ijms-logo

Journal Browser

Journal Browser

Traumatic Brain Injury/Chronic Traumatic Encephalopathy as Cause of Alzheimer’s Disease: Physics and Molecular Biology in the Genesis of Neurodegeneration?

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Neurobiology".

Deadline for manuscript submissions: 20 July 2025 | Viewed by 10331

Special Issue Editor

Special Issue Information

Dear Colleagues,

Background

Neurodegenerative diseases encompass a group of nosological entities that manifest either as a decline in the cognitive capacity (e.g. Alzheimer’s Disease [AD], Fronto-Temporal Dementia [FTD], Lewy Body Dementia [LBD]) or as an altered motor function with variable but disordered movement patterns (e.g. Parkinson’s Disease [PD], Huntington’s Disease [HD], Multiple System Atrophy [MSA]) of the affected individuals. The etiological factor behind all these well recognised clinical presentations is the substantial degeneration of the neurons, whether these are located within the brain or the spinal cord. Several intra- (e.g. neurofibrillary tangles [NFTs], Lewy bodies) and extracellular deposits (e.g. senile [neuritic] plaques) have been described until now and they have been implicated in the damage of the neuronal cells. Furthermore, specific protein aggregates have been found as components of these abnormal structures. Thus, it has been revealed that neurofibrillary tangles contain hyperphosphorylated tau-protein, Lewy bodies comprise a-synuclein, while senile [neuritic] plaques are composed mainly by b-amyloid accumulates. Recently, scientific society has paid particular attention to conditions named traumatic brain injury (TBI) and chronic traumatic encephalopathy (CTE; the neurobehavioral profile after the occurrence of repeated TBIs), as these has been shown to be associated with some of the above described neurodegenerative diseases (e.g. Alzheimer’s disease, Parkinson’s disease). In particular, common features described both in TBI/CTE and Alzheimer’s disease include dementia as well as morphological changes, both at the macroscopic level with brain atrophy and at the microscopic level with the presence of phosphorylated tau inclusions and senile [neuritic] plaques.

Summary

Although a lot of progress has been attained during the last few years in the field of neurodegenerative diseases, the actual pathogenetic mechanism that leads to their development has not been fully elucidated. In this context, several studies have also tried to understand whether there is a connection between Traumatic Brain Injury (TBI)/Chronic Traumatic Encephalopathy (CTE) and Alzheimer’s disease, considering their similarities in the clinical manifestations and histopathological characteristics, but without the expected outcome. Thus, the question that has to be answered still remains; could physical stress, in the form of a brain trauma (TBI/CTE), be the reason for the subsequent biological changes taking place inside the neurons, leading substantially to their damage and death (manifested as Alzheimer’s disease)? In other words, is it possible to establish a "cause-effect" relationship, between TBI/CTE (cause) and Alzheimer’s disease (effect)? “Hic Rhodus, hic salta”.

Prof. Dr. Dimitrios Kanakis
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • traumatic brain injury (TBI)
  • chronic traumatic encephalopathy (CTE)
  • head impacts
  • Alzheimer's disease (AD)
  • neurodegeneration

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

18 pages, 3207 KiB  
Article
Early Blood–Brain Barrier Impairment as a Pathological Hallmark in a Novel Model of Closed-Head Concussive Brain Injury (CBI) in Mice
by Stefan J. Blaschke, Nora Rautenberg, Heike Endepols, Aileen Jendro, Jens Konrad, Susan Vlachakis, Dirk Wiedermann, Michael Schroeter, Bernd Hoffmann, Rudolf Merkel, Niklas Marklund, Gereon R. Fink and Maria A. Rueger
Int. J. Mol. Sci. 2024, 25(9), 4837; https://doi.org/10.3390/ijms25094837 - 29 Apr 2024
Viewed by 1642
Abstract
Concussion, caused by a rotational acceleration/deceleration injury mild enough to avoid structural brain damage, is insufficiently captured in recent preclinical models, hampering the relation of pathophysiological findings on the cellular level to functional and behavioral deficits. We here describe a novel model of [...] Read more.
Concussion, caused by a rotational acceleration/deceleration injury mild enough to avoid structural brain damage, is insufficiently captured in recent preclinical models, hampering the relation of pathophysiological findings on the cellular level to functional and behavioral deficits. We here describe a novel model of unrestrained, single vs. repetitive concussive brain injury (CBI) in male C56Bl/6j mice. Longitudinal behavioral assessments were conducted for up to seven days afterward, alongside the evaluation of structural cerebral integrity by in vivo magnetic resonance imaging (MRI, 9.4 T), and validated ex vivo by histology. Blood–brain barrier (BBB) integrity was analyzed by means of fluorescent dextran- as well as immunoglobulin G (IgG) extravasation, and neuroinflammatory processes were characterized both in vivo by positron emission tomography (PET) using [18F]DPA-714 and ex vivo using immunohistochemistry. While a single CBI resulted in a defined, subacute neuropsychiatric phenotype, longitudinal cognitive testing revealed a marked decrease in spatial cognition, most pronounced in mice subjected to CBI at high frequency (every 48 h). Functional deficits were correlated to a parallel disruption of the BBB, (R2 = 0.29, p < 0.01), even detectable by a significant increase in hippocampal uptake of [18F]DPA-714, which was not due to activation of microglia, as confirmed immunohistochemically. Featuring a mild but widespread disruption of the BBB without evidence of macroscopic damage, this model induces a characteristic neuro-psychiatric phenotype that correlates to the degree of BBB disruption. Based on these findings, the BBB may function as both a biomarker of CBI severity and as a potential treatment target to improve recovery from concussion. Full article
Show Figures

Figure 1

Review

Jump to: Research, Other

16 pages, 3114 KiB  
Review
Assessing Mild Traumatic Brain Injury-Associated Blood–Brain Barrier (BBB) Damage and Restoration Using Late-Phase Perfusion Analysis by 3D ASL MRI: Implications for Predicting Progressive Brain Injury in a Focused Review
by Charles R. Joseph
Int. J. Mol. Sci. 2024, 25(21), 11522; https://doi.org/10.3390/ijms252111522 - 26 Oct 2024
Cited by 1 | Viewed by 1503
Abstract
Mild traumatic brain injury (mTBI) is a common occurrence around the world, associated with a variety of blunt force and torsion injuries affecting all age groups. Most never reach medical attention, and the identification of acute injury and later clearance to return to [...] Read more.
Mild traumatic brain injury (mTBI) is a common occurrence around the world, associated with a variety of blunt force and torsion injuries affecting all age groups. Most never reach medical attention, and the identification of acute injury and later clearance to return to usual activities is relegated to clinical evaluation—particularly in sports injuries. Advanced structural imaging is rarely performed due to the usual absence of associated acute anatomic/hemorrhagic changes. This review targets physiologic imaging techniques available to identify subtle blood–brain barrier dysfunction and white matter tract shear injury and their association with chronic traumatic encephalopathy. These techniques provide needed objective measures to assure recovery from injury in those patients with persistent cognitive/emotional symptoms and in the face of repetitive mTBI. Full article
Show Figures

Figure 1

19 pages, 1290 KiB  
Review
Chronic Traumatic Encephalopathy as the Course of Alzheimer’s Disease
by Magdalena Pszczołowska, Kamil Walczak, Weronika Miśków, Katarzyna Antosz, Joanna Batko, Donata Kurpas and Jerzy Leszek
Int. J. Mol. Sci. 2024, 25(9), 4639; https://doi.org/10.3390/ijms25094639 - 24 Apr 2024
Cited by 2 | Viewed by 2744
Abstract
This editorial investigates chronic traumatic encephalopathy (CTE) as a course of Alzheimer’s disease (AD). CTE is a debilitating neurodegenerative disease that is the result of repeated mild traumatic brain injury (TBI). Many epidemiological studies show that experiencing a TBI in early or middle [...] Read more.
This editorial investigates chronic traumatic encephalopathy (CTE) as a course of Alzheimer’s disease (AD). CTE is a debilitating neurodegenerative disease that is the result of repeated mild traumatic brain injury (TBI). Many epidemiological studies show that experiencing a TBI in early or middle life is associated with an increased risk of dementia later in life. Chronic traumatic encephalopathy (CTE) and Alzheimer’s disease (AD) present a series of similar neuropathological features that were investigated in this work like recombinant tau into filaments or the accumulation and aggregation of Aβ protein. However, these two conditions differ from each other in brain–blood barrier damage. The purpose of this review was to evaluate information about CTE and AD from various articles, focusing especially on new therapeutic possibilities for the improvement in cognitive skills. Full article
Show Figures

Figure 1

24 pages, 1828 KiB  
Review
The Role of Oxygen Homeostasis and the HIF-1 Factor in the Development of Neurodegeneration
by Elena V. Mitroshina and Maria V. Vedunova
Int. J. Mol. Sci. 2024, 25(9), 4581; https://doi.org/10.3390/ijms25094581 - 23 Apr 2024
Cited by 11 | Viewed by 2825
Abstract
Understanding the molecular underpinnings of neurodegeneration processes is a pressing challenge for medicine and neurobiology. Alzheimer’s disease (AD) and Parkinson’s disease (PD) represent the most prevalent forms of neurodegeneration. To date, a substantial body of experimental evidence has strongly implicated hypoxia in the [...] Read more.
Understanding the molecular underpinnings of neurodegeneration processes is a pressing challenge for medicine and neurobiology. Alzheimer’s disease (AD) and Parkinson’s disease (PD) represent the most prevalent forms of neurodegeneration. To date, a substantial body of experimental evidence has strongly implicated hypoxia in the pathogenesis of numerous neurological disorders, including AD, PD, and other age-related neurodegenerative conditions. Hypoxia-inducible factor (HIF) is a transcription factor that triggers a cell survival program in conditions of oxygen deprivation. The involvement of HIF-1α in neurodegenerative processes presents a complex and sometimes contradictory picture. This review aims to elucidate the current understanding of the interplay between hypoxia and the development of AD and PD, assess the involvement of HIF-1 in their pathogenesis, and summarize promising therapeutic approaches centered on modulating the activity of the HIF-1 complex. Full article
Show Figures

Figure 1

Other

Jump to: Research, Review

136 pages, 13550 KiB  
Perspective
Alzheimer’s Is a Multiform Disease of Sustained Neuronal Integrated Stress Response Driven by the C99 Fragment Generated Independently of AβPP; Proteolytic Production of Aβ Is Suppressed in AD-Affected Neurons: Evolution of a Theory
by Vladimir Volloch and Sophia Rits-Volloch
Int. J. Mol. Sci. 2025, 26(9), 4252; https://doi.org/10.3390/ijms26094252 (registering DOI) - 29 Apr 2025
Abstract
The present Perspective analyzes the remarkable evolution of the Amyloid Cascade Hypothesis 2.0 (ACH2.0) theory of Alzheimer’s disease (AD) since its inception a few years ago, as reflected in the diminishing role of amyloid-beta (Aβ) in the disease. In the initial iteration of [...] Read more.
The present Perspective analyzes the remarkable evolution of the Amyloid Cascade Hypothesis 2.0 (ACH2.0) theory of Alzheimer’s disease (AD) since its inception a few years ago, as reflected in the diminishing role of amyloid-beta (Aβ) in the disease. In the initial iteration of the ACH2.0, Aβ-protein-precursor (AβPP)-derived intraneuronal Aβ (iAβ), accumulated to neuronal integrated stress response (ISR)-eliciting levels, triggers AD. The neuronal ISR, in turn, activates the AβPP-independent production of its C99 fragment that is processed into iAβ, which drives the disease. The second iteration of the ACH2.0 stemmed from the realization that AD is, in fact, a disease of the sustained neuronal ISR. It introduced two categories of AD—conventional and unconventional—differing mainly in the manner of their causation. The former is caused by the neuronal ISR triggered by AβPP-derived iAβ, whereas in the latter, the neuronal ISR is elicited by stressors distinct from AβPP-derived iAβ and arising from brain trauma, viral and bacterial infections, and various types of inflammation. Moreover, conventional AD always contains an unconventional component, and in both forms, the disease is driven by iAβ generated independently of AβPP. In its third, the current, iteration, the ACH2.0 posits that proteolytic production of Aβ is suppressed in AD-affected neurons and that the disease is driven by C99 generated independently of AβPP. Suppression of Aβ production in AD seems an oxymoron: Aβ is equated with AD, and the later is inconceivable without the former in an ingrained Amyloid Cascade Hypothesis (ACH)-based notion. But suppression of Aβ production in AD-affected neurons is where the logic leads, and to follow it we only need to overcome the inertia of the preexisting assumptions. Moreover, not only is the generation of Aβ suppressed, so is the production of all components of the AβPP proteolytic pathway. This assertion is not a quantum leap (unless overcoming the inertia counts as such): the global cellular protein synthesis is severely suppressed under the neuronal ISR conditions, and there is no reason for constituents of the AβPP proteolytic pathway to be exempted, and they, apparently, are not, as indicated by the empirical data. In contrast, tau protein translation persists in AD-affected neurons under ISR conditions because the human tau mRNA contains an internal ribosomal entry site in its 5′UTR. In current mouse models, iAβ derived from AβPP expressed exogenously from human transgenes elicits the neuronal ISR and thus suppresses its own production. Its levels cannot principally reach AD pathology-causing levels regardless of the number of transgenes or the types of FAD mutations that they (or additional transgenes) carry. Since the AβPP-independent C99 production pathway is inoperative in mice, the current transgenic models have no potential for developing the full spectrum of AD pathology. What they display are only effects of the AβPP-derived iAβ-elicited neuronal ISR. The paper describes strategies to construct adequate transgenic AD models. It also details the utilization of human neuronal cells as the only adequate model system currently available for conventional and unconventional AD. The final alteration of the ACH2.0, introduced in the present Perspective, is that AβPP, which supports neuronal functionality and viability, is, after all, potentially produced in AD-affected neurons, albeit not conventionally but in an ISR-driven and -compatible process. Thus, the present narrative begins with the “omnipotent” Aβ capable of both triggering and driving the disease and ends up with this peptide largely dislodged from its pedestal and retaining its central role in triggering the disease in only one, although prevalent (conventional), category of AD (and driving it in none). Among interesting inferences of the present Perspective is the determination that “sporadic AD” is not sporadic at all (“non-familial” would be a much better designation). The term has fatalistic connotations, implying that the disease can strike at random. This is patently not the case: The conventional disease affects a distinct subpopulation, and the basis for unconventional AD is well understood. Another conclusion is that, unless prevented, the occurrence of conventional AD is inevitable given a sufficiently long lifespan. This Perspective also defines therapeutic directions not to be taken as well as auspicious ways forward. The former category includes ACH-based drugs (those interfering with the proteolytic production of Aβ and/or depleting extracellular Aβ). They are legitimate (albeit inefficient) preventive agents for conventional AD. There is, however, a proverbial snowball’s chance in hell of them being effective in symptomatic AD, lecanemab, donanemab, and any other “…mab” or “…stat” notwithstanding. They comprise Aβ-specific antibodies, inhibitors of beta- and gamma-secretase, and modulators of the latter. In the latter category, among ways to go are the following: (1) Depletion of iAβ, which, if sufficiently “deep”, opens up a tantalizing possibility of once-in-a-lifetime preventive transient treatment for conventional AD and aging-associated cognitive decline, AACD. (2) Composite therapy comprising the degradation of C99/iAβ and concurrent inhibition of the neuronal ISR. A single transient treatment could be sufficient to arrest the progression of conventional AD and prevent its recurrence for life. Multiple recurrent treatments would achieve the same outcome in unconventional AD. Alternatively, the sustained reduction/removal of unconventional neuronal ISR-eliciting stressors through the elimination of their source would convert unconventional AD into conventional one, preventable/treatable by a single transient administration of the composite C99/iAβ depletion/ISR suppression therapy. Efficient and suitable ISR inhibitors are available, and it is explicitly clear where to look for C99/iAβ-specific targeted degradation agents—activators of BACE1 and, especially, BACE2. Directly acting C99/iAβ-specific degradation agents such as proteolysis-targeting chimeras (PROTACs) and molecular-glue degraders (MGDs) are also viable options. (3) A circumscribed shift (either upstream or downstream) of the position of transcription start site (TSS) of the human AβPP gene, or, alternatively, a gene editing-mediated excision or replacement of a small, defined segment of its portion encoding 5′-untranslated region of AβPP mRNA; targeting AβPP RNA with anti-antisense oligonucleotides is another possibility. If properly executed, these RNA-based strategies would not interfere with the protein-coding potential of AβPP mRNA, and each would be capable of both preventing and stopping the AβPP-independent generation of C99 and thus of either preventing AD or arresting the progression of the disease in its conventional and unconventional forms. The paper is interspersed with “validation” sections: every conceptually significant notion is either validated by the existing data or an experimental procedure validating it is proposed. Full article
Back to TopTop