Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = hyaluronan derivatives

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3256 KiB  
Article
Effect of Hyaluronan in Collagen Biomaterials on Human Macrophages and Fibroblasts In Vitro
by Nancy Avila-Martinez, Maren Pfirrmann, Madalena L. N. P. Gomes, Roman Krymchenko, Elly M. M. Versteeg, Marcel Vlig, Martijn Verdoes, Toin H. van Kuppevelt, Bouke K. H. L. Boekema and Willeke F. Daamen
J. Funct. Biomater. 2025, 16(5), 167; https://doi.org/10.3390/jfb16050167 - 8 May 2025
Viewed by 1181
Abstract
In adults, scars are formed after deep skin wound injuries like burns. However, the fetal microenvironment allows for scarless skin regeneration. One component that is abundantly present in the fetal extracellular matrix is hyaluronan (HA). To study whether biomaterials with HA improve wound [...] Read more.
In adults, scars are formed after deep skin wound injuries like burns. However, the fetal microenvironment allows for scarless skin regeneration. One component that is abundantly present in the fetal extracellular matrix is hyaluronan (HA). To study whether biomaterials with HA improve wound healing, type I collagen scaffolds with and without HA were prepared and characterized. Their immune effect was tested using macrophages and their phenotypes were analyzed through cell surface markers and cytokine expression after 48 h. Since fibroblasts are the main cellular component in the dermis, adult, fetal and eschar-derived cells were cultured on scaffolds for 14 days and evaluated using histology, gene and protein expression analyses. Biochemical assays demonstrated that HA was successfully incorporated and evenly distributed throughout the scaffolds. Macrophages (M0) cultured on Col I+HA scaffolds exhibited a profile resembling the M2c-like phenotype (CD206high, CD163high and IL10high). HA did not significantly affect gene expression in adult and fetal fibroblasts, but significantly reduced scarring-related genes, such as transforming growth factor beta 1 (TGFB1) and type X collagen alpha 1 chain (COL10A1), in myofibroblast-like eschar cells. These findings highlight the potential of incorporating HA into collagen-based skin substitutes to improve the wound healing response. Full article
Show Figures

Graphical abstract

16 pages, 1662 KiB  
Article
Protective and Anti-Inflammatory Effect of Novel Formulation Based on High and Low Molecular Weight Hyaluronic Acid and Salvia haenkei
by Maria d’Agostino, Andrea Maria Giori, Valentina Vassallo, Chiara Schiraldi and Antonella D’Agostino
Int. J. Mol. Sci. 2025, 26(3), 1310; https://doi.org/10.3390/ijms26031310 - 4 Feb 2025
Viewed by 1552
Abstract
Salvia haenkei (SH-Haenkenium®), a native plant of Bolivia, is known as strong inhibitor of senescence and recently exploited in wound healing and for its potential anti-inflammatory properties. Hyaluronan at high and low molecular weight (HCC), explored in diverse cell models, and [...] Read more.
Salvia haenkei (SH-Haenkenium®), a native plant of Bolivia, is known as strong inhibitor of senescence and recently exploited in wound healing and for its potential anti-inflammatory properties. Hyaluronan at high and low molecular weight (HCC), explored in diverse cell models, and recently used in clinical practice, showed beneficial effects in dermo aesthetic and regenerative injective treatments. In this research work a novel formulation based on HCC coupled SH was tested for its potentiality in counteracting dermal injury. In vitro wound healing has been used to demonstrate HCC + SH capacity to improve keratinocytes migration respects the sole HCC, supported also by positive modulation of remodeling and integrity biomarkers. In addition, an in vitro dehydration test showed its ability to defend the skin from dryness. Moreover, an in vitro inflammation model (with lipopolysaccharides derived from E. coli) was used to assess molecular fingerprint of the pathological model and compare the cell response after treatments. Inflammatory biomarkers (e.g., KRT6, TLR-4 and NF-κB) and specific cytokines (e.g., IL-6, IL-22, IL-23) proved the effect of HCC + SH, in reducing inflammatory mediators. A more complex model, 3D-FT skin, was used to better resemble an in vivo condition, and confirmed the efficacy of novel formulations to counteract inflammation. All results trigger the interest in the novel formulation based on SH extract and hyaluronan complexes for its potential efficacy as natural anti-inflammatory agent for damaged skin, for its healing and regenerative properties. Full article
(This article belongs to the Special Issue Glycosaminoglycans, 2nd Edition)
Show Figures

Figure 1

41 pages, 4078 KiB  
Review
Recent Advances, Research Trends, and Clinical Relevance of Hyaluronic Acid Applied to Wound Healing and Regeneration
by Gloria Huerta-Ángeles and Edgar Mixcoha
Appl. Sci. 2025, 15(2), 536; https://doi.org/10.3390/app15020536 - 9 Jan 2025
Cited by 2 | Viewed by 3627
Abstract
Hyaluronan (HA) is a ubiquitous macromolecule in the human body with remarkable structure and function. HA presents a key role in several biological processes in mammals. The synthesis/catabolism of HA is critical in several pathologies and has been used as a marker for [...] Read more.
Hyaluronan (HA) is a ubiquitous macromolecule in the human body with remarkable structure and function. HA presents a key role in several biological processes in mammals. The synthesis/catabolism of HA is critical in several pathologies and has been used as a marker for the prognosis of cancers. Among its physiological roles, HA is used for wound healing applications. This review reports many of the latest developments of hyaluronan and its derivatives in research, preclinical, and published clinical trials for wound healing. An adequate physico-chemical characterization and identification of selected physico-chemical properties of the prepared material are mandatory. Moreover, cytotoxicity and evaluation of biological effects in vitro using standardized protocols are required as preclinical. Finally, to choose adequate in vivo models for testing efficacy is requested. Unfortunately, the biological role of HA is still not well understood. Therefore, an overview of several HA-based products is provided and discussed. Several ways of HA chemical modification were evaluated. Finally, this review focuses on products containing HA, novel developments, gaps, and limitations of the current state of the art. Full article
(This article belongs to the Special Issue Advances of Hyaluronan in Tissue Regeneration)
Show Figures

Figure 1

20 pages, 3272 KiB  
Article
Crosslinking by Click Chemistry of Hyaluronan Graft Copolymers Involving Resorcinol-Based Cinnamate Derivatives Leading to Gel-like Materials
by Mario Saletti, Simone Pepi, Marco Paolino, Jacopo Venditti, Germano Giuliani, Claudia Bonechi, Gemma Leone, Agnese Magnani, Claudio Rossi and Andrea Cappelli
Gels 2024, 10(11), 751; https://doi.org/10.3390/gels10110751 - 19 Nov 2024
Cited by 2 | Viewed by 1373
Abstract
The well-known “click chemistry” reaction copper(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) was used to transform under very mild conditions hyaluronan-based graft copolymers HA(270)-FA-Pg into the crosslinked derivatives HA(270)-FA-TEGERA-CL and HA(270)-FA-HEGERA-CL. In particular, medium molecular weight (i.e., 270 kDa) hyaluronic acid (HA) grafted at [...] Read more.
The well-known “click chemistry” reaction copper(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) was used to transform under very mild conditions hyaluronan-based graft copolymers HA(270)-FA-Pg into the crosslinked derivatives HA(270)-FA-TEGERA-CL and HA(270)-FA-HEGERA-CL. In particular, medium molecular weight (i.e., 270 kDa) hyaluronic acid (HA) grafted at various extents (i.e., 10, 20, and 40%) with fluorogenic ferulic acid (FA) residue bonding propargyl groups were used in the CuAAC reaction with novel azido-terminated crosslinking agents Tri(Ethylene Glycol) Ethyl Resorcinol Acrylate (TEGERA) and Hexa(Ethylene Glycol) Ethyl Resorcinol Acrylate (HEGERA). The resulting HA(270)-FA-TEGERA-CL and HA(270)-FA-HEGERA-CL materials were characterized from the point of view of their structure by performing NMR studies. Moreover, the swelling behavior and rheological features were assessed employing TGA and DSC analysis to evaluate the potential gel-like properties of the resulting crosslinked materials. Despite the 3D crosslinked structure, HA(270)-FA-TEGERA-CL and HA(270)-FA-HEGERA-CL frameworks showed adequate swelling performance, the required shear thinning behavior, and coefficient of friction values close to those of the main commercial HA solutions used as viscosupplements (i.e., 0.20 at 10 mm/s). Furthermore, the presence of a crosslinked structure guaranteed a longer residence time. Indeed, HA(270)-FA-TEGERA-CL-40 and HA(270)-FA-HEGERA-CL-40 after 48 h showed a four times greater enzymatic resistance than the commercial viscosupplements. Based on the promising obtained results, the crosslinked materials are proposed for their potential applicability as novel viscosupplements. Full article
(This article belongs to the Special Issue Polymeric Hydrogels for Biomedical Application)
Show Figures

Graphical abstract

17 pages, 6491 KiB  
Article
Identification and Characterization of a Highly Active Hyaluronan Lyase from Enterobacter asburiae
by Linjing Zhang, Jiayu Jiang, Wei Liu, Lianlong Wang, Zhiyuan Yao, Heng Li, Jinsong Gong, Chuanli Kang, Lei Liu, Zhenghong Xu and Jinsong Shi
Mar. Drugs 2024, 22(9), 399; https://doi.org/10.3390/md22090399 - 31 Aug 2024
Cited by 2 | Viewed by 1714
Abstract
Hyaluronic acid (HA) is a well-known functional marine polysaccharide. The utilization and derivative development of HA are of great interest. Hyaluronan lyase has wide application prospects in the production of HA oligosaccharides and lower molecular weight HA. In this study, a strain of [...] Read more.
Hyaluronic acid (HA) is a well-known functional marine polysaccharide. The utilization and derivative development of HA are of great interest. Hyaluronan lyase has wide application prospects in the production of HA oligosaccharides and lower molecular weight HA. In this study, a strain of Enterobacter asburiae CGJ001 with high hyaluronan lyase activity was screened from industrial wastewater. This strain exhibited an impressive enzyme activity of 40,576 U/mL after being incubated for 14 h. Whole genome sequencing analysis revealed that E. asburiae CGJ001 contained a cluster of genes involved in HA degradation, transport, and metabolism. A newly identified enzyme responsible for glycosaminoglycan degradation was designated as HylEP0006. A strain of E. coli BL21(DE3)/pET-22b(+)-hylEP0006 was successfully constructed. HylEP0006 exhibited optimal degradation at 40 °C and pH 7.0, showing a high activity of 950,168.3 U/mg. HylEP0006 showed specific activity against HA. The minimum degradation fragment of HylEP0006 was hyaluronan tetrasaccharides, and HylEP0006 could efficiently degrade HA into unsaturated disaccharides (HA2), with HA2 as the final product. These characteristics indicate that HylEP0006 has a potential application prospect for the extraction and utilization of hyaluronic acid. Full article
Show Figures

Figure 1

13 pages, 2542 KiB  
Article
Study on the Skincare Effects of Red Rice Fermented by Aspergillus oryzae In Vitro
by Mo Chen, Yi Sun, Le Zhu, Lingyu Li and Ya Zhao
Molecules 2024, 29(9), 2066; https://doi.org/10.3390/molecules29092066 - 30 Apr 2024
Cited by 6 | Viewed by 3814
Abstract
Red rice, a variety of pigmented grain, serves dual purposes as both a food and medicinal resource. In recent years, we have witnessed an increasing interest in the dermatological benefits of fermented rice extracts, particularly their whitening and hydrating effects. However, data on [...] Read more.
Red rice, a variety of pigmented grain, serves dual purposes as both a food and medicinal resource. In recent years, we have witnessed an increasing interest in the dermatological benefits of fermented rice extracts, particularly their whitening and hydrating effects. However, data on the skincare advantages derived from fermenting red rice with Aspergillus oryzae remain sparse. This study utilized red rice as a substrate for fermentation by Aspergillus oryzae, producing a substance known as red rice Aspergillus oryzae fermentation (RRFA). We conducted a preliminary analysis of RRFA’s composition followed by an evaluation of its skincare potential through various in vitro tests. Our objective was to develop a safe and highly effective skincare component for potential cosmetic applications. RRFA’s constituents were assessed using high-performance liquid chromatography (HPLC), Kjeldahl nitrogen determination, the phenol-sulfuric acid method, and enzyme-linked immunosorbent assay (ELISA). We employed human dermal fibroblasts (FB) to assess RRFA’s anti-aging and antioxidative properties, immortalized keratinocytes (HaCaT cells) and 3D epidermal models to examine its moisturizing and reparative capabilities, and human primary melanocytes (MCs) to study its effects on skin lightening. Our findings revealed that RRFA encompasses several bioactive compounds beneficial for skin health. RRFA can significantly promote the proliferation of FB cells. And it markedly enhances the mRNA expression of ECM-related anti-aging genes and reduces reactive oxygen species production. Furthermore, RRFA significantly boosts the expression of Aquaporin 3 (AQP3), Filaggrin (FLG), and Hyaluronan Synthase 1 (HAS1) mRNA, alongside elevating moisture levels in a 3D epidermal model. Increases were also observed in the mRNA expression of Claudin 1 (CLDN1), Involucrin (IVL), and Zonula Occludens-1 (ZO-1) in keratinocytes. Additionally, RRFA demonstrated an inhibitory effect on melanin synthesis. Collectively, RRFA contains diverse ingredients which are beneficial for skin health and showcases multifaceted skincare effects in terms of anti-aging, antioxidant, moisturizing, repairing, and whitening capabilities in vitro, highlighting its potential for future cosmetic applications. Full article
Show Figures

Figure 1

17 pages, 3105 KiB  
Article
Inorganic Phosphate-Induced Extracellular Vesicles from Vascular Smooth Muscle Cells Contain Elevated Levels of Hyaluronic Acid, Which Enhance Their Interaction with Very Small Superparamagnetic Iron Oxide Particles
by Christian Freise, Karina Biskup, Véronique Blanchard, Jörg Schnorr and Matthias Taupitz
Int. J. Mol. Sci. 2024, 25(5), 2571; https://doi.org/10.3390/ijms25052571 - 22 Feb 2024
Cited by 3 | Viewed by 1991
Abstract
Patients with chronic kidney disease (CKD) have a high prevalence of hyperphosphatemia, where uremic toxins like inorganic phosphate (Pi) induce a cardiovascular remodeling. Related disorders like atherosclerosis bear the risk of increased morbidity and mortality. We previously found that Pi stimulates the synthesis [...] Read more.
Patients with chronic kidney disease (CKD) have a high prevalence of hyperphosphatemia, where uremic toxins like inorganic phosphate (Pi) induce a cardiovascular remodeling. Related disorders like atherosclerosis bear the risk of increased morbidity and mortality. We previously found that Pi stimulates the synthesis and sulfation of the negatively charged glycosaminoglycans (GAGs) heparan sulfate and chondroitin sulfate in vascular smooth muscle cells (VSMC). Similar GAG alterations were detected in VSMC-derived exosome-like extracellular vesicles (EV). These EV showed a strong interaction with very small superparamagnetic iron oxide particles (VSOP), which are used as imaging probes for experimental magnetic resonance imaging (MRI). Hyaluronic acid (HA) represents another negatively charged GAG which is supposed to function as binding motif for VSOP as well. We investigated the effects of Pi on the amounts of HA in cells and EV and studied the HA-dependent interaction between VSOP with cells and EV. Rat VSMC were treated with elevated concentrations of Pi. CKD in rats was induced by adenine feeding. EV were isolated from culture supernatants and rat plasma. We investigated the role of HA in binding VSOP to cells and EV via cell-binding studies, proton relaxometry, and analysis of cellular signaling, genes, proteins, and HA contents. Due to elevated HA contents, VSMC and EV showed an increased interaction with VSOP after Pi stimulation. Amongst others, Pi induced hyaluronan synthase (HAS)2 expression and activation of the Wnt pathway in VSMC. An alternative upregulation of HA by iloprost and an siRNA-mediated knockdown of HAS2 confirmed the importance of HA in cells and EV for VSOP binding. The in vitro-derived data were validated by analyses of plasma-derived EV from uremic rats. In conclusion, the inorganic uremic toxin Pi induces HA synthesis in cells and EV, which leads to an increased interaction with VSOP. HA might therefore be a potential molecular target structure for improved detection of pathologic tissue changes secondary to CKD like atherosclerosis or cardiomyopathy using EV, VSOP and MRI. Full article
(This article belongs to the Special Issue Extracellular Vesicles: The Biology and Therapeutic Applications)
Show Figures

Figure 1

20 pages, 4621 KiB  
Article
Highly Concentrated Stabilized Hybrid Complexes of Hyaluronic Acid: Rheological and Biological Assessment of Compatibility with Adipose Tissue and Derived Stromal Cells towards Regenerative Medicine
by Valentina Vassallo, Celeste Di Meo, Nicola Alessio, Annalisa La Gatta, Giuseppe Andrea Ferraro, Giovanni Francesco Nicoletti and Chiara Schiraldi
Int. J. Mol. Sci. 2024, 25(4), 2019; https://doi.org/10.3390/ijms25042019 - 7 Feb 2024
Cited by 6 | Viewed by 2739
Abstract
Cells and extracts derived from adipose tissue are gaining increasing attention not only in plastic surgery and for aesthetic purposes but also in regenerative medicine. The ability of hyaluronan (HA) to support human adipose stromal cell (hASC) viability and differentiation has been investigated. [...] Read more.
Cells and extracts derived from adipose tissue are gaining increasing attention not only in plastic surgery and for aesthetic purposes but also in regenerative medicine. The ability of hyaluronan (HA) to support human adipose stromal cell (hASC) viability and differentiation has been investigated. However, the compatibility of adipose tissue with HA-based formulation in terms of biophysical and rheological properties has not been fully addressed, although it is a key feature for tissue integration and in vivo performance. In this study, the biophysical and biochemical properties of highly concentrated (45 mg/mL) high/low-molecular-weight HA hybrid cooperative complex were assessed with a further focus on the potential application in adipose tissue augmentation/regeneration. Specifically, HA hybrid complex rheological behavior was observed in combination with different adipose tissue ratios, and hyaluronidase-catalyzed degradation was compared to that of a high-molecular-weight HA (HHA). Moreover, the HA hybrid complex’s ability to induce in vitro hASCs differentiation towards adipose phenotype was evaluated in comparison to HHA, performing Oil Red O staining and analyzing gene/protein expression of PPAR-γ, adiponectin, and leptin. Both treatments supported hASCs differentiation, with the HA hybrid complex showing better results. These outcomes may open new frontiers in regenerative medicine, supporting the injection of highly concentrated hybrid formulations in fat compartments, eventually enhancing residing staminal cell differentiation and improving cell/growth factor persistence towards tissue regeneration districts. Full article
(This article belongs to the Special Issue Medical Polymers for Tissue Repair and Regeneration)
Show Figures

Graphical abstract

21 pages, 3930 KiB  
Article
Cross-Linked Hyaluronan Derivatives in the Delivery of Phycocyanin
by Francesca Terracina, Mario Saletti, Marco Paolino, Jacopo Venditti, Germano Giuliani, Claudia Bonechi, Mariano Licciardi and Andrea Cappelli
Gels 2024, 10(2), 91; https://doi.org/10.3390/gels10020091 - 25 Jan 2024
Cited by 3 | Viewed by 2287
Abstract
An easy and viable crosslinking technology, based on the “click-chemistry” reaction copper(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (click-crosslinking), was applied to graft copolymers of medium molecular weight (i.e., 270 kDa) hyaluronic acid (HA) grafted with ferulic acid (FA) residues bearing clickable [...] Read more.
An easy and viable crosslinking technology, based on the “click-chemistry” reaction copper(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (click-crosslinking), was applied to graft copolymers of medium molecular weight (i.e., 270 kDa) hyaluronic acid (HA) grafted with ferulic acid (FA) residues bearing clickable propargyl groups, as well as caffeic acid derivatives bearing azido-terminated oligo(ethylene glycol) side chains. The obtained crosslinked materials were characterized from the point of view of their structure and aggregation liability to form hydrogels in a water environment. The most promising materials showed interesting loading capability regarding the antioxidant agent phycocyanin (PC). Two novel materials complexes (namely HA(270)-FA-TEGEC-CL-20/PC and HA(270)-FA-HEGEC-CL-20/PC) were obtained with a drug-to-material ratio of 1:2 (w/w). Zeta potential measurements of the new complexes (−1.23 mV for HA(270)-FA-TEGEC-CL-20/PC and −1.73 mV for HA(270)-FA-HEGEC-CL-20/PC) showed alterations compared to the zeta potential values of the materials on their own, suggesting the achievement of drug–material interactions. According to the in vitro dissolution studies carried out in different conditions, novel drug delivery systems (DDSs) were obtained with a variety of characteristics depending on the desired route of administration and, consequently, on the pH of the surrounding environment, thanks to the complexation of phycocyanin with these two new crosslinked materials. Both complexes showed excellent potential for providing a controlled/prolonged release of the active pharmaceutical ingredient (API). They also increased the amount of drug that reach the target location, enabling pH-dependent release. Importantly, as demonstrated by the DPPH free radical scavenging assay, the complexation process, involving freezing and freeze-drying, showed no adverse effects on the antioxidant activity of phycocyanin. This activity was preserved in the two novel materials and followed a concentration-dependent pattern similar to pure PC. Full article
Show Figures

Graphical abstract

11 pages, 1463 KiB  
Article
Prostaglandin E2 Boosts the Hyaluronan-Mediated Increase in Inflammatory Response to Lipopolysaccharide by Enhancing Lyve1 Expression
by Pauline Hog, Silvia Kuntschar, Peter Rappl, Arnaud Huard, Andreas Weigert, Bernhard Brüne and Tobias Schmid
Biology 2023, 12(11), 1441; https://doi.org/10.3390/biology12111441 - 16 Nov 2023
Cited by 4 | Viewed by 2212
Abstract
Macrophages are a highly versatile and heterogenic group of immune cells, known for their involvement in inflammatory reactions. However, our knowledge about distinct subpopulations of macrophages and their specific contribution to the resolution of inflammation remains incomplete. We have previously shown, in an [...] Read more.
Macrophages are a highly versatile and heterogenic group of immune cells, known for their involvement in inflammatory reactions. However, our knowledge about distinct subpopulations of macrophages and their specific contribution to the resolution of inflammation remains incomplete. We have previously shown, in an in vivo peritonitis model, that inhibition of the synthesis of the pro-inflammatory lipid mediator prostaglandin E2 (PGE2) attenuates efficient resolution of inflammation. PGE2 levels during later stages of the inflammatory process further correlate with expression of the hyaluronan (HA) receptor Lyve1 in peritoneal macrophages. In the present study, we therefore aimed to understand if PGE2 might contribute to the regulation of Lyve1 and how this might impact inflammatory responses. In line with our in vivo findings, PGE2 synergized with dexamethasone to enhance Lyve1 expression in bone marrow-derived macrophages, while expression of the predominant hyaluronan receptor CD44 remained unaltered. PGE2-mediated Lyve1 upregulation was strictly dependent on PGE2 receptor EP2 signaling. While PGE2/dexamethasone-treated macrophages, despite their enhanced Lyve1 expression, did not show inflammatory responses upon stimulation with low (LMW) or high-molecular-weight hyaluronan (HMW)-HA, they were sensitized towards LMW-HA-dependent augmentation of lipopolysaccharide (LPS)-induced inflammatory responses. Thus, Lyve1-expressing macrophages emerged as a subpopulation of macrophages integrating inflammatory stimuli with extracellular matrix-derived signals. Full article
(This article belongs to the Special Issue Macrophages and Antimicrobial Immune Response)
Show Figures

Figure 1

7 pages, 1958 KiB  
Communication
Scanning Electron Microscopy Analysis of Lymphatic Regeneration in a Secondary Lymphedema Mouse Model: A Preliminary Study
by Kenji Hayashida, Ryohei Ogino, Shota Suda and Sho Yamakawa
Lymphatics 2023, 1(3), 237-243; https://doi.org/10.3390/lymphatics1030014 - 26 Sep 2023
Viewed by 1853
Abstract
Under inflammatory conditions including lymphatic disorders, bone marrow-derived myeloid cells often express lymphatic endothelial cell (LEC) markers, and these cells are then called LEC progenitor cells, which extend lymphatic vessels by fusing with existing lymphatic vessels. However, studies on the mechanism of lymphatic [...] Read more.
Under inflammatory conditions including lymphatic disorders, bone marrow-derived myeloid cells often express lymphatic endothelial cell (LEC) markers, and these cells are then called LEC progenitor cells, which extend lymphatic vessels by fusing with existing lymphatic vessels. However, studies on the mechanism of lymphatic regeneration using three-dimensional images of lymphatic structures are limited. In this study, scanning electron microscopy (SEM) was used to observe the three-dimensional structure of lymphangiogenesis in a mouse model of secondary lymphedema. The model was established in C57BL/6J mice via circumferential incision in the inguinal region of the left hind limb. Skin samples were obtained from the lymphedema region on days 2, 5, and 8 after surgery. To determine lymphatic vessel positions using SEM analysis, we detected anti-lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) immunoreactivity in serial sections and overlaid them during SEM observation. On days 2 and 5, spherical cells, probably myeloid cells, were attached and fused to the LYVE-1-positive lymphatic vessel walls. On day 8, spherical cells were converted to string-shaped cells, forming a new lymphatic vessel wall resembling an intraluminal pillar. Our results showed the newly formed lymphatic vessel wall extended into the lumen, suggesting intussusceptive lymphangiogenesis. Full article
Show Figures

Figure 1

31 pages, 2312 KiB  
Review
Natural vs Synthetic Polymers: How Do They Communicate with Cells for Skin Regeneration—A Review
by Jeevithan Elango, Camilo Zamora-Ledezma and José Eduardo Maté-Sánchez de Val
J. Compos. Sci. 2023, 7(9), 385; https://doi.org/10.3390/jcs7090385 - 13 Sep 2023
Cited by 13 | Viewed by 6030
Abstract
Modern research has evolved several approaches toward skin regeneration and one of the novel concerns is the use of polymer-based systems due to their excellent beneficial properties to the skin. Several polymers, such as cellulose, hyaluronan, alginate, chitosan, collagen, fibrin and fibroin, have [...] Read more.
Modern research has evolved several approaches toward skin regeneration and one of the novel concerns is the use of polymer-based systems due to their excellent beneficial properties to the skin. Several polymers, such as cellulose, hyaluronan, alginate, chitosan, collagen, fibrin and fibroin, have been tested and have proven the benefits for skin regeneration, and most of them are derived from either polysaccharide- or protein-based materials. In order to understand the mode of action, several researchers investigated the cell–matrix interaction and possible signaling mechanism in skin regeneration. Not only the signaling mechanism but also the mode of cell communication determines the application of polysaccharide- and protein-based polymers in practice. Based on the above significance, this review disclosed the recent findings to compile a possible method of communication between cells and polymers derived from polysaccharide-based (such as cellulose, hyaluronan, chitosan, alginate, agar, and xanthan gum) and protein-based (such as collagen, gelatin, fibrin, and silk fibroin) materials along with other polymers, such as poly(vinyl alcohol), polyglycolide or poly(glycolic acid), or poly(lactic acid) in skin regeneration. Accordingly, this review addresses the fundamental concept of cell–matrix communication, which helps us to understand the basis of the polymer’s functions in the biomedical field. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

28 pages, 6670 KiB  
Article
Krill Oil’s Protective Benefits against Ultraviolet B-Induced Skin Photoaging in Hairless Mice and In Vitro Experiments
by Jongkyu Kim, Namju Lee, Yoon-Seok Chun, Sang-Hoon Lee and Sae-Kwang Ku
Mar. Drugs 2023, 21(9), 479; https://doi.org/10.3390/md21090479 - 30 Aug 2023
Cited by 9 | Viewed by 3434
Abstract
Krill oil (KO) shows promise as a natural marine-derived ingredient for improving skin health. This study investigated its antioxidant, anti-inflammatory, anti-wrinkle, and moisturizing effects on skin cells and UVB-induced skin photoaging in hairless mice. In vitro assays on HDF, HaCaT, and B16/F10 cells, [...] Read more.
Krill oil (KO) shows promise as a natural marine-derived ingredient for improving skin health. This study investigated its antioxidant, anti-inflammatory, anti-wrinkle, and moisturizing effects on skin cells and UVB-induced skin photoaging in hairless mice. In vitro assays on HDF, HaCaT, and B16/F10 cells, as well as in vivo experiments on 60 hairless mice were conducted. A cell viability assay, diphenyl-1-picryhydrazyl (DPPH) radical scavenging activity test, elastase inhibition assay, procollagen content test, MMP-1 inhibition test, and hyaluronan production assay were used to experiment on in vitro cell models. Mice received oral KO administration (100, 200, or 400 mg/kg) once a day for 15 weeks and UVB radiation three times a week. L-Ascorbic acid (L-AA) was orally administered at 100 mg/kg once daily for 15 weeks, starting from the initial ultraviolet B (UVB) exposures. L-AA administration followed each UVB session (0.18 J/cm2) after one hour. In vitro, KO significantly countered UVB-induced oxidative stress, reduced wrinkles, and prevented skin water loss by enhancing collagen and hyaluronic synthesis. In vivo, all KO dosages showed dose-dependent inhibition of oxidative stress-induced inflammatory photoaging-related skin changes. Skin mRNA expressions for hyaluronan synthesis and collagen synthesis genes also increased dose-dependently after KO treatment. Histopathological analysis confirmed that krill oil (KO) ameliorated the damage caused by UVB-irradiated skin tissues. The results imply that KO could potentially act as a positive measure in diminishing UVB-triggered skin photoaging and address various skin issues like wrinkles and moisturization when taken as a dietary supplement. Full article
(This article belongs to the Special Issue Antiphotoaging and Photoprotective Compounds from Marine Environments)
Show Figures

Figure 1

19 pages, 848 KiB  
Review
The Intraoperative Use of Defensive Antibacterial Coating (DAC®) in the Form of a Gel to Prevent Peri-Implant Infections in Orthopaedic Surgery: A Clinical Narrative Review
by Daniele Pressato, Angela Battista, Marco Govoni, Leonardo Vivarelli, Dante Dallari and Antonio Pellegrini
Materials 2023, 16(15), 5304; https://doi.org/10.3390/ma16155304 - 28 Jul 2023
Cited by 7 | Viewed by 2716
Abstract
Periprosthetic joint infections (PJIs) in arthroplasty and osteosynthesis-associated infections (OAIs) in reconstructive surgery still represent a challenging complication in orthopaedics and traumatology causing a burden worsening the patient’s quality of life, for caregiver and treating physicians, and for healthcare systems. PJIs and OAIs [...] Read more.
Periprosthetic joint infections (PJIs) in arthroplasty and osteosynthesis-associated infections (OAIs) in reconstructive surgery still represent a challenging complication in orthopaedics and traumatology causing a burden worsening the patient’s quality of life, for caregiver and treating physicians, and for healthcare systems. PJIs and OAIs are the result of bacterial adhesion over an implant surface with subsequent biofilm formation. Therefore, the clinical pathological outcome is a difficult-to-eradicate persistent infection. Strategies to treat PJIs and OAIs involve debridement, the replacement of internal fixators or articular prostheses, and intravenous antibiotics. However, long treatments and surgical revision cause discomfort for patients; hence, the prevention of PJIs and OAIs represents a higher priority than treatment. Local antibiotic treatments through coating-release systems are becoming a smart approach to prevent this complication. Hydrophilic coatings, loaded with antibiotics, simultaneously provide a barrier effect against bacterial adhesion and allow for the local delivery of an antibiotic. The intraoperative use of a hyaluronan (HY)-derivative coating in the form of a gel, loaded with antibiotics to prevent PJI, has recently raised interest in orthopaedics. Current evidence supports the use of this coating in the prophylaxis of PJI and IRIs in terms of clinical outcomes and infection reduction. Thus, the purpose of this narrative review is to assess the use of a commercially available HY derivative in the form of a gel, highlighting the characteristics of this biomaterial, which makes it attractive for the management of PJIs and IRIs in orthopaedics and traumatology. Full article
Show Figures

Figure 1

28 pages, 3408 KiB  
Review
Marine Biomaterials: Hyaluronan
by Rasha M. Abdel-Rahman and A. M. Abdel-Mohsen
Mar. Drugs 2023, 21(8), 426; https://doi.org/10.3390/md21080426 - 27 Jul 2023
Cited by 11 | Viewed by 4621
Abstract
The marine-derived hyaluronic acid and other natural biopolymers offer exciting possibilities in the field of biomaterials, providing sustainable and biocompatible alternatives to synthetic materials. Their unique properties and abundance in marine sources make them valuable resources for various biomedical and industrial applications. Due [...] Read more.
The marine-derived hyaluronic acid and other natural biopolymers offer exciting possibilities in the field of biomaterials, providing sustainable and biocompatible alternatives to synthetic materials. Their unique properties and abundance in marine sources make them valuable resources for various biomedical and industrial applications. Due to high biocompatible features and participation in biological processes related to tissue healing, hyaluronic acid has become widely used in tissue engineering applications, especially in the wound healing process. The present review enlightens marine hyaluronan biomaterial providing its sources, extraction process, structures, chemical modifications, biological properties, and biocidal applications, especially for wound healing/dressing purposes. Meanwhile, we point out the future development of wound healing/dressing based on hyaluronan and its composites and potential challenges. Full article
(This article belongs to the Section Biomaterials of Marine Origin)
Show Figures

Figure 1

Back to TopTop