Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (294)

Search Parameters:
Keywords = human gene therapy products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 806 KiB  
Proceeding Paper
Enterococcus faecalis Biofilm: A Clinical and Environmental Hazard
by Bindu Sadanandan and Kavyasree Marabanahalli Yogendraiah
Med. Sci. Forum 2025, 35(1), 5; https://doi.org/10.3390/msf2025035005 - 5 Aug 2025
Abstract
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange [...] Read more.
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange and waste removal. Exopolysaccharides, proteins, lipids, and extracellular DNA create a protective matrix. Persister cells within the biofilm contribute to antibiotic resistance and survival. The heterogeneous architecture of the E. faecalis biofilm contains both dense clusters and loosely packed regions that vary in thickness, ranging from 10 to 100 µm, depending on the environmental conditions. The pathogenicity of the E. faecalis biofilm is mediated through complex interactions between genes and virulence factors such as DNA release, cytolysin, pili, secreted antigen A, and microbial surface components that recognize adhesive matrix molecules, often involving a key protein called enterococcal surface protein (Esp). Clinically, it is implicated in a range of nosocomial infections, including urinary tract infections, endocarditis, and surgical wound infections. The biofilm serves as a nidus for bacterial dissemination and as a reservoir for antimicrobial resistance. The effectiveness of first-line antibiotics (ampicillin, vancomycin, and aminoglycosides) is diminished due to reduced penetration, altered metabolism, increased tolerance, and intrinsic and acquired resistance. Alternative strategies for biofilm disruption, such as combination therapy (ampicillin with aminoglycosides), as well as newer approaches, including antimicrobial peptides, quorum-sensing inhibitors, and biofilm-disrupting agents (DNase or dispersin B), are also being explored to improve treatment outcomes. Environmentally, E. faecalis biofilms contribute to contamination in water systems, food production facilities, and healthcare environments. They persist in harsh conditions, facilitating the spread of multidrug-resistant strains and increasing the risk of transmission to humans and animals. Therefore, understanding the biofilm architecture and drug resistance is essential for developing effective strategies to mitigate their clinical and environmental impact. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Antibiotics)
Show Figures

Figure 1

23 pages, 8937 KiB  
Article
Neuro-Cells Mitigate Amyloid Plaque Formation and Behavioral Deficits in the APPswe/PS1dE9 Model of Alzheimer Disease While Also Reducing IL-6 Production in Human Monocytes
by Johannes de Munter, Kirill Chaprov, Ekkehard Lang, Kseniia Sitdikova, Erik Ch. Wolters, Evgeniy Svirin, Aliya Kassenova, Andrey Tsoy, Boris W. Kramer, Sholpan Askarova, Careen A. Schroeter, Daniel C. Anthony and Tatyana Strekalova
Cells 2025, 14(15), 1168; https://doi.org/10.3390/cells14151168 - 29 Jul 2025
Viewed by 203
Abstract
Neuroinflammation is a key feature of Alzheimer’s disease (AD), and stem cell therapies have emerged as promising candidates due to their immunomodulatory properties. Neuro-Cells (NC), a combination of unmodified mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs), have demonstrated therapeutic potential in [...] Read more.
Neuroinflammation is a key feature of Alzheimer’s disease (AD), and stem cell therapies have emerged as promising candidates due to their immunomodulatory properties. Neuro-Cells (NC), a combination of unmodified mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs), have demonstrated therapeutic potential in models of central nervous system (CNS) injury and neurodegeneration. Here, we studied the effects of NC in APPswe/PS1dE9 mice, an AD mouse model. Twelve-month-old APPswe/PS1dE9 mice or their wild-type littermates were injected with NC or vehicle into the cisterna magna. Five to six weeks post-injection, cognitive, locomotor, and emotional behaviors were assessed. The brain was stained for amyloid plaque density using Congo red, and for astrogliosis using DAPI and GFAP staining. Gene expression of immune activation markers (Il-1β, Il-6, Cd45, Tnf) and plasticity markers (Tubβ3, Bace1, Trem2, Stat3) was examined in the prefrontal cortex. IL-6 secretion was measured in cultured human monocytes following endotoxin challenge and NC treatment. Untreated APPswe/PS1dE9 mice displayed impaired learning in the conditioned taste aversion test, reduced object exploration, and anxiety-like behavior, which were improved in the NC-treated mutants. NC treatment normalized the expression of several immune and plasticity markers and reduced the density of GFAP-positive cells in the hippocampus and thalamus. NC treatment decreased amyloid plaque density in the hippocampus and thalamus, targeting plaques of <100 μm2. Additionally, NC treatment suppressed IL-6 secretion by human monocytes. Thus, NC treatment alleviated behavioral deficits and reduced amyloid plaque formation in APPswe/PS1dE9 mice, likely via anti-inflammatory mechanisms. The reduction in IL-6 production in human monocytes further supports the potential of NC therapy for the treatment of AD. Full article
Show Figures

Figure 1

18 pages, 2125 KiB  
Article
A Replication-Defective Myxoma Virus Inducing Pro-Inflammatory Responses as Monotherapy and an Adjuvant to Chemo- and DC Immuno-Therapy for Ovarian Cancer
by Martin J. Cannon and Jia Liu
Viruses 2025, 17(8), 1058; https://doi.org/10.3390/v17081058 - 29 Jul 2025
Viewed by 368
Abstract
Myxoma virus (MYXV), a rabbit-specific poxvirus and non-pathogenic in humans and mice, is an excellent candidate oncolytic virus for cancer therapy. MYXV also has immunotherapeutic benefits. In ovarian cancer (OC), immunosuppressive tumor-associated macrophages (TAMs) are key to inhibiting antitumor immunity while hindering therapeutic [...] Read more.
Myxoma virus (MYXV), a rabbit-specific poxvirus and non-pathogenic in humans and mice, is an excellent candidate oncolytic virus for cancer therapy. MYXV also has immunotherapeutic benefits. In ovarian cancer (OC), immunosuppressive tumor-associated macrophages (TAMs) are key to inhibiting antitumor immunity while hindering therapeutic benefit by chemotherapy and dendritic cell (DC) vaccine. Because MYXV favors binding/entry of macrophages/monocytes, we examined the therapeutic potential of MYXV against TAMs. We found previously that a replication-defective MYXV with targeted deletion of an essential gene, M062R, designated ΔM062R MYXV, activated both the host DNA sensing pathway and the SAMD9 pathway. Treatment with ΔM062R confers therapeutic benefit comparable to that of wild-type replicating MYXV in preclinical models. Here we found that ΔM062R MYXV, when integrated with cisplatin and DC immunotherapy, further improved treatment benefit, likely through promoting tumor antigen-specific T cell function. Moreover, we also tested ΔM062R MYXV in targeting human immunosuppressive TAMs from OC patient ascites in a co-culture system. We found that ΔM062R treatment subverted the immunosuppressive properties of TAMs and elevated the avidity of cytokine production in tumor antigen-specific CD4+ T cells. Overall, ΔM062R presents a promising immunotherapeutic platform as a beneficial adjuvant to chemotherapy and DC vaccine. Full article
(This article belongs to the Special Issue Women in Virology 2025)
Show Figures

Figure 1

16 pages, 1560 KiB  
Article
Electromagnetic Transduction Therapy (EMTT) Enhances Tenocyte Regenerative Potential: Evidence for Senolytic-like Effects and Matrix Remodeling
by Matteo Mancini, Mario Vetrano, Alice Traversa, Carlo Cauli, Simona Ceccarelli, Florence Malisan, Maria Chiara Vulpiani, Nicola Maffulli, Cinzia Marchese, Vincenzo Visco and Danilo Ranieri
Int. J. Mol. Sci. 2025, 26(15), 7122; https://doi.org/10.3390/ijms26157122 - 24 Jul 2025
Viewed by 1353
Abstract
Tendinopathies are a significant challenge in musculoskeletal medicine, with current treatments showing variable efficacy. Electromagnetic transduction therapy (EMTT) has emerged as a promising therapeutic approach, but its biological effects on tendon cells remain largely unexplored. Here, we investigated the effects of EMTT on [...] Read more.
Tendinopathies are a significant challenge in musculoskeletal medicine, with current treatments showing variable efficacy. Electromagnetic transduction therapy (EMTT) has emerged as a promising therapeutic approach, but its biological effects on tendon cells remain largely unexplored. Here, we investigated the effects of EMTT on primary cultured human tenocytes’ behavior and functions in vitro, focusing on cellular responses, senescence-related pathways, and molecular mechanisms. Primary cultures of human tenocytes were established from semitendinosus tendon biopsies of patients undergoing anterior cruciate ligament (ACL) reconstruction (n = 6, males aged 17–37 years). Cells were exposed to EMTT at different intensities (40 and 80 mT) and impulse numbers (1000–10,500). Cell viability (MTT assay), proliferation (Ki67), senescence markers (CDKN2a/INK4a), migration (scratch test), cytoskeleton organization (immunofluorescence), and gene expression (RT-PCR) were analyzed. A 40 mT exposure elicited minimal effects, whereas 80 mT treatments induced significant cellular responses. Repeated 80 mT exposure demonstrated a dual effect: despite a moderate decrease in overall cell vitality, increased Ki67 expression (+7%, p ≤ 0.05) and significant downregulation of senescence marker CDKN2a/INK4a were observed, suggesting potential senolytic-like activity. EMTT significantly enhanced cell migration (p < 0.001) and triggered cytoskeletal remodeling, with amplified stress fiber formation and paxillin redistribution. Molecular analysis revealed upregulation of tenogenic markers (Scleraxis, Tenomodulin) and enhanced Collagen I and III expressions, particularly with treatments at 80 mT, indicating improved matrix remodeling capacity. EMTT significantly promotes tenocyte proliferation, migration, and matrix production, while simultaneously exhibiting senolytic-like effects through downregulation of senescence-associated markers. These results support EMTT as a promising therapeutic approach for the management of tendinopathies through multiple regenerative mechanisms, though further studies are needed to validate these effects in vivo. Full article
Show Figures

Figure 1

19 pages, 3112 KiB  
Article
Development of a Lentiviral Vector for High-Yield Production of Synthetic and Recombinant GCase for Gaucher Disease Therapy
by Ana Carolina Coelho, Claudia Emília Vieira Wiezel, Alline Cristina de Campos, Lílian Louise Souza Figueiredo, Gabriela Aparecida Marcondes Suardi, Juliana de Paula Bernardes, Daniela Pretti da Cunha Tirapelli, Vitor Marcel Faça, Kuruvilla Joseph Abraham, Carlos Gilberto Carlotti-Júnior, Velia Siciliano, Ron Weiss, Stanton Gerson and Aparecida Maria Fontes
Int. J. Mol. Sci. 2025, 26(15), 7089; https://doi.org/10.3390/ijms26157089 - 23 Jul 2025
Viewed by 320
Abstract
Gaucher disease (GD) is an autosomal recessive disorder caused by the deficient activity of the lysosomal enzyme glucocerebrosidase (GCase). Although enzyme replacement therapy (ERT) remains the standard of care for non-neuropathic GD patients, its high cost significantly limits accessibility. To enhance production efficiency, [...] Read more.
Gaucher disease (GD) is an autosomal recessive disorder caused by the deficient activity of the lysosomal enzyme glucocerebrosidase (GCase). Although enzyme replacement therapy (ERT) remains the standard of care for non-neuropathic GD patients, its high cost significantly limits accessibility. To enhance production efficiency, we developed a lentiviral system encoding a codon-optimized GCase gene driven by the human elongation factor 1a (hEF1α) promoter for stable production in human cell lines. A functional lentiviral vector, LV_EF1α_GBA_Opt, was generated at a titer of 7.88 × 108 LV particles/mL as determined by qPCR. Six transduction cycles were performed at a multiplicity of infection of 30–50. The transduced heterogeneous human cell population showed GCase-specific activity of 307.5 ± 53.49 nmol/mg protein/h, which represents a 3.21-fold increase compared to wild-type 293FT cells (95.58 ± 16.5 nmol/mg protein/h). Following single-cell cloning, two clones showed specific activity of 763.8 ± 135.1 and 752.0 ± 152.1 nmol/mg/h (clones 15 and 16, respectively). These results show that codon optimization, a lentiviral delivery system, and clonal selection together enable the establishment of stable human cell lines capable of producing high levels of biologically active, synthetic recombinant GCase in vitro. Further studies are warranted for the functional validation in GD patient-derived fibroblasts and animal models. Full article
(This article belongs to the Special Issue Gaucher Disease: From Molecular Mechanisms to Treatments)
Show Figures

Graphical abstract

25 pages, 7475 KiB  
Article
Human Dialyzable Leukocyte Extract Enhances Albendazole Efficacy and Promotes Th1/Th2-Biased Lymphocyte and Antibody Responses in Peritoneal Cavity of Murine Model of Mesocestoides vogae Infection
by Gabriela Hrčková, Dagmar Mudroňová, Katarína Reiterová, Serena Cavallero and Ilaria Bellini
Int. J. Mol. Sci. 2025, 26(14), 6994; https://doi.org/10.3390/ijms26146994 - 21 Jul 2025
Viewed by 273
Abstract
Human leukocyte extract (HLE), a non-immunogenic dialyzable leukocyte preparation (<10 kDa), may serve as a safe adjuvant in immunotherapy. We investigated the effects of albendazole (ABZ), HLE, and their combination in Mesocestoides vogae infected mice, focusing on lymphoid cells in the peritoneal cavity, [...] Read more.
Human leukocyte extract (HLE), a non-immunogenic dialyzable leukocyte preparation (<10 kDa), may serve as a safe adjuvant in immunotherapy. We investigated the effects of albendazole (ABZ), HLE, and their combination in Mesocestoides vogae infected mice, focusing on lymphoid cells in the peritoneal cavity, the site of larval proliferation and parasite-induced immunosuppression. Peritoneal lymphoid cells were analysed by flow cytometry and qPCR. Cells proliferative responses to ConA, LPS, and parasite excretory/secretory (E/S) antigens, cytokine production (ELISA), IgM and IgG isotypes in exudates and parasite antigen recognition (Western blot) were assessed. Efficacy was measured by larval burden and 14-3-3 gene expression in larvae. HLE combined with ABZ enhanced larval clearance and suppressed 14-3-3 gene expression in larvae. HLE and combination therapy increased CD3+ T cell frequencies, especially CD3+high, reduced regulatory CD3+/IL-10 Tregs and expression of Foxp3+. All treatments diminished CD19+/IL-10+ Bregs, correlating with lower CD9 and Atf3 mRNA levels compared to infected mice. Transcription factors T-bet expression was strongly upregulated, while GATA3 was moderately elevated. IFN-γ production and T/B cell proliferation were restored after HLE and combination therapy, partially, even in the presence of E/S antigens. IgM and total IgG levels against parasite antigens declined, while Th1-associated IgG2a increased in ABZ+HLE and HLE-treated groups. Albendazole failed to reverse the immunosuppressive Treg-type immunity but was more effective in reducing Breg populations and their functions. HLE enhanced ABZ efficacy by restoring Th1 responsiveness, reducing Treg/Breg activity, and modulating antibody profiles. It represents a promising immunomodulatory adjuvant in the treatment of the infections associated with Th2/Treg-driven immunosuppression. Full article
(This article belongs to the Special Issue Molecular Research on Parasitic Infection)
Show Figures

Figure 1

39 pages, 675 KiB  
Review
Unlocking Implantation: The Role of Nitric Oxide, NO2-NO3, and eNOS in Endometrial Receptivity and IVF Success—A Systematic Review
by Charalampos Voros, Iwakeim Sapantzoglou, Despoina Mavrogianni, Diamantis Athanasiou, Antonia Varthaliti, Kyriakos Bananis, Antonia Athanasiou, Aikaterini Athanasiou, Anthi-Maria Papahliou, Constantinos G. Zografos, Athanasios Gkirgkinoudis, Ioannis Papapanagiotou, Kyriaki Migklis, Dimitris Mazis Kourakos, Georgios Papadimas, Maria Anastasia Daskalaki, Panagiotis Antsaklis, Dimitrios Loutradis and Georgios Daskalakis
Int. J. Mol. Sci. 2025, 26(14), 6569; https://doi.org/10.3390/ijms26146569 - 8 Jul 2025
Viewed by 531
Abstract
Nitric oxide (NO) predominantly regulates endometrial receptivity, angiogenesis, immunological tolerance, and trophoblast invasion throughout the implantation period. Both insufficient and excessive nitric oxide production have been linked to suboptimal embryo implantation and infertility. The primary enzymatic source of uterine nitric oxide, along with hormonal, [...] Read more.
Nitric oxide (NO) predominantly regulates endometrial receptivity, angiogenesis, immunological tolerance, and trophoblast invasion throughout the implantation period. Both insufficient and excessive nitric oxide production have been linked to suboptimal embryo implantation and infertility. The primary enzymatic source of uterine nitric oxide, along with hormonal, metabolic, and immunological variables and genetic variations in the endothelial nitric oxide synthase gene (NOS3), affects endothelial nitric oxide synthase (eNOS). Despite its considerable importance, there is limited knowledge regarding the practical implementation of nitric oxide-related diagnoses and therapies in reproductive medicine. A comprehensive assessment was performed in accordance with the PRISMA principles. Electronic searches were carried out in PubMed, Scopus, and Embase, and we analyzed the literature published from 2000 to 2024 regarding the association between NO, its metabolites (NO2 and NO3), eNOS expression, NOS3 gene variants, and reproductive outcomes. Relevant studies encompassed clinical trials, observational studies, and experimental research using either human or animal subjects. We collected data about therapeutic interventions, hormonal and immunological associations, nitric oxide measurement techniques, and in vitro fertilization success rates. A total of thirty-four studies were included. Dysregulated nitric oxide signaling, characterized by modified eNOS expression, oxidative stress, or NOS3 polymorphisms (e.g., Glu298Asp and intron 4 VNTR), was linked to diminished endometrial receptivity and an elevated risk of implantation failure and miscarriage. The dynamics of local uterine NO are essential as elevated and diminished systemic levels of NO2/NO3 corresponded with enhanced and decreased implantation rates, respectively. Among many therapeutic approaches, targeted hormone treatments, antioxidant therapy, and dietary nitrate supplements have demonstrated potential in restoring nitric oxide balance and enhancing reproductive outcomes. In animal models, the modification of nitric oxide significantly impacted decidualization, angiogenesis, and embryo viability. Nitric oxide is a multifaceted molecular mediator with considerable ramifications for successful implantation. Its therapeutic and diagnostic efficacy increases with its sensitivity to environmental, hormonal, and genetic alterations. Integrating targeted nitric oxide modulation, oxidative stress assessment, and NOS3 genotyping with personalized reproductive therapy will enhance endometrial receptivity and improve IVF outcomes. Future translational research should incorporate nitric oxide signaling into personalized treatment protocols for patients with unexplained infertility or recurrent implantation failure. Full article
(This article belongs to the Special Issue Molecular Advances in Obstetrical and Gynaecological Disorders)
Show Figures

Figure 1

14 pages, 3705 KiB  
Review
Yolk Sac Elements in Tumors Derived from Pluripotent Stem Cells: Borrowing Knowledge from Human Germ Cell Tumors
by Marnix van Soest, Joaquin Montilla-Rojo, Thomas F. Eleveld, Leendert H. J. Looijenga and Daniela C. F. Salvatori
Int. J. Mol. Sci. 2025, 26(13), 6464; https://doi.org/10.3390/ijms26136464 - 4 Jul 2025
Viewed by 431
Abstract
Pluripotent stem cell (PSC)-based therapies are currently in clinical trials. However, one of the main safety concerns includes the potential for cancer formation of the PSC-derived products. Currently, the teratoma in vivo assay is accepted by regulatory agencies for identifying whether PSCs have [...] Read more.
Pluripotent stem cell (PSC)-based therapies are currently in clinical trials. However, one of the main safety concerns includes the potential for cancer formation of the PSC-derived products. Currently, the teratoma in vivo assay is accepted by regulatory agencies for identifying whether PSCs have the potential to become malignant. Yolk sac elements (YSE) are one of the elements that could arise from PSC. Whereas the other malignant element, embryonal carcinoma, is thoroughly studied, this is not the case for YSE. Therefore, more research is needed to assess the nature of YSE. We propose that it is imperative to include the formation of YSE in the safety assessment of PSC due to their close resemblance to the clinical entity of yolk sac tumor (YST), a human malignant germ cell tumor (hGCT). In this review, we extrapolate knowledge from YST to better understand YSE derived from PSC. We demonstrate that both share a similar morphology and that the same characteristic immunohistochemical markers can be used for their identification. We discuss the risk these tumors pose, thereby touching upon genetic abnormalities and gene expression that characterize them, as well as possible disease mechanisms. Integrating the molecular and immunohistochemical markers identified in this review into future research will help to better address the potential malignancy associated with PSC. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Tumorigenesis of Human and Animal Stem Cells)
Show Figures

Figure 1

28 pages, 2595 KiB  
Review
Autophagy: Shedding Light on the Mechanisms and Multifaceted Roles in Cancers
by Hongmei You, Ling Wang, Hongwu Meng, Jun Li and Guoying Fang
Biomolecules 2025, 15(7), 915; https://doi.org/10.3390/biom15070915 - 22 Jun 2025
Cited by 1 | Viewed by 865
Abstract
Autophagy, an evolutionarily conserved self-degradation catabolic mechanism, is crucial for recycling breakdown products and degrading intracellular components such as cytoplasmic organelles, macromolecules, and proteins in eukaryotes. The process, which can be selective or non-selective, involves the removal of specific ribosomes, protein aggregates, and [...] Read more.
Autophagy, an evolutionarily conserved self-degradation catabolic mechanism, is crucial for recycling breakdown products and degrading intracellular components such as cytoplasmic organelles, macromolecules, and proteins in eukaryotes. The process, which can be selective or non-selective, involves the removal of specific ribosomes, protein aggregates, and organelles. Although the specific mechanisms governing various aspects of selective autophagy have not been fully understood, numerous studies have revealed that the dysregulation of autophagy-related genes significantly influences cellular homeostasis and contributes to a wide range of human diseases, particularly cancers, neurodegenerative disorders and inflammatory diseases. Notably, accumulating evidence highlights the complex, dual role of autophagy in cancer development. Thus, this review systematically summarizes the molecular mechanisms of autophagy and presents the latest research on its involvement in both pro- and anti-tumor progression. Furthermore, we discuss the role of autophagy in cancer development and summarize advancement in tumor therapies targeting autophagy. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

18 pages, 272 KiB  
Review
Livestock Antibiotics Use and Antimicrobial Resistance
by Elliot Enshaie, Sankalp Nigam, Shaan Patel and Vikrant Rai
Antibiotics 2025, 14(6), 621; https://doi.org/10.3390/antibiotics14060621 - 19 Jun 2025
Viewed by 1536
Abstract
Background/Objectives: Antibiotic resistance or antimicrobial resistance (AMR) in livestock is a growing global concern that threatens both human and animal health. The overuse and misuse of antibiotics in livestock production have led to an increased propensity for the development of AMR bacterial [...] Read more.
Background/Objectives: Antibiotic resistance or antimicrobial resistance (AMR) in livestock is a growing global concern that threatens both human and animal health. The overuse and misuse of antibiotics in livestock production have led to an increased propensity for the development of AMR bacterial strains in animals, which can be spread to humans through the consumption of contaminated animal products, direct contact, or environmental exposure. This review aims to summarize the development and transmission of AMR in livestock, explore its underlying mechanisms and impact on human and animal health, and discuss current practices and potential strategies for mitigation and prevention. Methods: For this narrative review, we searched articles on PubMed and Google Scholar using the terms antibiotic resistance, livestock, and environment, alone or in combination. Results: The history of antibiotic use in livestock and its link to increased AMR, along with the involved mechanisms, including the enzymatic breakdown of antibiotics, alterations in bacterial targets, horizontal gene transfer, and efflux pumps, are important. Antibiotics in livestock are used for growth promotion, disease prevention and control, and metaphylactic use. The role of livestock and the environment as reservoirs for resistant pathogens, their impact on human health, chronic infections, allergic reactions, toxicity, and the development of untreatable diseases is important to understand AMR. Conclusions: Given the widespread use of antibiotics and the potential consequences of AMR, collaborative global efforts, increased public awareness, coordinated regulations, and advancements in biological technology are required to mitigate the threat AMR poses to human and animal health. Regulatory solutions and the development of new therapeutic alternatives like antimicrobial peptides and bacteriophage therapy, and preventive measures such as DNA and mRNA vaccines, are future perspectives. Full article
(This article belongs to the Special Issue Livestock Antibiotic Use and Resistance)
19 pages, 7883 KiB  
Article
Differential Effects of Human Immunodeficiency Virus Nef Variants on Pulmonary Vascular Endothelial Cell Dysfunction
by Amanda K. Garcia, Noelia C. Lujea, Javaria Baig, Eli Heath, Minh T. Nguyen, Mario Rodriguez, Preston Campbell, Isabel Castro Piedras, Edu Suarez Martinez and Sharilyn Almodovar
Infect. Dis. Rep. 2025, 17(3), 65; https://doi.org/10.3390/idr17030065 - 6 Jun 2025
Viewed by 738
Abstract
Background: Human Immunodeficiency Virus (HIV) infections remain a source of cardiopulmonary complications among people receiving antiretroviral therapy. Still to this day, pulmonary hypertension (PH) severely affects the prognosis in this patient population. The persistent expression of HIV proteins, even during viral suppression, has [...] Read more.
Background: Human Immunodeficiency Virus (HIV) infections remain a source of cardiopulmonary complications among people receiving antiretroviral therapy. Still to this day, pulmonary hypertension (PH) severely affects the prognosis in this patient population. The persistent expression of HIV proteins, even during viral suppression, has been implicated in vascular dysfunction; however, little is known about the specific effects of these proteins on the pulmonary vasculature. This study investigates the impact of Nef variants derived from HIV-positive pulmonary hypertensive and normotensive donors on pulmonary vascular cells in vitro. Methods: We utilized well-characterized Nef molecular constructs to examine their effects on cell adhesion molecule gene expression (ICAM1, VCAM1, and SELE), pro-apoptotic gene expression (BAX, BAK), and vasoconstrictive endothelin-1 (EDN1) gene expression in endothelial nitric oxide synthase (eNOS) nitric oxide and the production and secretion of pro-inflammatory cytokines over 24, 48, and 72 h post-transfections with Nef variants. Results: HIV Nef variants SF2, NA7, and PH-associated Fr17 and 3236 induced a significant increase in adhesion molecule gene expression of ICAM1, VCAM1, and SELE. Pulmonary normotensive Nef 1138 decreased ICAM1 gene expression, but had increased VCAM1. PH Nef ItVR showed a consistent decrease in ICAM1 and no changes in SELE and VCAM1 expression. Further gene expression analyses of pro-apoptotic genes BAX and BAK demonstrated that Nef NA7, SF2, normotensive Nef 1138, and PH Nef Fr8, Fr9, Fr17, and 3236 variants significantly increased gene expression for apoptosis. Normotensive Nef 1138, as well as PH Nef Fr9 and ItVR, all displayed a statistically significant decrease in BAX expression. The expression of EDN1 had a statistically significant increase in samples treated with Nef NA7, SF2, normotensive Nef 2044 and PH Nef 3236, Fr17, and Fr8. Notably, PH-associated Nef variants sustained pro-inflammatory cytokine production, including IL-2, IL-4, and TNFα, while anti-inflammatory cytokine levels remained insufficient. Furthermore, eNOS was transiently upregulated by all Nef variants except for normotensive Nef 2044. Conclusions: The distinct effects of Nef variants on pulmonary vascular cell biology highlight the complex interplay between Nef, host factors, and vascular pathogenesis according to the variants. Full article
(This article belongs to the Special Issue Pulmonary Vascular Manifestations of Infectious Diseases)
Show Figures

Figure 1

20 pages, 4809 KiB  
Article
In Vitro Efficacy of PEI-Derived Lipopolymers in Silencing of Toxic Proteins in a Neuronal Model of Huntington’s Disease
by Luis C. Morales, Luv Modi, Saba Abbasi Dezfouli, Amarnath Praphakar Rajendran, Remant Kc, Vaibhavi Kadam, Simonetta Sipione and Hasan Uludağ
Pharmaceutics 2025, 17(6), 726; https://doi.org/10.3390/pharmaceutics17060726 - 30 May 2025
Viewed by 784
Abstract
Background: Huntington’s Disease (HD) is a neurodegenerative disorder caused by an abnormal extension of a CAG repeat stretch located in the exon 1 of the HTT (IT15) gene, leading to production of a mutated and misfolded Huntingtin protein (muHTT) with an abnormally elongated [...] Read more.
Background: Huntington’s Disease (HD) is a neurodegenerative disorder caused by an abnormal extension of a CAG repeat stretch located in the exon 1 of the HTT (IT15) gene, leading to production of a mutated and misfolded Huntingtin protein (muHTT) with an abnormally elongated polyglutamine (polyQ) region. This mutation causes muHTT to oligomerize and aggregate in the brain, particularly in the striatum and cortex, causing alterations in intracellular trafficking, caspase activation, and ganglioside metabolism, ultimately leading to neuronal damage and death and causing signs and symptoms such as chorea and cognitive dysfunction. Currently, there is no available cure for HD patients; hence, there is a strong need to look for effective therapies. Methods: This study aims to investigate the efficacy of siRNA-containing nano-engineered lipopolymers in selectively silencing the HTT expression in a neuronal model expressing a chimeric protein formed by the human mutated exon 1 of the HTT gene, tagged with GFP. Toxicity of lipopolymers was assessed using MTT assay, while efficacy of silencing was monitored using qRT-PCR, as well as Western blotting/flow cytometry. Changes in muHTT-GFP aggregation were observed using fluorescence microscopy and image analyses. Results: Here, we show that engineered lipopolymers can be used as delivery vehicles for specific siRNAs, decreasing the transcription of the mutated gene, as well as the muHTT protein production and aggregation, with Leu-Fect C being the most effective candidate amongst the assessed lipopolymers. Conclusions: Our findings have profound implications for genetic disorder therapies, highlighting the potential of nano-engineered materials for silencing mutant genes and facilitating molecular transfection across cellular barriers. This successful in vitro study paves the way for future in vivo investigations with preclinical models, offering hope for previously considered incurable diseases such as HD. Full article
Show Figures

Figure 1

25 pages, 3056 KiB  
Article
 High KYNU Expression Is Associated with Poor Prognosis, KEAP1/STK11 Mutations, and Immunosuppressive Metabolism in Patient-Derived but Not Murine Lung Adenocarcinomas
by Ling Cai, Thomas J. Rogers, Reza Mousavi Jafarabad, Hieu Vu, Chendong Yang, Nicole Novaresi, Ana Galán-Cobo, Luc Girard, Edwin J. Ostrin, Johannes F. Fahrmann, Jiyeon Kim, John V. Heymach, Kathryn A. O’Donnell, Guanghua Xiao, Yang Xie, Ralph J. DeBerardinis and John D. Minna
Cancers 2025, 17(10), 1681; https://doi.org/10.3390/cancers17101681 - 16 May 2025
Viewed by 928
Abstract
Background/Objectives: We aimed to discover genes with bimodal expression linked to patient outcomes, to reveal underlying oncogenotypes and identify new therapeutic insights in lung adenocarcinoma (LUAD). Methods: We performed meta-analysis to screen LUAD datasets for prognostic genes with bimodal expression patterns. Kynureninase (KYNU), [...] Read more.
Background/Objectives: We aimed to discover genes with bimodal expression linked to patient outcomes, to reveal underlying oncogenotypes and identify new therapeutic insights in lung adenocarcinoma (LUAD). Methods: We performed meta-analysis to screen LUAD datasets for prognostic genes with bimodal expression patterns. Kynureninase (KYNU), a key enzyme in tryptophan catabolism, emerged as a top candidate. We then examined its relationship with LUAD mutations, metabolic alterations, immune microenvironment states, and expression patterns in human and mouse models using bulk and single-cell transcriptomics, metabolomics, and preclinical model datasets. Pan-cancer prognostic associations were also assessed. Results: Model-based clustering of KYNU expression outperformed median-based dichotomization in prognostic accuracy. KYNU was elevated in tumors with KEAP1 and STK11 co-mutations but remained a strong independent prognostic marker. Metabolomic analysis showed that KYNU-high tumors had increased anthranilic acid, a catalytic product, while maintaining stable kynurenine levels, suggesting a compensatory mechanism sustaining immunosuppressive signaling. Single-cell and bulk data showed KYNU expression was cancer cell-intrinsic in immune-cold tumors and myeloid-derived in immune-infiltrated tumors. In murine LUAD models, Kynu expression was predominantly immune-derived and uncoupled from Nrf2/Lkb1 signaling, indicating poor model fidelity. KYNU’s prognostic associations extended across cancer types, with poor outcomes in pancreatic and kidney cancers but favorable outcomes in melanoma, underscoring the need for lineage-specific considerations in therapy development. Conclusions:KYNU is a robust prognostic biomarker and potential immunometabolic target in LUAD, especially in STK11 and KEAP1 co-mutated tumors. Its cancer cell-intrinsic expression and immunosuppressive metabolic phenotype offer translational potential, though species-specific expression patterns pose challenges for preclinical modeling. Full article
Show Figures

Figure 1

20 pages, 279 KiB  
Review
Radon Exposure and Cancer Risk: Assessing Genetic and Protein Markers in Affected Populations
by Yerlan Kashkinbayev, Baglan Kazhiyakhmetova, Nursulu Altaeva, Meirat Bakhtin, Pavel Tarlykov, Elena Saifulina, Moldir Aumalikova, Danara Ibrayeva and Aidos Bolatov
Biology 2025, 14(5), 506; https://doi.org/10.3390/biology14050506 - 6 May 2025
Viewed by 1149
Abstract
Radon is an inert gas produced by the radioactive decay of uranium-238, commonly found in the environment. Radon and its decay products are the main sources of human exposure to radiation from natural sources. When inhaled, radon’s alpha particles impact lung tissue, potentially [...] Read more.
Radon is an inert gas produced by the radioactive decay of uranium-238, commonly found in the environment. Radon and its decay products are the main sources of human exposure to radiation from natural sources. When inhaled, radon’s alpha particles impact lung tissue, potentially causing lung cancer by damaging DNA and altering oxidative processes. This review article addresses the need for a deeper understanding of the genetic and molecular changes associated with radon-induced lung cancer, aiming to clarify key genetic mutations and protein markers linked to carcinogenesis. Particular attention in recent studies has been given to mutations in tumor suppressor genes (RASSF1, TP53), oncogenes (KRAS, EGFR), and changes in the expression levels of protein biomarkers associated with inflammation, stress, and apoptosis. Identifying these markers is critical for developing effective screening methods for radon-induced lung cancer, enabling timely identification of high-risk patients and supporting effective preventive strategies. Summarizing current genetic and protein biomarkers, this review highlights the importance of a comprehensive approach to studying radon-induced carcinogenesis. Understanding these molecular mechanisms could ultimately improve early diagnostic methods and enhance therapy for cancers associated with radon exposure. Full article
136 pages, 24434 KiB  
Perspective
Alzheimer’s Is a Multiform Disease of Sustained Neuronal Integrated Stress Response Driven by the C99 Fragment Generated Independently of AβPP; Proteolytic Production of Aβ Is Suppressed in AD-Affected Neurons: Evolution of a Theory
by Vladimir Volloch and Sophia Rits-Volloch
Int. J. Mol. Sci. 2025, 26(9), 4252; https://doi.org/10.3390/ijms26094252 - 29 Apr 2025
Viewed by 1349
Abstract
The present Perspective analyzes the remarkable evolution of the Amyloid Cascade Hypothesis 2.0 (ACH2.0) theory of Alzheimer’s disease (AD) since its inception a few years ago, as reflected in the diminishing role of amyloid-beta (Aβ) in the disease. In the initial iteration of [...] Read more.
The present Perspective analyzes the remarkable evolution of the Amyloid Cascade Hypothesis 2.0 (ACH2.0) theory of Alzheimer’s disease (AD) since its inception a few years ago, as reflected in the diminishing role of amyloid-beta (Aβ) in the disease. In the initial iteration of the ACH2.0, Aβ-protein-precursor (AβPP)-derived intraneuronal Aβ (iAβ), accumulated to neuronal integrated stress response (ISR)-eliciting levels, triggers AD. The neuronal ISR, in turn, activates the AβPP-independent production of its C99 fragment that is processed into iAβ, which drives the disease. The second iteration of the ACH2.0 stemmed from the realization that AD is, in fact, a disease of the sustained neuronal ISR. It introduced two categories of AD—conventional and unconventional—differing mainly in the manner of their causation. The former is caused by the neuronal ISR triggered by AβPP-derived iAβ, whereas in the latter, the neuronal ISR is elicited by stressors distinct from AβPP-derived iAβ and arising from brain trauma, viral and bacterial infections, and various types of inflammation. Moreover, conventional AD always contains an unconventional component, and in both forms, the disease is driven by iAβ generated independently of AβPP. In its third, the current, iteration, the ACH2.0 posits that proteolytic production of Aβ is suppressed in AD-affected neurons and that the disease is driven by C99 generated independently of AβPP. Suppression of Aβ production in AD seems an oxymoron: Aβ is equated with AD, and the later is inconceivable without the former in an ingrained Amyloid Cascade Hypothesis (ACH)-based notion. But suppression of Aβ production in AD-affected neurons is where the logic leads, and to follow it we only need to overcome the inertia of the preexisting assumptions. Moreover, not only is the generation of Aβ suppressed, so is the production of all components of the AβPP proteolytic pathway. This assertion is not a quantum leap (unless overcoming the inertia counts as such): the global cellular protein synthesis is severely suppressed under the neuronal ISR conditions, and there is no reason for constituents of the AβPP proteolytic pathway to be exempted, and they, apparently, are not, as indicated by the empirical data. In contrast, tau protein translation persists in AD-affected neurons under ISR conditions because the human tau mRNA contains an internal ribosomal entry site in its 5′UTR. In current mouse models, iAβ derived from AβPP expressed exogenously from human transgenes elicits the neuronal ISR and thus suppresses its own production. Its levels cannot principally reach AD pathology-causing levels regardless of the number of transgenes or the types of FAD mutations that they (or additional transgenes) carry. Since the AβPP-independent C99 production pathway is inoperative in mice, the current transgenic models have no potential for developing the full spectrum of AD pathology. What they display are only effects of the AβPP-derived iAβ-elicited neuronal ISR. The paper describes strategies to construct adequate transgenic AD models. It also details the utilization of human neuronal cells as the only adequate model system currently available for conventional and unconventional AD. The final alteration of the ACH2.0, introduced in the present Perspective, is that AβPP, which supports neuronal functionality and viability, is, after all, potentially produced in AD-affected neurons, albeit not conventionally but in an ISR-driven and -compatible process. Thus, the present narrative begins with the “omnipotent” Aβ capable of both triggering and driving the disease and ends up with this peptide largely dislodged from its pedestal and retaining its central role in triggering the disease in only one, although prevalent (conventional), category of AD (and driving it in none). Among interesting inferences of the present Perspective is the determination that “sporadic AD” is not sporadic at all (“non-familial” would be a much better designation). The term has fatalistic connotations, implying that the disease can strike at random. This is patently not the case: The conventional disease affects a distinct subpopulation, and the basis for unconventional AD is well understood. Another conclusion is that, unless prevented, the occurrence of conventional AD is inevitable given a sufficiently long lifespan. This Perspective also defines therapeutic directions not to be taken as well as auspicious ways forward. The former category includes ACH-based drugs (those interfering with the proteolytic production of Aβ and/or depleting extracellular Aβ). They are legitimate (albeit inefficient) preventive agents for conventional AD. There is, however, a proverbial snowball’s chance in hell of them being effective in symptomatic AD, lecanemab, donanemab, and any other “…mab” or “…stat” notwithstanding. They comprise Aβ-specific antibodies, inhibitors of beta- and gamma-secretase, and modulators of the latter. In the latter category, among ways to go are the following: (1) Depletion of iAβ, which, if sufficiently “deep”, opens up a tantalizing possibility of once-in-a-lifetime preventive transient treatment for conventional AD and aging-associated cognitive decline, AACD. (2) Composite therapy comprising the degradation of C99/iAβ and concurrent inhibition of the neuronal ISR. A single transient treatment could be sufficient to arrest the progression of conventional AD and prevent its recurrence for life. Multiple recurrent treatments would achieve the same outcome in unconventional AD. Alternatively, the sustained reduction/removal of unconventional neuronal ISR-eliciting stressors through the elimination of their source would convert unconventional AD into conventional one, preventable/treatable by a single transient administration of the composite C99/iAβ depletion/ISR suppression therapy. Efficient and suitable ISR inhibitors are available, and it is explicitly clear where to look for C99/iAβ-specific targeted degradation agents—activators of BACE1 and, especially, BACE2. Directly acting C99/iAβ-specific degradation agents such as proteolysis-targeting chimeras (PROTACs) and molecular-glue degraders (MGDs) are also viable options. (3) A circumscribed shift (either upstream or downstream) of the position of transcription start site (TSS) of the human AβPP gene, or, alternatively, a gene editing-mediated excision or replacement of a small, defined segment of its portion encoding 5′-untranslated region of AβPP mRNA; targeting AβPP RNA with anti-antisense oligonucleotides is another possibility. If properly executed, these RNA-based strategies would not interfere with the protein-coding potential of AβPP mRNA, and each would be capable of both preventing and stopping the AβPP-independent generation of C99 and thus of either preventing AD or arresting the progression of the disease in its conventional and unconventional forms. The paper is interspersed with “validation” sections: every conceptually significant notion is either validated by the existing data or an experimental procedure validating it is proposed. Full article
Show Figures

Figure 1

Back to TopTop