article
(This article belongs to the Special Issue Breaking Barriers: Microneedles in Therapeutics and Diagnostics)
Show Figures

Figure 1

18 pages, 2377 KB  
Article
Photo Crosslinkable Hybrid Hydrogels for High Fidelity Direct Write 3D Printing: Rheology, Curing Kinetics, and Bio-Scaffold Fabrication
by Riley Rohauer, Kory Schimmelpfennig, Perrin Woods, Rokeya Sarah, Ahasan Habib and Christopher L. Lewis
J. Funct. Biomater. 2026, 17(1), 30; https://doi.org/10.3390/jfb17010030 - 4 Jan 2026
Viewed by 289
Abstract
This work characterizes hybrid hydrogels prepared via the combination of natural and synthetic polymers. By incorporating a biocompatible compound, poly(ethylene glycol) diacrylate (PEGDA, Mn = 400), into alginate and carboxymethyl cellulose (CMC)-based hydrogels, the in situ UV crosslinking of these materials was [...] Read more.
This work characterizes hybrid hydrogels prepared via the combination of natural and synthetic polymers. By incorporating a biocompatible compound, poly(ethylene glycol) diacrylate (PEGDA, Mn = 400), into alginate and carboxymethyl cellulose (CMC)-based hydrogels, the in situ UV crosslinking of these materials was assessed. A custom direct-write (DW) 3D bioprinter was utilized to prepare hybrid hydrogel constructs and scaffolds. A control sample, which consisted of 4% w/v alginate and 4% w/v CMC, was prepared and evaluated in addition to three PEGDA (4.5, 6.5, and 10% w/v)-containing hybrid hydrogels. Rotational rheology was utilized to evaluate the thixotropic behavior of these materials. Filament fusion tests were employed to generate bilayer constructs of various pore sizes, providing metrics for the printability and diffusion rate of hydrogels post-extrusion. Printability indicates the shape fidelity of pore geometry, whereas diffusion rate represents material spreading after deposition. Curing kinetics of PEGDA-containing hydrogels were evaluated using photo-Differential Scanning Calorimetry (DSC) and photorheology. The Kamal model was fitted to photo-DSC results, enabling an assessment and comparison of the curing kinetics for PEGDA-containing hydrogels. Photorheological results highlight the increase in hydrogel stiffness concomitant with PEGDA content. The range of obtained complex moduli (G*) provides utility for the development of brain, kidney, and heart tissue (620–4600 Pa). The in situ UV irradiation of PEGDA-containing hydrogels improved the shape fidelity of printed bilayers and decreased filament diffusion rates. In situ UV irradiation enabled 10-layer scaffolds with 1 × 1 mm pore sizes to be printed. Ultimately, this study highlights the utility of PEGDA-containing hybrid hydrogels for high-resolution DW 3D bioprinting and potential application toward customizable tissue analogs. Full article
(This article belongs to the Special Issue 3D Bioprinting for Tissue Engineering and Regenerative Medicine)
Show Figures

Graphical abstract

14 pages, 1691 KB  
Article
Evaluating Polymer Characterization Methods to Establish a Quantitative Method of Compositional Analysis Using a Polyvinyl Alcohol (PVA)/Polyethylene Glycol (PEG)—Based Hydrogel for Biomedical Applications
by Antonio G. Abbondandolo, Anthony Lowman and Erik C. Brewer
Polymers 2026, 18(1), 48; https://doi.org/10.3390/polym18010048 - 24 Dec 2025
Viewed by 394
Abstract
Multi-component polymer hydrogels present complex physiochemical interactions that make accurate compositional analysis challenging. This study evaluates three analytical techniques: Nuclear Magnetic Resonance (NMR), Advanced Polymer Chromatography (APC), and Thermogravimetric Analysis (TGA) to quantify polyvinyl alcohol (PVA) and polyethylene glycol (PEG) content in hybrid [...] Read more.
Multi-component polymer hydrogels present complex physiochemical interactions that make accurate compositional analysis challenging. This study evaluates three analytical techniques: Nuclear Magnetic Resonance (NMR), Advanced Polymer Chromatography (APC), and Thermogravimetric Analysis (TGA) to quantify polyvinyl alcohol (PVA) and polyethylene glycol (PEG) content in hybrid freeze-thaw derived PVA/PEG/PVP hydrogels. Hydrogels were synthesized using an adapted freeze–thaw method across a wide range of PVA:PEG ratios, with PVP included at 1 wt% to assess potential intermolecular effects. NMR and APC reliably quantified polymer content with low average errors of 2.77% and 2.01%, respectively, and were unaffected by phase separation or hydrogen bonding within the composite matrix. TGA enabled accurate quantification at PVA contents ≤ 62.5%, where PEG and PVA maintained distinct thermal decomposition behaviors. At higher PVA concentrations, increased hydrogen bonding and crystalline restructuring, confirmed by FTIR through shifts near 1140 cm−1 and significant changes in the -OH region, altered thermal profiles and reduced TGA accuracy. Together, these findings establish APC as a high-throughput alternative to NMR for multi-component polymer analysis and outline critical thermal and structural thresholds that influence TGA-based quantification. This work provides a framework for characterizing complex polymer networks in biomedical hydrogel systems. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

30 pages, 5119 KB  
Review
Thermo-Responsive Smart Hydrogels: Molecular Engineering, Dynamic Cross-Linking Strategies, and Therapeutics Applications
by Jiten Yadav, Surjeet Chahal, Prashant Kumar and Chandra Kumar
Gels 2026, 12(1), 12; https://doi.org/10.3390/gels12010012 - 23 Dec 2025
Viewed by 522
Abstract
Temperature-responsive hydrogels are sophisticated stimuli-responsive biomaterials that undergo rapid, reversible sol–gel phase transitions in response to subtle thermal stimuli, most notably around physiological temperature. This inherent thermosensitivity enables non-invasive, precise spatiotemporal control of material properties and bioactive payload release, rendering them highly promising [...] Read more.
Temperature-responsive hydrogels are sophisticated stimuli-responsive biomaterials that undergo rapid, reversible sol–gel phase transitions in response to subtle thermal stimuli, most notably around physiological temperature. This inherent thermosensitivity enables non-invasive, precise spatiotemporal control of material properties and bioactive payload release, rendering them highly promising for advanced biomedical applications. This review critically surveys recent advances in the design, synthesis, and translational potential of thermo-responsive hydrogels, emphasizing nanoscale and hybrid architectures optimized for superior tunability and biological performance. Foundational systems remain dominated by poly(N-isopropylacrylamide) (PNIPAAm), which exhibits a sharp lower critical solution temperature near 32 °C, alongside Pluronic/Poloxamer triblock copolymers and thermosensitive cellulose derivatives. Contemporary developments increasingly exploit biohybrid and nanocomposite strategies that incorporate natural polymers such as chitosan, gelatin, or hyaluronic acid with synthetic thermo-responsive segments, yielding materials with markedly enhanced mechanical robustness, biocompatibility, and physiologically relevant transition behavior. Cross-linking methodologies—encompassing covalent chemical approaches, dynamic physical interactions, and radiation-induced polymerization are rigorously assessed for their effects on network topology, swelling/deswelling kinetics, pore structure, and degradation characteristics. Prominent applications include on-demand drug and gene delivery, injectable in situ gelling systems, three-dimensional matrices for cell encapsulation and organoid culture, tissue engineering scaffolds, self-healing wound dressings, and responsive biosensing platforms. The integration of multi-stimuli orthogonality, nanotechnology, and artificial intelligence-guided materials discovery is anticipated to deliver fully programmable, patient-specific hydrogels, establishing them as pivotal enabling technologies in precision and regenerative medicine. Full article
(This article belongs to the Special Issue Characterization Techniques for Hydrogels and Their Applications)
Show Figures

Graphical abstract

21 pages, 8040 KB  
Article
Functionalization of Microfiltration Media Towards Catalytic Hydrogenation of Selected Halo-Organics from Water
by Subrajit Bosu, Samuel S. Thompson, Doo Young Kim, Noah D. Meeks and Dibakar Bhattacharyya
Nanomaterials 2026, 16(1), 14; https://doi.org/10.3390/nano16010014 - 22 Dec 2025
Viewed by 342
Abstract
Contaminated water detoxification remains difficult due to the presence of persistent halo-organic contaminants, such as perfluorooctanoic acid (PFOA) and chlorophenols, which are chemically stable and resist conventional purification methods. Functionalized membrane-based separation and decontamination have garnered immense attention in recent years. Commercially available [...] Read more.
Contaminated water detoxification remains difficult due to the presence of persistent halo-organic contaminants, such as perfluorooctanoic acid (PFOA) and chlorophenols, which are chemically stable and resist conventional purification methods. Functionalized membrane-based separation and decontamination have garnered immense attention in recent years. Commercially available microfiltration membrane (PVDF) and polymeric non-woven fiber filters (glass and composite) are functionalized with poly(methacrylic acid) (PMAA) that shows outstanding pH-responsive performance and tunable water permeability under ambient conditions perfect for environmental applications. Polymer loading based on weight gain measurements on PMAA–microglass composite fibers (137%) and microglass fibers (116%) confirmed their extent of functionalization, which was significantly greater than that of PVDF (25%) due to its widely effective pore diameter. Presence of chemically active hydrogel within PVDF matrix was validated by FTIR (hydroxyl/carbonyl) stretch peak, substantial decrease in contact angle (68.8° ± 0.5° to 30.8° ± 1.9°), and decrease in pure water flux from 509 to 148 LMH/bar. Nanoparticles are generated both in solution and within PVDF using simple redox reactions. This strategy is extended to PVDF-PMAA membranes, which are loaded with Fe/Pd nanoparticles for catalytic conversion of 4-chlorophenol and PFOA, forming Fe/Pd-PVDF-PMAA systems. A total of 0.25 mg/L Fe/Pd nanoparticles synthesized in solution displayed alloy-type structures and demonstrated a strong catalytic performance, achieving complete hydrogenation of 4-chlorophenol to phenol and 67% hydrogenation of PFOA to its reduced form at 22–23 °C with ultrapure hydrogen gas supply at pH 5.7. These results underscore the potential of hybrid polymer–nanoparticle systems as a novel remediation strategy, integrating tunable separation with catalytic degradation to overcome the limitations of conventional water treatment methods. Full article
(This article belongs to the Special Issue Advances in Nanotechnology for Pollutant Degradation)
Show Figures

Graphical abstract

15 pages, 1890 KB  
Article
Synergistic Enhancement of Oxygen Permeability in Silane-Modified Hydrogel Networks for Advanced Ophthalmic Applications
by Min-Jae Lee and A-Young Sung
Gels 2025, 11(12), 987; https://doi.org/10.3390/gels11120987 - 8 Dec 2025
Viewed by 375
Abstract
This study investigates the compatibility of various acrylic and silane monomers and aims to develop a high-performance hydrogel ophthalmic polymer. The formulations incorporated 2-(trimethylsiloxy)ethyl methacrylate (2TSEMA), 3-(methacryloxy)propyl tris(trimethylsiloxy)silane (3TRIS), and (1,1-dimethyl-2-propyl)oxy-trimethylsilane (TRIS) as functional additives to a base composition of silanol-terminated silicone (Sil-OH), [...] Read more.
This study investigates the compatibility of various acrylic and silane monomers and aims to develop a high-performance hydrogel ophthalmic polymer. The formulations incorporated 2-(trimethylsiloxy)ethyl methacrylate (2TSEMA), 3-(methacryloxy)propyl tris(trimethylsiloxy)silane (3TRIS), and (1,1-dimethyl-2-propyl)oxy-trimethylsilane (TRIS) as functional additives to a base composition of silanol-terminated silicone (Sil-OH), N,N–dimethyl acrylamide (DMA), methyl methacrylate (MMA), and methyl acrylate (MA). Copolymerization was carried out using ethylene glycol dimethacrylate (EGDMA) as the crosslinking agent and azobisisobutyronitrile (AIBN) as the thermal initiator. All synthesized hydrogel lenses exhibited excellent optical transparency, indicating good monomer compatibility. The optical and physicochemical properties of the hydrogels varied depending on monomer composition. Notably, the formulation combining 2TSEMA with 1 wt% TRIS showed enhanced oxygen permeability, suggesting a synergistic interaction between the two silane-based components. These results demonstrate the potential of such hybrid formulations for use in next-generation functional hydrogel ophthalmic lenses. Full article
(This article belongs to the Section Gel Processing and Engineering)
Show Figures

Figure 1

32 pages, 2149 KB  
Review
Plant-Based Polysaccharide Gums as Sustainable Bio-Polymers: Focus on Tragacanth Gum and Its Emerging Applications
by Shivani Dogra, Dhananjay Yadav, Bhupendra Koul and Muhammad Fazle Rabbee
Polymers 2025, 17(23), 3163; https://doi.org/10.3390/polym17233163 - 27 Nov 2025
Viewed by 1313
Abstract
Plant-based natural polymers are gaining attention as ecofriendly alternatives to synthetic materials with applications in food, biomedical, pharmaceutical, and environmental science. Tragacanth gum (TG), a natural exudate obtained from Astragalus species, represents a unique polysaccharide with a complex molecular structure and distinctive rheological [...] Read more.
Plant-based natural polymers are gaining attention as ecofriendly alternatives to synthetic materials with applications in food, biomedical, pharmaceutical, and environmental science. Tragacanth gum (TG), a natural exudate obtained from Astragalus species, represents a unique polysaccharide with a complex molecular structure and distinctive rheological properties. It has been traditionally used for centuries as a stabilizer and emulsifier. Recent advances highlight its potential as a multifunctional biopolymer with industrial and biomedical potential. This review explores the structural characteristics, physicochemical properties, and modification strategies of TG, comparing it with other plant derived gums. Special emphasis is given to its applications in drug delivery, tissue engineering, wound healing, biodegradable packaging, and functional food formulation. Strengths such as biocompatibility and gel-forming ability but challenges remain including variability in quality, limited standardization, and issues with large scale production. Emerging trends, such as nanoformulations, hybrid polymer composites, and smart hydrogels, are also discussed. By positioning TG within the broader context of sustainable biomaterials, this review identifies key research gaps and proposes future directions to advance its role in the green polymer economy. Full article
Show Figures

Graphical abstract

41 pages, 4437 KB  
Review
Self-Healing Polymer-Based Coatings: Mechanisms and Applications Across Protective and Biofunctional Interfaces
by Aldo Cordoba, Fabiola A. Gutiérrez-Mejía, Gabriel Cepeda-Granados, Juan V. Cauich-Rodríguez and Karen Esquivel Escalante
Polymers 2025, 17(23), 3154; https://doi.org/10.3390/polym17233154 - 27 Nov 2025
Viewed by 2545
Abstract
Self-healing polymer-based coatings have emerged as a new generation of adaptive protective materials capable of restoring their structure and function after damage. This review provides a comprehensive analysis of current strategies enabling autonomous or externally triggered repair in polymeric films, including encapsulation, reversible [...] Read more.
Self-healing polymer-based coatings have emerged as a new generation of adaptive protective materials capable of restoring their structure and function after damage. This review provides a comprehensive analysis of current strategies enabling autonomous or externally triggered repair in polymeric films, including encapsulation, reversible chemistry, and microvascular network formation. Emphasis is placed on polymer–inorganic hybrid composites and vitrimeric systems, which integrate barrier protection with stimuli-responsive healing and recyclability. Comparative performance across different matrices—epoxy, polyurethane, silicone, and polyimine—is discussed in relation to corrosion protection and biomedical interfaces. The review also highlights how dynamic covalent and supramolecular interactions in hydrogels enable self-repair under physiological conditions. Recent advances demonstrate that tailoring interfacial compatibility, healing kinetics, and trigger specificity can achieve repeatable, multi-cycle recovery of both mechanical integrity and functional performance. A representative selection of published patents is also shown to illustrate recent technological advancements in the field. Finally, key challenges are identified in standardizing evaluation protocols, ensuring long-term stability, and scaling sustainable manufacturing. Collectively, these developments illustrate the growing maturity of self-healing polymer coatings as multifunctional materials bridging engineering, environmental, and biomedical applications. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

20 pages, 7037 KB  
Article
Silica- and Titanium-poly(ethylene glycol) Hydrogels—Novel Matrices for Bacterial Cell Immobilization
by Ekaterina Filippova, Anton Zvonarev, Vasily Terentyev, Vasilina Farofonova, Valeriya Frolova, Tat’yana Khonina, Sergey Alferov and Daria Lavrova
Gels 2025, 11(11), 934; https://doi.org/10.3390/gels11110934 - 20 Nov 2025
Viewed by 511
Abstract
For the first time, hydrogels based on silica- and titanium-poly(ethylene glycol) have been used for immobilization of Gram-negative bacteria (Escherichia coli MG1655) and Gram-positive bacteria (Rhodococcus qingshengii X5) in a one-step sol–gel synthesis. Vibrational spectroscopy and thermogravimetric analysis have [...] Read more.
For the first time, hydrogels based on silica- and titanium-poly(ethylene glycol) have been used for immobilization of Gram-negative bacteria (Escherichia coli MG1655) and Gram-positive bacteria (Rhodococcus qingshengii X5) in a one-step sol–gel synthesis. Vibrational spectroscopy and thermogravimetric analysis have confirmed the formation of amorphous hybrid structures with a predominance of organic components and metal-oxide grids. Encapsulation efficiencies were 72–77% for Si-PEG-based hydrogel and 50–54% for Ti-PEG. Antimicrobial activity tests revealed that Si-PEG was non-toxic, while Ti-PEG reduced cell viability by 50%. For the first time, an analysis of the morphological properties of immobilized bacterial cells revealed the formation of a thin Si-PEG-based hydrogel shell around each cell and a thick polymer layer on the bacterial surface when encapsulated within Ti-PEG-based hydrogels. The catalytic activity of the biocatalysts, as measured by the ATP content, remained at 84–93% for Si-PEG-based hydrogel, and decreased to 5% for Ti-PEG-based hydrogel. Biocatalysts based on encapsulated bacteria in a Si-PEG-based hydrogel demonstrate high sensitivity and stability. Si-PEG-based hydrogel exhibits high biocompatibility, making it suitable for the effective encapsulation of various bacterial types with a “cell-in-shell” structure. Full article
(This article belongs to the Special Issue Biobased Gels for Drugs and Cells)
Show Figures

Figure 1

32 pages, 5875 KB  
Systematic Review
Thermally Conductive Biopolymers in Regenerative Medicine and Oncology: A Systematic Review
by Ivett Poma-Paredes, Oscar Vivanco-Galván, Darwin Castillo-Malla and Yuliana Jiménez-Gaona
Pharmaceuticals 2025, 18(11), 1708; https://doi.org/10.3390/ph18111708 - 11 Nov 2025
Viewed by 653
Abstract
Background: Minimally invasive hyperthermia and regenerative therapies require materials that deliver precise, localized heat without compromising biocompatibility. Most conventional polymers are thermally insulating and challenging to control in vivo, motivating this review. Objectives: We aimed to (i) examine the use of thermally enhanced [...] Read more.
Background: Minimally invasive hyperthermia and regenerative therapies require materials that deliver precise, localized heat without compromising biocompatibility. Most conventional polymers are thermally insulating and challenging to control in vivo, motivating this review. Objectives: We aimed to (i) examine the use of thermally enhanced biopolymers in hyperthermia-based therapies, (ii) appraise evidence from clinical and preclinical studies, (iii) identify and classify principal applications in regenerative medicine. Methods: A PRISMA-guided systematic review (2020–2025) with predefined inclusion/exclusion criteria was conducted and complemented by a bibliometric analysis using VOSviewer for mapping and visualization. Results: Modifying biopolymers—via functionalization with photothermal or magnetic nanoagents (Au; Fe2O3/Fe3O4/CoFe2O4; CuS; Ag; MXenes, e.g., Nb2C), crosslinking strategies, and hybrid formulations—significantly increased thermal conductivity, enabling localized hyperthermia and controlled drug release. In vitro and in vivo studies showed that europium-doped iron oxide nanoparticles embedded in chitosan generated heat efficiently while sparing healthy tissues, underscoring the need to balance biocompatibility and thermal performance. Hydrogel systems enriched with carbon nanomaterials (graphene, carbon nanotubes) and matrices such as GelMA, PNIPAM, hyaluronic acid, and PLA/PLGA demonstrated tissue compatibility and effective thermal behavior; graphene was compatible with neural tissue without inducing inflammation. Conclusions: Thermally conductive biopolymers show growing potential for oncology and regenerative medicine. The evidence supports further academic and interdisciplinary research to optimize safety, performance, and translational pathways. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

26 pages, 4246 KB  
Review
Hydrogel-Based Strategies for the Prevention and Treatment of Radiation-Induced Skin Injury: Progress and Mechanistic Insights
by Yinhui Wang, Huan Liu, Yushan He, Mei Li, Jie Gao, Zongtai Han, Jiayu Zhou and Jianguo Li
Biomimetics 2025, 10(11), 758; https://doi.org/10.3390/biomimetics10110758 - 11 Nov 2025
Cited by 1 | Viewed by 1091
Abstract
Radiation-induced skin injury (RISI) is one of the most common complications of radiotherapy, severely compromising patients’ quality of life. However, no standardized treatment has yet been established. Owing to their high water content, three-dimensional porous structure, excellent biocompatibility, and tunable functionalization, hydrogels have [...] Read more.
Radiation-induced skin injury (RISI) is one of the most common complications of radiotherapy, severely compromising patients’ quality of life. However, no standardized treatment has yet been established. Owing to their high water content, three-dimensional porous structure, excellent biocompatibility, and tunable functionalization, hydrogels have emerged as promising candidates for both the prevention and treatment of RISI. This review provides a comprehensive overview of recent advances in hydrogel-based interventions for RISI, with particular focus on material classifications and underlying mechanisms. Mechanistically, hydrogels facilitate tissue repair through multiple synergistic pathways, including antioxidation, anti-inflammation, angiogenesis, and tissue remodeling. Understanding these mechanisms not only provides a theoretical basis for the rational design of next-generation wound dressings but also enhances the translational potential of hydrogels in clinical radiotherapy. With the convergence of materials science, radiation medicine, and pharmaceutical innovation, hydrogels are poised to redefine therapeutic strategies for RISI and accelerate their clinical implementation. Full article
(This article belongs to the Section Biomimetics of Materials and Structures)
Show Figures

Graphical abstract

30 pages, 3546 KB  
Systematic Review
Polymeric Materials in Biomedical Engineering: A Bibliometric Mapping
by Cristina Veres, Maria Tănase and Dan-Alexandru Szabo
Polymers 2025, 17(21), 2886; https://doi.org/10.3390/polym17212886 - 29 Oct 2025
Viewed by 1394
Abstract
This study offers an integrated synthesis of polymeric materials in biomedical engineering, revealing four major and interlinked research domains: tissue engineering and regenerative medicine, drug delivery and nanomedicine, wound healing and antimicrobial applications, and advanced fabrication through 3D/4D printing and bioprinting. Across these [...] Read more.
This study offers an integrated synthesis of polymeric materials in biomedical engineering, revealing four major and interlinked research domains: tissue engineering and regenerative medicine, drug delivery and nanomedicine, wound healing and antimicrobial applications, and advanced fabrication through 3D/4D printing and bioprinting. Across these areas, hydrogels, biodegradable composites, and stimuli-responsive polymers emerge as the most influential material classes. The analysis highlights substantial progress in extracellular matrix–mimetic scaffolds, smart drug delivery systems with controlled release, multifunctional wound dressings integrating antimicrobial and healing functions, and patient-specific constructs produced via additive manufacturing. Despite these advances, recurring challenges persist in long-term biocompatibility and safety, scalable and reproducible fabrication, and regulatory standardisation. The results point toward a convergence of bioactivity, manufacturability, and clinical translation, with hybrid natural–synthetic systems and personalised polymeric designs defining the next phase of biomedical polymer innovation. Full article
(This article belongs to the Special Issue Functional Polymer Composites: Synthesis and Application)
Show Figures

Figure 1

26 pages, 6354 KB  
Review
Hydrogel Polymer Electrolytes for Aqueous Zinc-Ion Batteries: Recent Progress and Remaining Challenges
by Zhaoxuan Zhu, Sihan Xiong, Jing Li, Lixin Wang, Xiaoning Tang, Long Li, Qi Sun, Yan Shi and Jiaojing Shao
Batteries 2025, 11(10), 380; https://doi.org/10.3390/batteries11100380 - 17 Oct 2025
Cited by 2 | Viewed by 3605 | Correction
Abstract
Aqueous zinc-ion batteries (ZIBs) have attracted growing interest as promising candidates for large-scale and flexible energy storage due to their intrinsic safety, low cost, and environmental sustainability. However, several persistent issues—such as uncontrolled Zn dendrite growth, hydrogen evolution-induced anode corrosion, and cathode dissolution—continue [...] Read more.
Aqueous zinc-ion batteries (ZIBs) have attracted growing interest as promising candidates for large-scale and flexible energy storage due to their intrinsic safety, low cost, and environmental sustainability. However, several persistent issues—such as uncontrolled Zn dendrite growth, hydrogen evolution-induced anode corrosion, and cathode dissolution—continue to hinder their commercial deployment. To address these challenges, hydrogel polymer electrolytes (HPEs) have emerged as an effective strategy. Their unique three-dimensional polymer networks not only retain water and confine ion transport, but also provide a solid–liquid hybrid environment that enhances ionic conductivity and interfacial compatibility. These features enable HPEs to suppress side reactions and improve both electrochemical stability and mechanical adaptability, which are especially valuable for flexible ZIB devices. This review first summarizes fundamental energy storage mechanisms in aqueous ZIBs, including reversible Zn2+ insertion/extraction, proton co-insertion, and cathode phase evolution. It then highlights recent progress in HPE design, with emphasis on polyacrylamide (PAM), polyvinyl alcohol (PVA), and polyacrylic acid (PAA)-based systems, with strategies for dendrite suppression, interfacial regulation, and mechanical robustness. Finally, current challenges and future directions are discussed, with a forward-looking perspective on scalable fabrication methods, advanced electrolyte design, and deeper mechanistic understanding necessary to fully realize the potential of HPE-enabled aqueous ZIBs. Full article
Show Figures

Figure 1

22 pages, 1041 KB  
Review
Cannabidiol Encapsulation in Polymeric Hydrogels and Its Controlled Release: A Review
by Víctor M. Ovando-Medina, Carlos A. García-Martínez, Lorena Farias-Cepeda, Iveth D. Antonio-Carmona, Andrés Dector, Juan M. Olivares-Ramírez, Alondra Anahí Ortiz-Verdin, Hugo Martínez-Gutiérrez and Erika Nohemi Rivas Martínez
Gels 2025, 11(10), 815; https://doi.org/10.3390/gels11100815 - 11 Oct 2025
Viewed by 1325
Abstract
Cannabidiol (CBD) and its derivatives show interesting therapeutic potential, including antioxidant, anti-inflammatory, and anticancer properties; however, their clinical translation remains a complex task due to physicochemical restrictions such as low water solubility, high lipophilicity, and instability under light, oxygen, and high temperatures. Polymeric [...] Read more.
Cannabidiol (CBD) and its derivatives show interesting therapeutic potential, including antioxidant, anti-inflammatory, and anticancer properties; however, their clinical translation remains a complex task due to physicochemical restrictions such as low water solubility, high lipophilicity, and instability under light, oxygen, and high temperatures. Polymeric encapsulation has emerged as a promising strategy to overcome these challenges, offering protection against environmental degradation, improved bioavailability, and controlled release. Natural and synthetic polymers, both biocompatible and biodegradable, provide versatile matrices for CBD delivery, enabling nanoparticle formation, targeted transport, and enhanced pharmacokinetics. This review highlights the structural characteristics of CBD, its interaction mechanisms with polymeric matrices such as hydrogels, electrospun nanofibers, biodegradable microparticles, thin films, and lipid-polymer hybrid systems, and the principal encapsulation techniques, such as emulsion solvent evaporation, electrospinning, and supercritical fluid technologies, that facilitate stability and scalability. Furthermore, material characterization approaches, including microscopy, thermal, and degradation analyses, are discussed as tools for optimizing encapsulation systems. While notable advances have been made, key challenges remain in achieving reproducible large-scale production, ensuring regulatory compliance, and designing smart polymeric carriers personalized for specific therapeutic contexts. By addressing these gaps, polymer-based encapsulation may unlock new opportunities for CBD in pharmaceutical, nutraceutical, and therapeutic applications, providing a guide for future innovation and translation into effective patient-centered products. Full article
(This article belongs to the Special Issue Composite Hydrogels for Biomedical Applications)
Show Figures

Figure 1

18 pages, 1185 KB  
Review
Hydrogel-Based Formulations to Deliver Analgesic Drugs: A Scoping Review of Applications and Efficacy
by Sveva Di Franco, Aniello Alfieri, Pasquale Sansone, Vincenzo Pota, Francesco Coppolino, Andrea Frangiosa, Vincenzo Maffei, Maria Caterina Pace, Maria Beatrice Passavanti and Marco Fiore
Biomedicines 2025, 13(10), 2465; https://doi.org/10.3390/biomedicines13102465 - 10 Oct 2025
Viewed by 1370
Abstract
Background/Objectives: Hydrogels are highly hydrated, biocompatible polymer networks increasingly investigated as drug-delivery systems (DDS) for analgesics. Their ability to modulate local release, prolong drug residence time, and reduce systemic toxicity positions them as promising platforms in perioperative, chronic, and localized pain settings. [...] Read more.
Background/Objectives: Hydrogels are highly hydrated, biocompatible polymer networks increasingly investigated as drug-delivery systems (DDS) for analgesics. Their ability to modulate local release, prolong drug residence time, and reduce systemic toxicity positions them as promising platforms in perioperative, chronic, and localized pain settings. This scoping review aimed to systematically map clinical applications, efficacy, and safety of hydrogel-based DDS for analgesics, while also documenting non-DDS uses where the matrix itself contributes to pain modulation through physical mechanisms. Methods: Following PRISMA-ScR guidance, PubMed, Embase, and Cochrane databases were searched without publication date restrictions. Only peer-reviewed clinical studies were included; preclinical studies and non-journal literature were excluded. Screening and selection were performed in duplicate. Data extracted included drug class, hydrogel technology, clinical setting, outcomes, and safety. Protocol was registered with Open Science Framework. Results: A total of 26 clinical studies evaluating hydrogel formulations as DDS for analgesics were included. Most were randomized controlled trials, spanning 1996–2024. Local anesthetics were the most frequent drug class, followed by opioids, corticosteroids, Non-Steroidal Anti-Inflammatory Drugs (NSAIDs), and neuromodulators. Application sites were predominantly topical/transdermal and perioperative/incisional. Across the DDS cohort, most of the studies reported improved analgesic outcomes, including reduced pain scores and lower rescue medication use; neutral or unclear results were rare. Safety reporting was limited, but tolerability was generally favorable. Additionally, 38 non-DDS studies demonstrated pain reduction through hydrogel-mediated cooling, lubrication, or barrier effects, particularly in burns, ocular surface disorders, and discogenic pain. Conclusions: Hydrogel-based DDS for analgesics show consistent clinical signals of benefit across diverse contexts, aligning with their mechanistic rationale. While current evidence supports their role as effective, well-tolerated platforms, translational gaps remain, particularly for hybrid nanotechnology systems and standardized safety reporting. Non-DDS applications confirm the intrinsic analgesic potential of hydrogel matrices, underscoring their relevance in multimodal pain management strategies. Full article
Show Figures

Figure 1

Back to TopTop