Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (153)

Search Parameters:
Keywords = hybrid battery packs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 10454 KiB  
Article
State-of-Charge Estimation of Medium- and High-Voltage Batteries Using LSTM Neural Networks Optimized with Genetic Algorithms
by Romel Carrera, Leonidas Quiroz, Cesar Guevara and Patricia Acosta-Vargas
Sensors 2025, 25(15), 4632; https://doi.org/10.3390/s25154632 - 26 Jul 2025
Viewed by 604
Abstract
This study presents a hybrid method for state-of-charge (SOC) estimation of lithium-ion batteries using LSTM neural networks optimized with genetic algorithms (GA), combined with Coulomb Counting (CC) as an initial estimator. Experimental tests were conducted using medium-voltage (48–72 V) lithium-ion battery packs under [...] Read more.
This study presents a hybrid method for state-of-charge (SOC) estimation of lithium-ion batteries using LSTM neural networks optimized with genetic algorithms (GA), combined with Coulomb Counting (CC) as an initial estimator. Experimental tests were conducted using medium-voltage (48–72 V) lithium-ion battery packs under standardized driving cycles (NEDC and WLTP). The proposed method enhances prediction accuracy under dynamic conditions by recalibrating the LSTM output with CC estimates through a dynamic fusion parameter α. The novelty of this approach lies in the integration of machine learning and physical modeling, optimized via evolutionary algorithms, to address limitations of standalone methods in real-time applications. The hybrid model achieved a mean absolute error (MAE) of 0.181%, outperforming conventional estimation strategies. These findings contribute to more reliable battery management systems (BMS) for electric vehicles and second-life applications. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

42 pages, 5715 KiB  
Article
Development and Fuel Economy Optimization of Series–Parallel Hybrid Powertrain for Van-Style VW Crafter Vehicle
by Ahmed Nabil Farouk Abdelbaky, Aminu Babangida, Abdullahi Bala Kunya and Péter Tamás Szemes
Energies 2025, 18(14), 3688; https://doi.org/10.3390/en18143688 - 12 Jul 2025
Viewed by 549
Abstract
The presence of toxic gas emissions from conventional vehicles is worrisome globally. Over the past few years, there has been a broad adoption of electric vehicles (EVs) to reduce energy usage and mitigate environmental emissions. The EVs are characterized by limited range, cost, [...] Read more.
The presence of toxic gas emissions from conventional vehicles is worrisome globally. Over the past few years, there has been a broad adoption of electric vehicles (EVs) to reduce energy usage and mitigate environmental emissions. The EVs are characterized by limited range, cost, and short range. This prompts the need for hybrid electric vehicles (HEVs). This study describes the conversion of a 2022 Volkswagen Crafter (VW) 35 TDI 340 delivery van from a conventional diesel powertrain into a hybrid electric vehicle (HEV) augmented with synchronous electrical machines (motor and generator) and a BMW i3 60 Ah battery pack. A downsized 1.5 L diesel engine and an electric motor–generator unit are integrated via a planetary power split device supported by a high-voltage lithium-ion battery. A MATLAB (R2024b) Simulink model of the hybrid system is developed, and its speed tracking PID controller is optimized using genetic algorithm (GA) and particle swarm optimization (PSO) methods. The simulation results show significant efficiency gains: for example, average fuel consumption falls from 9.952 to 7.014 L/100 km (a 29.5% saving) and CO2 emissions drop from 260.8 to 186.0 g/km (a 74.8 g reduction), while the vehicle range on a 75 L tank grows by ~40.7% (from 785.7 to 1105.5 km). The optimized series–parallel powertrain design significantly improves urban driving economy and reduces emissions without compromising performance. Full article
Show Figures

Figure 1

27 pages, 1344 KiB  
Review
An Overview of Lithium-Ion Battery Recycling: A Comparison of Brazilian and International Scenarios
by Jean Furlanetto, Marcus V. C. de Lara, Murilo Simionato, Vagner do Nascimento and Giovani Dambros Telli
World Electr. Veh. J. 2025, 16(7), 371; https://doi.org/10.3390/wevj16070371 - 3 Jul 2025
Viewed by 1588
Abstract
Purely electric and hybrid vehicles are emerging as the transport sector’s response to meet climate goals, aiming to mitigate global warming. As the adoption of transport electrification increases, the importance of recycling components of the electric propulsion system at the end of their [...] Read more.
Purely electric and hybrid vehicles are emerging as the transport sector’s response to meet climate goals, aiming to mitigate global warming. As the adoption of transport electrification increases, the importance of recycling components of the electric propulsion system at the end of their life grows, particularly the battery pack, which significantly contributes to the vehicle’s final cost and generates environmental impacts and CO2 during production. This work presents an overview of the recycling processes for lithium-ion automotive batteries, emphasizing the developing Brazilian scenario and more established international scenarios. In Brazil, companies and research centers are investing in recycling and using reused cathode material to manufacture new batteries through the hydrometallurgical process. On the international front, pyrometallurgy and physical recycling are being applied, and other methods, such as direct processes and biohydrometallurgy, are also under study. Regardless of the recycling method, the main challenge is scaling prototype processes to meet current and future battery demand, driven by the growth of electric and hybrid vehicles, pursuing both environmental gains through reduced mining and CO2 emissions and economic viability to make recycling profitable and support global electrification. Full article
Show Figures

Figure 1

29 pages, 4054 KiB  
Article
Investigation of Convective and Radiative Heat Transfer of 21700 Lithium-Ion Battery Cells
by Gábor Kovács, Szabolcs Kocsis Szürke and Szabolcs Fischer
Batteries 2025, 11(7), 246; https://doi.org/10.3390/batteries11070246 - 26 Jun 2025
Viewed by 759
Abstract
Due to their high energy density and power potential, 21700 lithium-ion battery cells are a widely used technology in hybrid and electric vehicles. Efficient thermal management is essential for maximizing the performance and capacity of Li-ion cells in both low- and high-temperature operating [...] Read more.
Due to their high energy density and power potential, 21700 lithium-ion battery cells are a widely used technology in hybrid and electric vehicles. Efficient thermal management is essential for maximizing the performance and capacity of Li-ion cells in both low- and high-temperature operating conditions. Optimizing thermal management systems remains critical, particularly for long-range and weight-sensitive applications. In these contexts, passive heat dissipation emerges as an ideal solution, offering effective thermal regulation with minimal additional system weight. This study aims to deepen the understanding of passive heat dissipation in 21700 battery cells and optimize their performance. Special emphasis is placed on analyzing heat transfer and the relative contributions of convective and radiative mechanisms under varying temperature and discharge conditions. Laboratory experiments were conducted under controlled environmental conditions at various discharge rates, ranging from 0.5×C to 5×C. A 3D-printed polymer casing was applied to the cell to enhance thermal dissipation, designed specifically to increase radiative heat transfer while minimizing system weight and reliance on active cooling solutions. Additionally, a numerical model was developed and optimized using experimental data. This model simulates convective and radiative heat transfer mechanisms with minimal computational demand. The optimized numerical model is intended to facilitate further investigation of the cell envelope strategy at the module and battery pack levels in future studies. Full article
(This article belongs to the Special Issue Rechargeable Batteries)
Show Figures

Figure 1

22 pages, 2478 KiB  
Review
Thermal Management Systems for Lithium-Ion Batteries for Electric Vehicles: A Review
by Kenia Yadira Gómez Díaz, Susana Estefany De León Aldaco, Jesus Aguayo Alquicira, Mario Ponce Silva, Samuel Portillo Contreras and Oscar Sánchez Vargas
World Electr. Veh. J. 2025, 16(7), 346; https://doi.org/10.3390/wevj16070346 - 23 Jun 2025
Viewed by 1646
Abstract
Recently, electric vehicles (EVs) have proven to be a practical option for lowering greenhouse gas emissions and reducing reliance on fossil fuels. Lithium-ion batteries, at the core of this innovation, require efficient thermal management to ensure optimal performance, safety, and durability. This article [...] Read more.
Recently, electric vehicles (EVs) have proven to be a practical option for lowering greenhouse gas emissions and reducing reliance on fossil fuels. Lithium-ion batteries, at the core of this innovation, require efficient thermal management to ensure optimal performance, safety, and durability. This article reviews current scientific studies on controlling the temperature of lithium-ion batteries used in electric vehicles. Several cooling strategies are discussed, including air cooling, liquid cooling, the use of phase change materials (PCMs), and hybrids that combine these three types of cooling, with the primary objective of enhancing the thermal performance of the batteries. Additionally, the challenges and proposed solutions in battery pack design and energy management methodologies are explored. As the demand for electric vehicles increases, improving battery thermal management systems (BTMSs) is becoming increasingly important. Implementing and developing better BTMSs will help increase the autonomy and safety of electric vehicles in the long term. Full article
(This article belongs to the Special Issue Electric Vehicle Battery Pack and Electric Motor Sizing Methods)
Show Figures

Figure 1

28 pages, 3512 KiB  
Article
State-of-Health Estimation for Lithium-Ion Batteries via Incremental Energy Analysis and Hybrid Deep Learning Model
by Yan Zhang, Anxiang Wang, Chaolong Zhang, Peng He, Kui Shao, Kaixin Cheng and Yujie Zhou
Batteries 2025, 11(6), 217; https://doi.org/10.3390/batteries11060217 - 1 Jun 2025
Cited by 1 | Viewed by 931
Abstract
Accurate State-of-Health (SOH) estimation is a key technology for ensuring battery safety, optimizing energy management, and enhancing lifecycle value. This paper proposes a novel SOH estimation method for lithium-ion batteries, utilizing incremental energy features and a hybrid deep learning model that combines Convolutional [...] Read more.
Accurate State-of-Health (SOH) estimation is a key technology for ensuring battery safety, optimizing energy management, and enhancing lifecycle value. This paper proposes a novel SOH estimation method for lithium-ion batteries, utilizing incremental energy features and a hybrid deep learning model that combines Convolutional Neural Network (CNN), Kolmogorov–Arnold Network (KAN), and Bidirectional Long Short-Term Memory (BiLSTM) (CNN-KAN-BiLSTM). First, the battery’s voltage, current, temperature, and other data during the charging stage were measured and recorded through experiments. Incremental Energy Analysis (IEA) was conducted on the charging data to extract various incremental energy characteristics. The Pearson correlation method was used to verify the strong correlation between the proposed characteristics and the battery SOH. This paper includes experimental verification of the method for both battery cells and battery pack. For the battery cell, a complete multi-feature sequence was formed based on the incremental energy curve characteristics combined with temperature characteristics. For the battery pack, the characteristics of the incremental energy curve were supplemented with Variance of Voltage Means (VVM) as an inconsistent feature, combined with Standard Deviation of Temperature Means (SDTM), to create a complete multi-feature sequence. The features were then input into the CNN-KAN-BiLSTM deep learning model developed in this study for training, successfully estimating the SOH of lithium batteries. The results demonstrate that the proposed method can accurately estimate the SOH of lithium batteries, even though the SOH degradation of lithium batteries has significant nonlinear characteristics. The Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) for the lithium battery pack were 0.3910 and 0.4797, respectively, with an average coefficient of determination (R2) exceeding 99%. The final SOH estimation MAE values for battery cells at different charging rates of 0.1 C (250 mA), 0.2 C (500 mA), and 0.5 C (1250 mA) were 0.2728, 0.3301, and 0.2094. The RMSE were 0.3792, 0.4494, and 0.2699, respectively. The corresponding R2 values were 98.76%, 97.07%, and 99.37%, respectively. Finally, the effectiveness and universality of the method proposed in this paper were verified using the NASA battery dataset and the CALCE battery dataset. Full article
Show Figures

Figure 1

16 pages, 5527 KiB  
Article
Li-Ion Battery Active–Passive Hybrid Equalization Topology for Low-Earth Orbit Power Systems
by Lin Zhu, Zihua Liu, Yong Lin, Zhe Li, Jian Qin, Xiaoguang Jin and Shujie Yan
Energies 2025, 18(10), 2463; https://doi.org/10.3390/en18102463 - 11 May 2025
Viewed by 473
Abstract
The lithium-ion battery equalization system is a critical component in Low-Earth Orbit (LEO) satellite power supply systems, ensuring the consistency of battery cells, maximizing the utilization of battery pack capacity, and enhancing battery reliability and cycle life. In DC bus satellite power systems, [...] Read more.
The lithium-ion battery equalization system is a critical component in Low-Earth Orbit (LEO) satellite power supply systems, ensuring the consistency of battery cells, maximizing the utilization of battery pack capacity, and enhancing battery reliability and cycle life. In DC bus satellite power systems, passive equalization technology is widely adopted due to its simple structure and ease of control. However, passive equalization suffers from drawbacks such as complex thermal design and limited operation primarily during battery charging. These limitations can lead to inconsistent control over the depth of discharge of individual battery cells, ultimately affecting the overall lifespan of the battery pack. In contrast, active equalization technology offers higher efficiency, faster equalization speeds, and the ability to utilize digital control methods, making it the mainstream direction for the development of lithium-ion battery equalization technology. Nevertheless, active equalization often requires a large number of switches and energy storage components, involves complex control algorithms, and faces challenges such as large size and reduced reliability. Most existing active equalization techniques are not directly applicable to DC bus satellite power systems. In this study, based on the operational characteristics of LEO satellite power storage batteries, an active–passive hybrid equalization topology utilizing a switching matrix is proposed. This topology combines the advantages of a simple structure, ease of control, and high reliability. Its feasibility has been validated through experimental results. Full article
(This article belongs to the Special Issue Advances in Battery Energy Storage Systems)
Show Figures

Figure 1

17 pages, 18636 KiB  
Article
Sustainable Manufacturing of Lightweight Hybrid Nanocomposites for Electric Vehicle Battery Enclosures
by Umar Farooq, Valentina Bertana, Giulia Mossotti, Sergio Ferrero and Luciano Scaltrito
Polymers 2025, 17(8), 1056; https://doi.org/10.3390/polym17081056 - 14 Apr 2025
Viewed by 636
Abstract
Nanocomposite laminates containing carbon fibers, epoxy, and multiwalled carbon nanotubes were fabricated using a vacuum bag process. Ecofriendly ionic liquid (5 wt%)-treated multiwalled carbon nanotubes (pristine and nickel-coated) were added to the epoxy independently, in amounts ranging from 1 wt% to 3 wt%, [...] Read more.
Nanocomposite laminates containing carbon fibers, epoxy, and multiwalled carbon nanotubes were fabricated using a vacuum bag process. Ecofriendly ionic liquid (5 wt%)-treated multiwalled carbon nanotubes (pristine and nickel-coated) were added to the epoxy independently, in amounts ranging from 1 wt% to 3 wt%, in order to tailor the mechanical, electrical, and thermal performance of manufactured carbon fiber epoxy composite laminates. These nanocomposite laminates were later characterized through flexural testing, dynamic mechanical analysis, impedance spectroscopy, thermal conductivity tests, and FTIR spectroscopy to evaluate their suitability for battery pack applications. The findings showed that both types of multiwalled carbon nanotubes exhibited multifaceted effects on the properties of bulk hybrid carbon fiber epoxy nanocomposite laminates. For instance, the flexural strength of the composites containing 3.0 wt% of ionic liquid-treated pristine multiwalled carbon nanotubes reached 802.8 MPa, the flexural modulus was 88.21 GPa, and the storage modulus was 18.2 GPa, while the loss modulus peaked at 1.76 GPa. The thermal conductivity of the composites ranged from 0.38869 W/(m · K) to 0.69772 W/(m · K), and the electrical resistance decreased significantly with the addition of MWCNTs, reaching a minimum of 29.89 Ω for CFRPIP-1.5 wt%. The structural performance of hybrid nanocomposites containing ionic liquid-treated pristine multiwalled carbon nanotubes was higher than that of the hybrid nanocomposite of ionic liquid-treated Ni-coated multiwalled carbon nanotubes, although the latter was found to possess better functional performance. Full article
(This article belongs to the Special Issue Advances in Polymer Applied in Batteries and Capacitors)
Show Figures

Figure 1

10 pages, 1657 KiB  
Proceeding Paper
Design Challenges in the Development of a Hydrogen-Fueled Micro Gas Turbine Unit for Energy Generation
by Uma Nataraj Gottipati, Angelo Minotti, Vincenzo La Battaglia and Alessandro Giorgetti
Eng. Proc. 2025, 85(1), 45; https://doi.org/10.3390/engproc2025085045 - 21 Mar 2025
Viewed by 731
Abstract
Environmental and social governance targets, as well as the global transition to cleaner renewable energy sources, push for advancements in hydrogen-based solutions for energy generators due to their high energy per unit mass (energy density) and lightweight nature. Hydrogen’s energy density and lightweight [...] Read more.
Environmental and social governance targets, as well as the global transition to cleaner renewable energy sources, push for advancements in hydrogen-based solutions for energy generators due to their high energy per unit mass (energy density) and lightweight nature. Hydrogen’s energy density and lightweight nature allow it to provide an extended range of uses without adding significant weight, potentially revolutionizing many applications. Moreover, a variety of sources, including renewable energy, can produce hydrogen, making it a potentially more sustainable option for energy storage despite its main limitations in production and transportation costs. In this framework we are proposing an innovative energy generator that might merge the benefits of batteries and hydrogen. The energy generator is based on a worldwide patented solution introduced by MIEEG s.r.l. regarding the shape of the chambers. This innovative solution can be used to design a 100% H2-fed microturbine with a high power/weight/volume ratio that works as a range extender of battery packs for a comprehensive, high-efficiency hybrid powertrain. In fact, it runs at 100,000 rpm and is designed to deliver about 100 kW in about 15 L of volume and 15 kg of weight (alternator excluded). The system is highly complex due to high firing temperatures, long life requirements, corrosion protection, mechanical and vibrational stresses, sealing, couplings, bearings, and the realization of tiny blades. This paper analyzes the main design challenges to face in the development of such complex generators, focusing on the hot gas path components, which are the most critical part of gas turbines. The contribution of additive manufacturing techniques, the adoption of special materials, and coatings have been evaluated for system improvement. Full article
Show Figures

Figure 1

24 pages, 8010 KiB  
Article
Enhancing Battery Pack Cooling Efficiency Through Graphite-Integrated Hybrid-Battery Thermal Management Systems
by Amin Rahmani, Mahdieh Dibaj and Mohammad Akrami
Batteries 2025, 11(3), 113; https://doi.org/10.3390/batteries11030113 - 17 Mar 2025
Viewed by 884
Abstract
This study investigates a hybrid-battery thermal management system (BTMS) integrating air-cooling, a cold plate, and porous materials to optimize heat dissipation in a 20-cell battery pack during charging and discharging cycles of up to 5C. A computational fluid dynamics (CFD) model based on [...] Read more.
This study investigates a hybrid-battery thermal management system (BTMS) integrating air-cooling, a cold plate, and porous materials to optimize heat dissipation in a 20-cell battery pack during charging and discharging cycles of up to 5C. A computational fluid dynamics (CFD) model based on the equivalent circuit model (ECM) is developed to simulate battery pack behavior under various cooling configurations, including different porous media and vortex generators placed between cells. The impact of battery pack configurations on heat generation is analyzed, and five different porous materials are tested for their cooling performance. The results reveal that, among the examined materials, graphite is the most effective in maintaining the battery temperature within an acceptable range, particularly during high C-rate charging. Graphite integration significantly reduces the thermal stabilization time from over an hour to approximately 600 s. Additionally, our parametric experiment evaluates the influence of ambient temperature, airflow velocity, and cold-plate temperature on the system’s cooling efficiency. The findings demonstrate that maintaining the cold-plate temperature between 300 K and 305 K minimizes the temperature gradient, ensuring uniform thermal distribution. This research highlights the potential of hybrid BTMS designs incorporating porous media and cold plates to enhance battery performance, safety, and lifespan under various operational conditions. Full article
Show Figures

Figure 1

20 pages, 9366 KiB  
Article
Composite Power Management Strategy for Hybrid Powered Compound-Wing Aircraft in Level Flight
by Siqi An, Xu Peng, Yuantao Gan, Jingyu Yang, Guofei Xiang and Songyi Dian
Energies 2025, 18(4), 799; https://doi.org/10.3390/en18040799 - 8 Feb 2025
Viewed by 1010
Abstract
A composite strategy is proposed to address the optimal power management for a hybrid powered compound-wing aircraft, which integrates bang–bang regulation with optimal demand chasing regulation. The electro-gasoline hybrid power system enhances the overall flight endurance of vertical take-off and landing compound-wing aircraft. [...] Read more.
A composite strategy is proposed to address the optimal power management for a hybrid powered compound-wing aircraft, which integrates bang–bang regulation with optimal demand chasing regulation. The electro-gasoline hybrid power system enhances the overall flight endurance of vertical take-off and landing compound-wing aircraft. The power consumption in level flight appears to be much lower than that in hovering, enabling the hybrid power system to simultaneously energize and charge the battery pack. In order to minimize fuel consumption and battery pack degradation during level cruise flight, a power management strategy that serves for both battery charging and thrust energizing is worthy of careful consideration. To obtain the desired features and design the regularity strategy of the power system, linear and nonlinear models are established based on the configuration of an electro-gasoline series hybrid power system installed in the proposed aircraft, with mathematical modelling of key components and units. A notable feature of semi-fixing for battery voltage and engine rotational speed has been qualitatively identified and subsequently quantitatively validated on the testbench. After conducting simulations and comparing with other strategies, the composite strategy demonstrates appropriate fuel consumption and battery degradation, effectively achieving cost minimization. Testbench evaluation confirms the effectiveness of this proposed power management strategy. Furthermore, the practicality of the hybrid power system and its associated level flight composite power management strategy are validated by tests conducted on a 30 kg aircraft prototype, thereby showcasing the potential to enhance flight performance. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

30 pages, 6063 KiB  
Article
Computational Fluid Dynamic Modeling of Pack-Level Battery Thermal Management Systems in Electric Vehicles
by Yifan Chen and Zhong Hu
Energies 2025, 18(3), 484; https://doi.org/10.3390/en18030484 - 22 Jan 2025
Cited by 3 | Viewed by 1871
Abstract
In electric vehicles (EVs), the batteries are arranged in the battery pack (BP), which has a small layout space and difficulty in dissipating heat. Therefore, in EVs, the battery thermal management systems (BTMSs) are critical to managing heat to ensure safety and performance, [...] Read more.
In electric vehicles (EVs), the batteries are arranged in the battery pack (BP), which has a small layout space and difficulty in dissipating heat. Therefore, in EVs, the battery thermal management systems (BTMSs) are critical to managing heat to ensure safety and performance, particularly under higher operating temperatures and longer discharge conditions. To solve this problem, in this article, the thermal analysis models of a 3-battery-cell BP were created, including scenarios (1) natural air cooling without a BTMS; (2) natural air cooling with water cooling hybrid BTMS; and (3) forced air cooling plus water cooling composite BTMS. The thermal performances of the pack-level BPs were simulated and analyzed based on computational fluid dynamics (CFD). A variety of boundary conditions and working parameters, such as ambient temperature, inlet coolant flow rate and initial temperature, discharge rate, air flow rate, and initial temperature, were considered. The results show that without a BTMS (Scenario 1), the maximum temperature in the BP rises rapidly and continuously to reach 63.8 °C, much higher than the upper bound of the recommended operating temperature range (ROTR between +20 °C to +35 °C) under the extreme discharge rate of 3 C and even if the discharge rate is 2 C. With a hybrid BTMS (Scenario 2), the maximum temperature in BP rises to about 38.7 °C, slightly above the upper bound of the ROTR. Lowering the coolant (water) initial temperature can effectively lower the temperature up to 5.7 °C in BP, but the water flow rate cannot since the turbulence model. While with a composite BTMS (Scenario 3), the temperature can be further lowered up to 1.5 °C under the extreme discharge rate of 3C, just reaching the upper bound of the ROTR. In addition, lowering the initial coolant temperature or air temperature can effectively decrease the temperatures up to 5.1 and 1.0 °C, respectively, in BP, but the coolant flow rate (due to the turbulence model) and the air flow rate cannot. Finally, the thermal performances of the different battery cells in the BP with different cooling systems and at the different positions of the BP were compared and analyzed. The present work may contribute to the design of BTMSs in the EV industry. Full article
Show Figures

Figure 1

24 pages, 2345 KiB  
Article
Research on Fuzzy Comprehensive Evaluation of Fire Safety Risk of Battery Pack Production Process Based on DEMATEL-ANP Method
by Yunfei Xia, Qingming Guo, Lei Lei, Jiong Wu, Xin Su and Jianxin Wu
Fire 2025, 8(1), 31; https://doi.org/10.3390/fire8010031 - 17 Jan 2025
Cited by 1 | Viewed by 1176
Abstract
A new safety risk assessment model for battery pack production processes was developed using the DEMATEL-ANP method to analyze the impact and complex relationships of risk-influencing factors. Initially, five major risk-influencing factors were identified, leading to the construction of a 15-factor indicator system. [...] Read more.
A new safety risk assessment model for battery pack production processes was developed using the DEMATEL-ANP method to analyze the impact and complex relationships of risk-influencing factors. Initially, five major risk-influencing factors were identified, leading to the construction of a 15-factor indicator system. Through the DEMATEL method, these factors were categorized into cause and result factors. Subsequently, by combining the DEMATEL and ANP methods, key risk-influencing factors were identified by comparing ANP weights with hybrid weights adjusted through the DEMATEL-ANP method. Finally, integrating the DEMATEL-ANP method with the fuzzy comprehensive evaluation method allowed us to assess the overall fire safety risk level. Our findings highlighted “hazards in the test process” and “fire hazards” as critical risk factors needing control and elimination in the highly hazardous battery pack production process. This method offers dynamic evaluation and valuable insights for safety management in battery pack production. Full article
(This article belongs to the Special Issue Fire Safety Management and Risk Assessment)
Show Figures

Figure 1

18 pages, 5824 KiB  
Article
Charging Optimization with an Improved Dynamic Programming for Electro-Gasoline Hybrid Powered Compound-Wing Unmanned Aerial Vehicle
by Siqi An, Yuantao Gan, Xu Peng and Songyi Dian
Energies 2025, 18(1), 30; https://doi.org/10.3390/en18010030 - 25 Dec 2024
Cited by 3 | Viewed by 826
Abstract
For a longer endurance of vertical and level cruise flight, an electro-gasoline hybrid power system is introduced on a compound-wing unmanned aerial vehicle (UAV). After discharging during vertical flight, the battery pack is charged by a piston engine-driven generator, which simultaneously powers the [...] Read more.
For a longer endurance of vertical and level cruise flight, an electro-gasoline hybrid power system is introduced on a compound-wing unmanned aerial vehicle (UAV). After discharging during vertical flight, the battery pack is charged by a piston engine-driven generator, which simultaneously powers the UAV for level cruise flight. A charging model is established based on the configuration of the hybrid power system. Considering fuel consumption and battery attenuation within the typical flight profile of a compound-wing UAV, an optimized charging plan is developed using dynamic programming to determine the trajectory of the generated power sequence. To address deviations between ideal and practical flight conditions in terms of charging performance, a feedforward compensation is introduced to improve optimal tracking control within the dynamic programming framework. Simulations validate the effectiveness of the optimized charging plan, while testbench experiments confirm improvements achieved through compensation enhancement. The results demonstrate practicality with minimal overall cost compared to other conventional control plans. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

16 pages, 610 KiB  
Article
Directly Interconnected High-Energy and High-Power Battery Packs
by Michael Schwalm and Tatjana Dabrowski
Energies 2024, 17(24), 6306; https://doi.org/10.3390/en17246306 - 13 Dec 2024
Cited by 1 | Viewed by 706
Abstract
Designing battery packs is a trade-off between power capability and capacity. Often, high power is only desired for short periods; otherwise, high capacities are preferred. To meet these requirements, hybrid packs comprising high-power and high-energy batteries can be used. However, a major drawback [...] Read more.
Designing battery packs is a trade-off between power capability and capacity. Often, high power is only desired for short periods; otherwise, high capacities are preferred. To meet these requirements, hybrid packs comprising high-power and high-energy batteries can be used. However, a major drawback of these systems is the need for additional direct current to direct current converters, which increase the complexity, weight, and cost. By directly interconnecting high-power and high-energy battery strings in parallel, the current distribution is determined exclusively by Kirchhoff’s laws, which can lead to the overloading of individual batteries and thus to damage or dangerous failures. To overcome these problems, we developed a layout and control algorithm for directly interconnected packs that keeps them in a safe state by solely controlling the external power, which is governed by two additional requirements. These keep the discharge current of the high-energy element below the maximum charge current of the high-power element and the charge current of the high-energy element below the maximum discharge current of the high-power element while the pack is discharging or charging, respectively. As a proof of concept, a directly interconnected lithium-ion battery pack was successfully designed using the electrochemical simulation software Battery Simulation Studio 2021,which was tested and integrated into a Audi A3 cabriolet. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

Back to TopTop