Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,638)

Search Parameters:
Keywords = hulls

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4437 KiB  
Review
Development and Core Technologies of Long-Range Underwater Gliders: A Review
by Xu Wang, Changyu Wang, Ke Zhang, Kai Ren and Jiancheng Yu
J. Mar. Sci. Eng. 2025, 13(8), 1509; https://doi.org/10.3390/jmse13081509 - 5 Aug 2025
Abstract
Long-range underwater gliders (LRUGs) have emerged as essential platforms for sustained and autonomous observation in deep and remote marine environments. This paper provides a comprehensive review of their developmental status, performance characteristics, and application progress. Emphasis is placed on two critical enabling technologies [...] Read more.
Long-range underwater gliders (LRUGs) have emerged as essential platforms for sustained and autonomous observation in deep and remote marine environments. This paper provides a comprehensive review of their developmental status, performance characteristics, and application progress. Emphasis is placed on two critical enabling technologies that fundamentally determine endurance: lightweight, pressure-resistant hull structures and high-efficiency buoyancy-driven propulsion systems. First, the role of carbon fiber composite pressure hulls in enhancing energy capacity and structural integrity is examined, with attention to material selection, fabrication methods, compressibility compatibility, and antifouling resistance. Second, the evolution of buoyancy control systems is analyzed, covering the transition to hybrid active–passive architectures, rapid-response actuators based on smart materials, thermohaline energy harvesting, and energy recovery mechanisms. Based on this analysis, the paper identifies four key technical challenges and proposes strategic research directions, including the development of ultralight, high-strength structural materials; integrated multi-mechanism antifouling technologies; energy-optimized coordinated buoyancy systems; and thermally adaptive glider platforms. Achieving a system architecture with ultra-long endurance, enhanced energy efficiency, and robust environmental adaptability is anticipated to be a foundational enabler for future long-duration missions and globally distributed underwater glider networks. Full article
(This article belongs to the Section Ocean Engineering)
34 pages, 7007 KiB  
Article
Computational Investigation of Hull Vane Effects on Resistance and Propulsive Performance of a Patrol Vessel
by Muhammad Irfan Shahmi bin Abdul Ra’uf, Iwan Mustaffa Kamal, Nor Adlina Othman and Yaseen Adnan Ahmed
J. Mar. Sci. Eng. 2025, 13(8), 1507; https://doi.org/10.3390/jmse13081507 - 5 Aug 2025
Abstract
This study investigates the effect of Hull Vane® on the total resistance and propulsion performance of a patrol vessel using computational fluid dynamics (CFD). Utilizing SHIPFLOW software, multiple simulations were conducted to evaluate how Hull Vane® position and angle of attack [...] Read more.
This study investigates the effect of Hull Vane® on the total resistance and propulsion performance of a patrol vessel using computational fluid dynamics (CFD). Utilizing SHIPFLOW software, multiple simulations were conducted to evaluate how Hull Vane® position and angle of attack influence hydrodynamic performance. A patrol vessel hull form the MAXSURF’s library was selected to investigate resistance and propulsive performance. Nine (9) configurations (named Cases A to I) of the Hull Vane® were examined based on variations in longitudinal position and angle of attack. A grid independence study was conducted to determine the optimal mesh configuration. Validation was performed using the Holtrop–Mennen power prediction method and MAXSURF. According to this study, results indicate that Hull Vane® configurations significantly reduce total resistance and delivered power at higher vessel speeds, with the best improvement in resistance occurring in Case C and in propulsion power in Case B. Propulsive efficiency was maximized in Case E. Furthermore, the study also demonstrates the potential of Hull Vane® as a practical retrofit for enhancing naval vessel performance and reducing energy consumption. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 6288 KiB  
Article
The Pontoon Design Optimization of a SWATH Vessel for Resistance Reduction
by Chun-Liang Tan, Chi-Min Wu, Chia-Hao Hsu and Shiu-Wu Chau
J. Mar. Sci. Eng. 2025, 13(8), 1504; https://doi.org/10.3390/jmse13081504 - 5 Aug 2025
Abstract
This study applies a deep neural network (DNN) to optimize the 22.5 m pontoon hull form of a small waterplane area twin hull (SWATH) vessel with fin stabilizers, aiming to reduce calm water resistance at a Froude number of 0.8 under even keel [...] Read more.
This study applies a deep neural network (DNN) to optimize the 22.5 m pontoon hull form of a small waterplane area twin hull (SWATH) vessel with fin stabilizers, aiming to reduce calm water resistance at a Froude number of 0.8 under even keel conditions. The vessel’s resistance is simplified into three components: pontoon, strut, and fin stabilizer. Four design parameters define the pontoon geometry: fore-body length, aft-body length, fore-body angle, and aft-body angle. Computational fluid dynamics (CFD) simulations using STAR-CCM+ 2302 provide 1400 resistance data points, including fin stabilizer lift and drag forces at varying angles of attack. These are used to train a DNN in MATLAB 2018a with five hidden layers containing six, eight, nine, eight, and seven neurons. K-fold cross-validation ensures model stability and aids in identifying optimal design parameters. The optimized hull has a 7.8 m fore-body, 6.8 m aft-body, 10° fore-body angle, and 35° aft-body angle. It achieves a 2.2% resistance reduction compared to the baseline. The improvement is mainly due to a reduced Munk moment, which lowers the angle of attack needed by the fin stabilizer, thereby reducing drag. The optimized design provides cost-efficient construction and enhanced payload capacity. This study demonstrates the effectiveness of combining CFD and deep learning for hull form optimization. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

15 pages, 4075 KiB  
Article
Biological Characteristics and Domestication of a Wild Hericium coralloides
by Ji-Ling Song, Ya Xin, Zu-Fa Zhou, Xue-Ping Kang, Yang Zhang, Wei-Dong Yuan and Bin Yu
Horticulturae 2025, 11(8), 917; https://doi.org/10.3390/horticulturae11080917 (registering DOI) - 5 Aug 2025
Abstract
Hericium coralloides is a highly valued gourmet and medicinal species with growing market demand across East Asia, though industrial production remains limited by cultivation challenges. This study investigated the molecular characteristics, biological traits, domestication potential, and cultivation protocols of Hericium coralloides strains collected [...] Read more.
Hericium coralloides is a highly valued gourmet and medicinal species with growing market demand across East Asia, though industrial production remains limited by cultivation challenges. This study investigated the molecular characteristics, biological traits, domestication potential, and cultivation protocols of Hericium coralloides strains collected from the Changbaishan Nature Reserve (Jiling, China). Optimal conditions for mycelial growth included mannose as the preferred carbon source, peptone as the nitrogen source, 30 °C incubation temperature, pH 5.5, and magnesium sulfate as the essential inorganic salt. The fruiting bodies had a protein content of 2.43% g/100 g (fresh sample meter). Total amino acids comprised 53.3% of the total amino acid profile, while essential amino acids accounted for 114.11% relative to non-essential amino acids, indicating high nutritional value. Under optimized domestication conditions—70% hardwood chips, 20% cottonseed hulls, 8% bran, 1% malic acid, and 1% gypsum—bags reached full colonization in 28 days, with a 15-day maturation phase and initial fruiting occurring after 12–14 days. The interval between flushes was 10–12 days. The average yield reached 318.65 ± 31.74 g per bag, with a biological conversion rate of 63.73%. These findings demonstrate that Hericium coralloides possesses significant potential for edible and commercial applications. This study provides a robust theoretical foundation and resource reference for its artificial cultivation, supporting its broader industrial and economic utilization. Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
Show Figures

Figure 1

20 pages, 390 KiB  
Article
Injective Hulls of Infinite Totally Split-Decomposable Metric Spaces
by Maël Pavón
Axioms 2025, 14(8), 606; https://doi.org/10.3390/axioms14080606 - 4 Aug 2025
Abstract
We extend the theory of splits in finite metric spaces to infinite ones. Within this more general framework, we investigate the class of spaces having metrics that are integer-valued and totally split-decomposable, as well as the polyhedral complex structure of their injective hulls. [...] Read more.
We extend the theory of splits in finite metric spaces to infinite ones. Within this more general framework, we investigate the class of spaces having metrics that are integer-valued and totally split-decomposable, as well as the polyhedral complex structure of their injective hulls. For this class, we provide a characterization for the injective hull to be combinatorially equivalent to a CAT(0) cube complex. Intermediate results include the generalization of the decomposition theory introduced by Bandelt and Dress in 1992 as well as results on the tight span of totally split-decomposable metric spaces proved by Huber, Koolen, and Moulton in 2006. Next, using results of Lang from 2013, we obtain proper actions on CAT(0) cube complexes for finitely generated groups endowed with a totally split-decomposable word metric and for which the associated splits satisfy a simple combinatorial property. In the case of Gromov hyperbolic groups, the obtained action is both proper aand co-compact. Finally, we obtain as an application that injective hulls of odd cycles are cell complexes isomorphic to CAT(0) cube complexes. Full article
(This article belongs to the Section Geometry and Topology)
Show Figures

Figure 1

28 pages, 6413 KiB  
Article
Scaling the Dynamic Buckling Behavior of a Box Girder Based on the Finite Similitude Approach
by Chongxi Xu, Zhuo Wang, Xiangshao Kong, Hu Zhou, Cheng Zheng and Weiguo Wu
J. Mar. Sci. Eng. 2025, 13(8), 1496; https://doi.org/10.3390/jmse13081496 - 4 Aug 2025
Abstract
In the design of small-scale test models for hull structures, the directional dimensional analysis method is commonly employed. However, conventional dimensional analysis based on elasticity theory may be insufficient to capture the nonlinear behaviors of structural materials under dynamic loading, which restricts its [...] Read more.
In the design of small-scale test models for hull structures, the directional dimensional analysis method is commonly employed. However, conventional dimensional analysis based on elasticity theory may be insufficient to capture the nonlinear behaviors of structural materials under dynamic loading, which restricts its applicability in ultimate strength tests for small-scale hull structure models. This paper presents a scaling method grounded in the theory of finite similitude. Based on the finite similitude theory, this paper deduces similarity scaling criteria applicable to the static and dynamic responses of box girders and designs a series of trial models of box girders. The scaling criteria are verified and analyzed through numerical tests conducted under static and dynamic loads. On the basis of the numerical test results of dynamic responses, the dynamic response similarity criteria considering the similarity relationship of material constitutive parameters are modified and verified. By applying the static response scaling criteria in this paper to select appropriate materials, the prediction deviation of the box girder trial models under static loads is less than 2%. With the modified dynamic response scaling criteria proposed in this paper, the prediction deviations of each trial model under dynamic loads are less than 2% and 7%. A comprehensive analysis of material parameters was conducted to examine their impact on the nonlinear similarities observed in the processes. To validate the ultimate strength and nonlinear response scaling criterion based on the finite similitude approach, numerical experiments were performed to assess the ultimate strength and dynamic buckling response characteristics of the box girder across various scaling ratios and material parameters. The analysis demonstrated that the ultimate strength scaling criterion and the nonlinear response scaling criterion derived from the finite similitude approach effectively captured material nonlinearity. The results from the small-scale model provided accurate predictions of the ultimate strength of the full-scale model. Full article
(This article belongs to the Special Issue Safety and Reliability of Ship and Ocean Engineering Structures)
Show Figures

Figure 1

22 pages, 292 KiB  
Article
Optimal Linear Codes and Their Hulls
by Stefka Bouyuklieva and Mariya Dzhumalieva-Stoeva
Mathematics 2025, 13(15), 2491; https://doi.org/10.3390/math13152491 - 2 Aug 2025
Viewed by 63
Abstract
The hull of a linear code C is the intersection of C with its dual code. The goal is to study the dimensions of the hulls of optimal binary and ternary linear codes for a given length and dimension. The focus is on [...] Read more.
The hull of a linear code C is the intersection of C with its dual code. The goal is to study the dimensions of the hulls of optimal binary and ternary linear codes for a given length and dimension. The focus is on the lengths at which self-orthogonal (respectively, LCD) optimal codes exist at fixed dimension. Full article
(This article belongs to the Special Issue Mathematics for Algebraic Coding Theory and Cryptography)
26 pages, 1567 KiB  
Article
A CDC–ANFIS-Based Model for Assessing Ship Collision Risk in Autonomous Navigation
by Hee-Jin Lee and Ho Namgung
J. Mar. Sci. Eng. 2025, 13(8), 1492; https://doi.org/10.3390/jmse13081492 - 1 Aug 2025
Viewed by 141
Abstract
To improve collision risk prediction in high-traffic coastal waters and support real-time decision-making in maritime navigation, this study proposes a regional collision risk prediction system integrating the Computed Distance at Collision (CDC) method with an Adaptive Neuro-Fuzzy Inference System (ANFIS). Unlike Distance at [...] Read more.
To improve collision risk prediction in high-traffic coastal waters and support real-time decision-making in maritime navigation, this study proposes a regional collision risk prediction system integrating the Computed Distance at Collision (CDC) method with an Adaptive Neuro-Fuzzy Inference System (ANFIS). Unlike Distance at Closest Point of Approach (DCPA), which depends on the position of Global Positioning System (GPS) antennas, Computed Distance at Collision (CDC) directly reflects the actual hull shape and potential collision point. This enables a more realistic assessment of collision risk by accounting for the hull geometry and boundary conditions specific to different ship types. The system was designed and validated using ship motion simulations involving bulk and container ships across varying speeds and crossing angles. The CDC method was used to define collision, almost-collision, and near-collision situations based on geometric and hydrodynamic criteria. Subsequently, the FIS–CDC model was constructed using the ANFIS by learning patterns in collision time and distance under each condition. A total of four input variables—ship speed, crossing angle, remaining time, and remaining distance—were used to infer the collision risk index (CRI), allowing for a more nuanced and vessel-specific assessment than traditional CPA-based indicators. Simulation results show that the time to collision decreases with higher speeds and increases with wider crossing angles. The bulk carrier exhibited a wider collision-prone angle range and a greater sensitivity to speed changes than the container ship, highlighting differences in maneuverability and risk response. The proposed system demonstrated real-time applicability and accurate risk differentiation across scenarios. This research contributes to enhancing situational awareness and proactive risk mitigation in Maritime Autonomous Surface Ship (MASS) and Vessel Traffic System (VTS) environments. Future work will focus on real-time CDC optimization and extending the model to accommodate diverse ship types and encounter geometries. Full article
18 pages, 5167 KiB  
Article
Comparative Study of Local Stress Approaches for Fatigue Strength Assessment of Longitudinal Web Connections
by Ji Hoon Kim, Jae Sung Lee and Myung Hyun Kim
J. Mar. Sci. Eng. 2025, 13(8), 1491; https://doi.org/10.3390/jmse13081491 - 1 Aug 2025
Viewed by 125
Abstract
Ship structures are subjected to cyclic loading from waves and currents during operation, which can lead to fatigue failure, particularly at locations with structural discontinuities such as welds. Although various fatigue assessment methods have been developed, there is a lack of experimental data [...] Read more.
Ship structures are subjected to cyclic loading from waves and currents during operation, which can lead to fatigue failure, particularly at locations with structural discontinuities such as welds. Although various fatigue assessment methods have been developed, there is a lack of experimental data and comparative studies for actual ship structure details. This study addresses this limitation by evaluating the fatigue strength of longi-web connections in hull structures using local stress approaches, including hot spot stress, effective notch stress, notch stress intensity factor, and structural stress methods. Finite element analyses were conducted, and the predicted fatigue lives and failure locations were compared with experimental results. Although there are some differences between each method, all methods are valid and reasonable for predicting the primary failure locations and evaluating fatigue life. These findings provide a basis for considering suitable fatigue assessment methods for welded ship structures with respect to joint geometry and failure mechanisms. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 1436 KiB  
Article
Secoisolariciresinol Diglucoside with Antioxidant Capacity from Flaxseed: A Study on Microwave-Assisted Germination Optimization
by Jinling Hu, Qingyi Zhang, Yaning Li, Qiqi Zhang, Caihua Jia, Fenghong Huang, Qianchun Deng and Cuie Tang
Foods 2025, 14(15), 2716; https://doi.org/10.3390/foods14152716 - 1 Aug 2025
Viewed by 166
Abstract
Germination and physical field treatments are processing techniques that have been successfully used to change the amount of active ingredients in flaxseed. However, it is unknown if they work synergistically. This study investigated the effect of microwave-assisted germination on the lignan concentration and [...] Read more.
Germination and physical field treatments are processing techniques that have been successfully used to change the amount of active ingredients in flaxseed. However, it is unknown if they work synergistically. This study investigated the effect of microwave-assisted germination on the lignan concentration and antioxidant activity of several flaxseed tissue components. Lignans were primarily dispersed in the flaxseed seed coat. Microwave treatment and germination significantly affected the levels of lignans in various flaxseed sections. Flaxseed hulls’ lignan content and antioxidant activity could be increased by microwave treatment (130 W for 14 s) after germination of 0, 48, or 96 h. Flaxseed kernels lignan content and antioxidant activity could be increased by microwave treatment (130 W for 10 s) before germination. Whole flaxseeds could be improved by microwave treatment (130 W for 10 s) after germination for 72 h. The findings provided a theoretical basis for reducing the loss of lignan resources in flaxseed, enhancing its use as a functional food ingredient, and clarifying the targeted utilization of various lignan sources. Full article
(This article belongs to the Special Issue Oils and Fats: Structure and Stability)
Show Figures

Figure 1

29 pages, 5040 KiB  
Article
The Investigation of a Biocide-Free Antifouling Coating on Naval Steels Under Both Simulated and Actual Seawater Conditions
by Polyxeni Vourna, Pinelopi P. Falara and Nikolaos D. Papadopoulos
Processes 2025, 13(8), 2448; https://doi.org/10.3390/pr13082448 - 1 Aug 2025
Viewed by 300
Abstract
This study developed a water-soluble antifouling coating to protect ship hulls against corrosion and fouling without the usage of a primer. The coating retains its adhesion to the steel substrate and reduces corrosion rates compared to those for uncoated specimens. The coating’s protective [...] Read more.
This study developed a water-soluble antifouling coating to protect ship hulls against corrosion and fouling without the usage of a primer. The coating retains its adhesion to the steel substrate and reduces corrosion rates compared to those for uncoated specimens. The coating’s protective properties rely on the interaction of conductive polyaniline (PAni) nanorods, magnetite (Fe3O4) nanoparticles, and graphene oxide (GO) sheets modified with titanium dioxide (TiO2) nanoparticles. The PAni/Fe3O4 nanocomposite improves the antifouling layer’s out-of-plane conductivity, whereas GO increases its in-plane conductivity. The anisotropy in the conductivity distribution reduces the electrostatic attraction and limits primary bacterial and pathogen adsorption. TiO2 augments the conductivity of the PAni nanorods, enabling visible light to generate H2O2. The latter decomposes into H2O and O2, rendering the coating environmentally benign. The coating acts as an effective barrier with limited permeability to the steel surface, demonstrating outstanding durability for naval steel over extended periods. Full article
(This article belongs to the Special Issue Metal Material, Coating and Electrochemistry Technology)
Show Figures

Figure 1

28 pages, 4026 KiB  
Article
Multi-Trait Phenotypic Analysis and Biomass Estimation of Lettuce Cultivars Based on SFM-MVS
by Tiezhu Li, Yixue Zhang, Lian Hu, Yiqiu Zhao, Zongyao Cai, Tingting Yu and Xiaodong Zhang
Agriculture 2025, 15(15), 1662; https://doi.org/10.3390/agriculture15151662 - 1 Aug 2025
Viewed by 206
Abstract
To address the problems of traditional methods that rely on destructive sampling, the poor adaptability of fixed equipment, and the susceptibility of single-view angle measurements to occlusions, a non-destructive and portable device for three-dimensional phenotyping and biomass detection in lettuce was developed. Based [...] Read more.
To address the problems of traditional methods that rely on destructive sampling, the poor adaptability of fixed equipment, and the susceptibility of single-view angle measurements to occlusions, a non-destructive and portable device for three-dimensional phenotyping and biomass detection in lettuce was developed. Based on the Structure-from-Motion Multi-View Stereo (SFM-MVS) algorithms, a high-precision three-dimensional point cloud model was reconstructed from multi-view RGB image sequences, and 12 phenotypic parameters, such as plant height, crown width, were accurately extracted. Through regression analyses of plant height, crown width, and crown height, and the R2 values were 0.98, 0.99, and 0.99, respectively, the RMSE values were 2.26 mm, 1.74 mm, and 1.69 mm, respectively. On this basis, four biomass prediction models were developed using Adaptive Boosting (AdaBoost), Support Vector Regression (SVR), Gradient Boosting Decision Tree (GBDT), and Random Forest Regression (RFR). The results indicated that the RFR model based on the projected convex hull area, point cloud convex hull surface area, and projected convex hull perimeter performed the best, with an R2 of 0.90, an RMSE of 2.63 g, and an RMSEn of 9.53%, indicating that the RFR was able to accurately simulate lettuce biomass. This research achieves three-dimensional reconstruction and accurate biomass prediction of facility lettuce, and provides a portable and lightweight solution for facility crop growth detection. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

17 pages, 2404 KiB  
Article
Geographically Weighted Regression Enhances Spectral Diversity–Biodiversity Relationships in Inner Mongolian Grasslands
by Yu Dai, Huawei Wan, Longhui Lu, Fengming Wan, Haowei Duan, Cui Xiao, Yusha Zhang, Zhiru Zhang, Yongcai Wang, Peirong Shi and Xuwei Sun
Diversity 2025, 17(8), 541; https://doi.org/10.3390/d17080541 - 1 Aug 2025
Viewed by 184
Abstract
The spectral variation hypothesis (SVH) posits that the complexity of spectral information in remote sensing imagery can serve as a proxy for regional biodiversity. However, the relationship between spectral diversity (SD) and biodiversity differs for different environmental conditions. Previous SVH studies often overlooked [...] Read more.
The spectral variation hypothesis (SVH) posits that the complexity of spectral information in remote sensing imagery can serve as a proxy for regional biodiversity. However, the relationship between spectral diversity (SD) and biodiversity differs for different environmental conditions. Previous SVH studies often overlooked these differences. We utilized species data from field surveys in Inner Mongolia and drone-derived multispectral imagery to establish a quantitative relationship between SD and biodiversity. A geographically weighted regression (GWR) model was used to describe the SD–biodiversity relationship and map the biodiversity indices in different experimental areas in Inner Mongolia, China. Spatial autocorrelation analysis revealed that both SD and biodiversity indices exhibited strong and statistically significant spatial autocorrelation in their distribution patterns. Among all spectral diversity indices, the convex hull area exhibited the best model fit with the Margalef richness index (Margalef), the coefficient of variation showed the strongest predictive performance for species richness (Richness), and the convex hull volume provided the highest explanatory power for Shannon diversity (Shannon). Predictions for Shannon achieved the lowest relative root mean square error (RRMSE = 0.17), indicating the highest predictive accuracy, whereas Richness exhibited systematic underestimation with a higher RRMSE (0.23). Compared to the commonly used linear regression model in SVH studies, the GWR model exhibited a 4.7- to 26.5-fold improvement in goodness-of-fit. Despite the relatively low R2 value (≤0.59), the model yields biodiversity predictions that are broadly aligned with field observations. Our approach explicitly considers the spatial heterogeneity of the SD–biodiversity relationship. The GWR model had significantly higher fitting accuracy than the linear regression model, indicating its potential for remote sensing-based biodiversity assessments. Full article
(This article belongs to the Special Issue Ecology and Restoration of Grassland—2nd Edition)
Show Figures

Figure 1

48 pages, 2506 KiB  
Article
Enhancing Ship Propulsion Efficiency Predictions with Integrated Physics and Machine Learning
by Hamid Reza Soltani Motlagh, Seyed Behbood Issa-Zadeh, Md Redzuan Zoolfakar and Claudia Lizette Garay-Rondero
J. Mar. Sci. Eng. 2025, 13(8), 1487; https://doi.org/10.3390/jmse13081487 - 31 Jul 2025
Viewed by 228
Abstract
This research develops a dual physics-based machine learning system to forecast fuel consumption and CO2 emissions for a 100 m oil tanker across six operational scenarios: Original, Paint, Advanced Propeller, Fin, Bulbous Bow, and Combined. The combination of hydrodynamic calculations with Monte [...] Read more.
This research develops a dual physics-based machine learning system to forecast fuel consumption and CO2 emissions for a 100 m oil tanker across six operational scenarios: Original, Paint, Advanced Propeller, Fin, Bulbous Bow, and Combined. The combination of hydrodynamic calculations with Monte Carlo simulations provides a solid foundation for training machine learning models, particularly in cases where dataset restrictions are present. The XGBoost model demonstrated superior performance compared to Support Vector Regression, Gaussian Process Regression, Random Forest, and Shallow Neural Network models, achieving near-zero prediction errors that closely matched physics-based calculations. The physics-based analysis demonstrated that the Combined scenario, which combines hull coatings with bulbous bow modifications, produced the largest fuel consumption reduction (5.37% at 15 knots), followed by the Advanced Propeller scenario. The results demonstrate that user inputs (e.g., engine power: 870 kW, speed: 12.7 knots) match the Advanced Propeller scenario, followed by Paint, which indicates that advanced propellers or hull coatings would optimize efficiency. The obtained insights help ship operators modify their operational parameters and designers select essential modifications for sustainable operations. The model maintains its strength at low speeds, where fuel consumption is minimal, making it applicable to other oil tankers. The hybrid approach provides a new tool for maritime efficiency analysis, yielding interpretable results that support International Maritime Organization objectives, despite starting with a limited dataset. The model requires additional research to enhance its predictive accuracy using larger datasets and real-time data collection, which will aid in achieving global environmental stewardship. Full article
(This article belongs to the Special Issue Machine Learning for Prediction of Ship Motion)
20 pages, 6138 KiB  
Article
DBSCAN-MFI Based Improved Clustering for Field-Road Classification in Mechanical Residual Film Recovery
by Huimin Fang, Jinshan Hu, Xuegeng Chen, Qingyi Zhang and Jing Bai
Agriculture 2025, 15(15), 1651; https://doi.org/10.3390/agriculture15151651 - 31 Jul 2025
Viewed by 120
Abstract
Accurate accounting of residual film recovery operation areas is essential for supporting targeted implementation of white pollution control policies in cotton fields and serves as a critical foundation for data-driven prevention and control of soil contamination. To address the reliance on manual screening [...] Read more.
Accurate accounting of residual film recovery operation areas is essential for supporting targeted implementation of white pollution control policies in cotton fields and serves as a critical foundation for data-driven prevention and control of soil contamination. To address the reliance on manual screening during preprocessing in traditional residual film recovery area calculation methods, this study proposes a DBSCAN-MFI field-road trajectory segmentation method. This approach combines DBSCAN density clustering with multi-feature inference. Building on DBSCAN clustering, the method incorporates a convex hull completion strategy and multi-feature inference rules utilizing speed-direction feature filtering to automatically identify and segment field and road areas, enabling precise operation area calculation. Experimental results demonstrate that compared to DBSCAN, OPTICS, the Grid-Based Method, and the DBSCAN-FR algorithm, the proposed algorithm improves the F1-Score by 7.01%, 7.13%, 7.28%, and 4.27%, respectively. Regarding the impact on operation area calculation, segmentation accuracy increased by 23.61%, 25.14%, 20.71%, and 6.87%, respectively. This study provides an effective solution for accurate field-road segmentation during mechanical residual film recovery operations to facilitate subsequent calculation of the recovered area. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

Back to TopTop