Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,769)

Search Parameters:
Keywords = hulls

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3262 KB  
Article
A Study on an Extrapolation Method for the Propulsive Performance of the Pumpjet Propulsor of a Submarine
by Woo-Seok Jin, Moon-Chan Kim, Jin-Wook Kim, Il-Ryong Park and Han-Shin Seol
J. Mar. Sci. Eng. 2026, 14(2), 141; https://doi.org/10.3390/jmse14020141 - 9 Jan 2026
Abstract
Accurately predicting the full-scale performance of submarines is challenging due to their complex propulsor systems and limited sea-trial information. This study investigated a full-scale extrapolation method from model tests for a submarine pumpjet propulsor, as a reliable method has not been established. Three [...] Read more.
Accurately predicting the full-scale performance of submarines is challenging due to their complex propulsor systems and limited sea-trial information. This study investigated a full-scale extrapolation method from model tests for a submarine pumpjet propulsor, as a reliable method has not been established. Three extrapolation methods from ITTC reports were reviewed and applied to the pumpjet propulsor of the SUBOFF submarine, then compared with full-scale CFD results. Among the reviewed methods (Methods 1 to 3), Method 3, which separates the duct and stator as appendages of the hull and includes the entire pumpjet in the POW test but uses only the rotor’s force, was the most reasonable, but showed significant differences from the calculated results, especially in the PD. This study proposed a modified Method 3, improving it by adopting the continuity theory to predict the oncoming velocity of a rotor and by applying a correction factor for the drag of the duct and stator. The modified PJP extrapolation method 3 showed excellent agreement with the full-scale CFD analysis results across all propulsion coefficients, with a minimal error of 0.45% for PD. Despite the structural differences in PJPs, such as stators and longer ducts, velocity changes are dominated by the duct’s internal area. Therefore, the proposed extrapolation method is equally applicable to general ducted propellers. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

37 pages, 2711 KB  
Article
The Influence of Sunflower Seed Hull Content on the Mechanical, Thermal, and Functional Properties of PHBV-Based Biocomposites
by Grzegorz Janowski, Marta Wójcik, Irena Krešić, Wiesław Frącz, Łukasz Bąk, Ivan Gajdoš and Emil Spišák
Materials 2026, 19(2), 268; https://doi.org/10.3390/ma19020268 - 8 Jan 2026
Abstract
This paper presents the potential use of sunflower seed hulls (SSH) as a sustainable filler for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biocomposites. Ground SSH were incorporated into the PHBV matrix at loadings of 15, 30, and 45 wt% via extrusion and injection molding. The Fourier Transform [...] Read more.
This paper presents the potential use of sunflower seed hulls (SSH) as a sustainable filler for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biocomposites. Ground SSH were incorporated into the PHBV matrix at loadings of 15, 30, and 45 wt% via extrusion and injection molding. The Fourier Transform Infrared Spectroscopy (FTIR) analysis indicated the presence of possible interactions between the filler and the matrix. Mechanical testing revealed a significant increase in stiffness, with the tensile modulus increasing from 2.6 GPa for pure PHBV to approximately 4.5 GPa for the composite containing 45 wt% SSH. However, the tensile strength decreased by approximately 10–40%, while elongation at break dropped to 1.0–1.5%, depending on the SSH dosage, respectively. The thermal analysis indicated that high filler contents suppress crystallization during cooling under laboratory conditions in Differential Scanning Calorimetry (DSC) analysis due to the confinement effect. The key practical advantage is the exceptional improvement in dimensional stability with a processing shrinkage reduction of approximately 80% in the thickness direction. Although water absorption increased with filler loading, biocomposites containing 15–30 wt% SSH exhibited the optimal balance of high stiffness, hardness, and dimensional accuracy. These properties make the developed material a promising option for the production of precise technical molded parts. Full article
(This article belongs to the Special Issue Processing and Mechanical Properties of Polymer Composites)
14 pages, 1293 KB  
Article
Eco-Friendly Antifouling Coatings Based on Macroalgal Extracts from Ulva ohnoi and Asparagopsis taxiformis
by Lorenzo Maria Ruggeri, Carlo Maffei, Domenico Prisa, Francesco Crea and Damiano Spagnuolo
Clean Technol. 2026, 8(1), 8; https://doi.org/10.3390/cleantechnol8010008 - 8 Jan 2026
Abstract
The increasing environmental impact of synthetic antifouling paints has stimulated the search for natural, eco-friendly alternatives. In this study, alcoholic and aqueous extracts of the macroalgae Ulva ohnoi and Asparagopsis taxiformis were evaluated for their antifouling potential on aluminum substrates representative of boat [...] Read more.
The increasing environmental impact of synthetic antifouling paints has stimulated the search for natural, eco-friendly alternatives. In this study, alcoholic and aqueous extracts of the macroalgae Ulva ohnoi and Asparagopsis taxiformis were evaluated for their antifouling potential on aluminum substrates representative of boat hulls. Extracts were applied to aluminum plates coated with gelcoat under three different surface conditions (non-worn, worn, highly worn). The treated panels were submerged at 5 m and biofilm and fouling development was monitored every 96 h using digital imaging and quantitative segmentation. All treated surfaces exhibited significantly lower fouling colonization than the untreated control (p < 0.001). Among treatments, the aqueous extract of A. taxiformis produced the lowest degree of colonization across all surface conditions, while U. ohnoi extracts showed moderate antifouling activity. Increased surface wear enhanced overall colonization but did not suppress extract efficacy. These results demonstrate that both algal species possess active compounds capable of inhibiting early biofilm formation on marine substrates. Although less potent than conventional biocidal coatings, their biodegradability and absence of ecotoxicity represent a substantial environmental advantage. Future studies should focus on the chemical characterization of active metabolites, the formulation of hybrid bio-based coatings, and long-term field testing under dynamic marine conditions. Full article
Show Figures

Figure 1

21 pages, 1550 KB  
Article
Analytical Evaluation of Hull-Design Parameters Affecting Ship Controllability and Dynamic Behaviour with Integrated Electric–Propulsion Systems
by Volodymyr Yarovenko, Oleksandr Shumylo, Mykola Malaksiano, Oleksiy Melnyk, Pavlo Nosov, Václav Píštěk and Pavel Kučera
J. Mar. Sci. Eng. 2026, 14(2), 122; https://doi.org/10.3390/jmse14020122 - 7 Jan 2026
Abstract
This study presents an analytical methodology for evaluating the influence of hull design parameters on the controllability and manoeuvrability of ships equipped with integrated electric propulsion systems. Unlike traditional approaches that examine the hull and propulsion plant independently, the proposed method employs a [...] Read more.
This study presents an analytical methodology for evaluating the influence of hull design parameters on the controllability and manoeuvrability of ships equipped with integrated electric propulsion systems. Unlike traditional approaches that examine the hull and propulsion plant independently, the proposed method employs a generalized model of transient modes within the propulsion complex, enabling the coupled interaction among the hull, propulsion units, electric motors, and the electrical power system to be captured during manoeuvring. Active experimental design and regression modelling are applied to construct controllability diagrams, identify the most influential dimensionless parameters, and reduce computational effort. The methodology is used to assess the effect of hull elongation (0.08–0.16 L) with curvature variation limited to 6%. The results show that this degree of elongation has minimal impact on turning performance and course-keeping stability, confirming the feasibility of such design modifications. The proposed approach provides an effective tool for early-stage design and modernization of electric ships and supports decision-making in ship behaviour prediction and traffic management. Full article
(This article belongs to the Special Issue Management and Control of Ship Traffic Behaviours)
Show Figures

Figure 1

26 pages, 4009 KB  
Article
A Hybrid Simulation–Physical Data-Driven Framework for Occupant Injury Prediction in Vehicle Underbody Structures
by Xinge Si, Changan Di, Peng Peng, Yongjian Zhang, Tao Lin and Cong Xu
Sensors 2026, 26(2), 380; https://doi.org/10.3390/s26020380 - 7 Jan 2026
Abstract
One major challenge in optimizing vehicle underbody structures for blast protection is the trade-off between the high cost of physical tests and the limited accuracy of simulations. We introduce a predictive framework that is co-driven by limited physical measurements and systematically augmented simulation [...] Read more.
One major challenge in optimizing vehicle underbody structures for blast protection is the trade-off between the high cost of physical tests and the limited accuracy of simulations. We introduce a predictive framework that is co-driven by limited physical measurements and systematically augmented simulation datasets. The main problem arises from the complex components of blast impact signals, which makes it difficult to augment the load signals for finite element simulations when only extremely small sample sets are available. Specifically, a small-scale data-augmentation model within the wavelet domain based on a conditional generative adversarial network (CGAN) was designed. Real-time perturbations, governed by cumulative distribution functions, were introduced to expand and diversify the data representations for enhanced dataset enrichment. A predictive model based on Gaussian process regression (GPR) that integrates physical experimental data with augmented data wavelet characteristics is employed to estimate injury indices, using wavelet scale energies reduced via principal component analysis (PCA) as inputs. Cross-validation shows that this hybrid model achieves higher accuracy than using simulations alone. Through the case study, the model demonstrates that increased hull angle and depth can effectively reduce occupant injury. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

32 pages, 31698 KB  
Article
Sub-Scale Flight Testing of Drag Reduction Features for Amphibious Light Sport Aircraft
by Jackson Tenhave, Keith Joiner and Dominic Hill
Aerospace 2026, 13(1), 59; https://doi.org/10.3390/aerospace13010059 - 7 Jan 2026
Viewed by 11
Abstract
Amphibious light sport aircraft (LSA) combine the versatility of land and water operations but suffer aerodynamic penalties from their inherent design requirements, limiting cruise performance. This study investigates two drag reduction features for a proposed high-performance amphibious LSA developed by Altavia Aerospace. The [...] Read more.
Amphibious light sport aircraft (LSA) combine the versatility of land and water operations but suffer aerodynamic penalties from their inherent design requirements, limiting cruise performance. This study investigates two drag reduction features for a proposed high-performance amphibious LSA developed by Altavia Aerospace. The concept targets a cruise speed of 140 KTAS, using retractable wingtip pontoons and a novel retractable hull step fairing. A 1/5-scale flying model was built and flight tested to assess the aerodynamic benefits of these features and evaluate sub-scale flight testing as a tool for drag measurement. Estimated propulsive power and GPS-based speed data corrected for wind were used to compute an estimated 17% reduction in drag coefficient by retracting the pontoons. The hull step fairing showed no measurable gains, likely due to inconsistent battery voltage, despite literature indicating potential 5% drag savings. Drag measurement precision of 7–9% was achieved using the power-based method, with potential precision better than 3% achievable if the designed thrust data system were fully validated and an autopilot integrated. A performance estimation for Altavia Aerospace’s concept predicts a cruise speed of 134 KTAS at 10,000 ft. Achieving the target of 140 KTAS may require further aerodynamic refinement, with investigation of a tandem seating configuration to reduce frontal area recommended. The study provides an initial drag assessment of retractable wingtip pontoons and demonstrates the potential of sub-scale flight testing for comparative drag analysis—two novel contributions to the field. Full article
(This article belongs to the Special Issue Recent Advances in Applied Aerodynamics (2nd Edition))
Show Figures

Figure 1

26 pages, 6729 KB  
Article
Integrated Sail–Hull–Turbine Assessment for Wind Power Generation Ship Using Experiment and CFD
by Nguyen Thi Huyen Trang, Taiga Mitsuyuki, Yoshiaki Hirakawa, Thi Pham-Truong and Shun Yokota
J. Mar. Sci. Eng. 2026, 14(2), 111; https://doi.org/10.3390/jmse14020111 - 6 Jan 2026
Viewed by 141
Abstract
Wind power generation ships (WPG ships), which combine rigid sails for propulsion and underwater turbines for onboard power generation, have attracted increasing attention as a promising concept for utilizing renewable energy at sea. This study presents an integrated assessment of a WPG ship [...] Read more.
Wind power generation ships (WPG ships), which combine rigid sails for propulsion and underwater turbines for onboard power generation, have attracted increasing attention as a promising concept for utilizing renewable energy at sea. This study presents an integrated assessment of a WPG ship by combining towing-tank experiments, CFD simulations using ANSYS Fluent, and theoretical analysis to evaluate the coupled performance of sails, hull, and underwater turbines. First, sail thrust and bare-hull resistance were quantified to identify the effective operating-speed range under Beaufort 6–8 wind conditions, and the optimal number of rigid sails was determined. Based on a thrust–resistance balance at a representative rated operating point, two turbine configurations (two and four turbines) were preliminarily sized. The results show that ten rigid sails can provide near-maximum thrust without excessive aerodynamic interference, and the installation of turbines significantly reduces the feasible operating range compared to the bare-hull case. For the two-turbine configuration, a common effective ship-speed range of 6.58–8.0 m/s is obtained, whereas the four-turbine configuration is restricted to 6.58–7.44 m/s due to wake losses, additional appendage drag, and near-free-surface effects. The four-turbine configuration exhibits approximately 30% lower total power output than the two-turbine configuration. These findings demonstrate that an integrated, system-level evaluation is essential for WPG ship design and indicate that the two-turbine configuration offers a more favorable balance between power generation capability and operational flexibility. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 1777 KB  
Article
DP2PNet: Diffusion-Based Point-to-Polygon Conversion for Single-Point Supervised Oriented Object Detection
by Peng Li, Limin Zhang and Tao Qu
Sensors 2026, 26(1), 329; https://doi.org/10.3390/s26010329 - 4 Jan 2026
Viewed by 164
Abstract
Rotated Bounding Boxes (RBBs) for oriented object detection are labor-intensive and time-consuming to annotate. Single-point supervision offers a cost-effective alternative but suffers from insufficient size and orientation information, leading existing methods to rely heavily on complex priors and fixed refinement stages. In this [...] Read more.
Rotated Bounding Boxes (RBBs) for oriented object detection are labor-intensive and time-consuming to annotate. Single-point supervision offers a cost-effective alternative but suffers from insufficient size and orientation information, leading existing methods to rely heavily on complex priors and fixed refinement stages. In this paper, we propose DP2PNet (Diffusion-Point-to-Polygon Network), the first diffusion model-based framework for single-point supervised oriented object detection. DP2PNet features three key innovations: (1) A multi-scale consistent noise generator that replaces manual or external model priors with Gaussian noise, reducing dependency on domain-specific information; (2) A Noise Cross-Constraint module based on multi-instance learning, which selects optimal noise point bags by fusing receptive field matching and object coverage; (3) A Semantic Key Point Aggregator that aggregates noise points via graph convolution to form semantic key points, from which pseudo-RBBs are generated using convex hulls. DP2PNet supports dynamic adjustment of refinement stages without retraining, enabling flexible accuracy optimization. Extensive experiments on DOTA-v1.0 and DIOR-R datasets demonstrate that DP2PNet achieves 53.82% and 53.61% mAP50, respectively, comparable to methods relying on complex priors. It also exhibits strong noise robustness and cross-dataset generalization. Full article
Show Figures

Figure 1

14 pages, 2876 KB  
Article
Study on the Adsorption Mechanism of Atrazine by Sesame Hull Biochar/Sepiolite Composite Material
by Hongyou Wan, Qiuye Yu, Luqi Yang, Shihao Liu, Yan Zhao, Dezheng Chang and Xinru Li
Toxics 2026, 14(1), 38; https://doi.org/10.3390/toxics14010038 - 29 Dec 2025
Viewed by 229
Abstract
Atrazine (ATZ), a typical triazine herbicide with a long half-life and recalcitrant biodegradation, contaminates water and soil, necessitating efficient removal technologies. Conventional adsorbents have limited capacity and stability, while sesame straw-derived biochar realizes agricultural waste recycling and provides an efficient, economical, and eco-friendly [...] Read more.
Atrazine (ATZ), a typical triazine herbicide with a long half-life and recalcitrant biodegradation, contaminates water and soil, necessitating efficient removal technologies. Conventional adsorbents have limited capacity and stability, while sesame straw-derived biochar realizes agricultural waste recycling and provides an efficient, economical, and eco-friendly adsorbent. Sepiolite, a natural mineral with a unique fibrous structure and a high specific surface area, has attracted widespread attention. Therefore, in this work, the agricultural waste of sesame hulls and sepiolite were used as precursors to prepare a composite material of sesame hull biochar/sepiolite (KNPB) through co-mixing heat treatment, followed by sodium hydroxide activation and pyrolysis. The results showed that, under the conditions of an adsorbent dosage of 3 g/L, pH of 6.8, and an adsorption time of 360 min, the removal rate of 3 mg/L ATZ by KNPB was 89.14%. Reusability experiments further demonstrated that KNPB has the potential for practical application in water treatment. Additionally, by integrating adsorption kinetics and isotherm analysis with a suite of characterization results from BET, FTIR, and XPS, the adsorption mechanism of KNPB for ATZ was further clarified to be primarily based on pore-filling, π–π interactions, and hydrogen bonding. This study not only provides a new idea for the resource utilization of waste sesame straw, but also provides scientific guidance for the solution of atrazine pollution, which has important environmental and economic significance. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Graphical abstract

15 pages, 2642 KB  
Article
Study on Optimal Shaft Alignment of Propulsion Shafting System for Large Crude Oil Tanker Considering Ship Operating Conditions
by Jimin Lee and Yanggon Kim
J. Mar. Sci. Eng. 2026, 14(1), 42; https://doi.org/10.3390/jmse14010042 - 25 Dec 2025
Viewed by 258
Abstract
The alignment of the propulsion shafting system is crucial to ensuring the safe and efficient operation of ships. As ships grow in size and engine output increases, the complexity of propulsion systems also escalates, making precise alignment more challenging. Traditional methods often neglect [...] Read more.
The alignment of the propulsion shafting system is crucial to ensuring the safe and efficient operation of ships. As ships grow in size and engine output increases, the complexity of propulsion systems also escalates, making precise alignment more challenging. Traditional methods often neglect hull deformation caused by varying operational conditions, which can lead to uneven bearing loads, excessive vibrations, and potential bearing failures. This study addresses these challenges by analyzing the effects of hull deformation on bearing reaction forces in a large crude oil tanker. Shaft alignment analysis was conducted under six different loading conditions, ranging from dry docking to fully loaded states. The results indicated that hull deformation significantly alters the distribution of bearing loads along the propulsion shaft. Initial alignment, without considering hull deflection, showed satisfactory results, but when hull deformation was included, notable deviations in bearing loads emerged. These deviations pose risks of bearing overloads or underloads, which could accelerate wear or cause failure. To mitigate these risks, this study proposes an optimized bearing offset configuration, adjusting intermediate shaft bearings to maintain balanced loads across all conditions. The findings demonstrate that incorporating hull deformation data into shaft alignment improves the system’s reliability and safety, providing a foundation for better alignment practices for large vessels in varied operational conditions. Full article
Show Figures

Figure 1

16 pages, 2521 KB  
Article
Integrating Target Domain Convex Hull with MMD for Cross-Dataset EEG Classification of Parkinson’s Disease
by Xueqi Wu, Weixiang Gao, Jiangwen Lu and Yunyuan Gao
Information 2026, 17(1), 15; https://doi.org/10.3390/info17010015 - 23 Dec 2025
Viewed by 205
Abstract
Parkinson’s disease has brought great harm to human life and health. The detection of Parkinson’s disease based on electroencephalogram (EEG) provides a new way to prevent and treat Parkinson’s disease. However, due to the limited EEG data samples, there are large differences among [...] Read more.
Parkinson’s disease has brought great harm to human life and health. The detection of Parkinson’s disease based on electroencephalogram (EEG) provides a new way to prevent and treat Parkinson’s disease. However, due to the limited EEG data samples, there are large differences among different subjects, especially among different datasets. In this study, a new method called Improved Convex Hull and Maximum Mean Discrepancy (ICMMD)for cross-dataset classification of Parkinson’s disease is proposed by combining convex hull and transfer learning. The paper innovatively implements cross-data transfer learning in the field of brain–computer interfaces for Parkinson’s disease, using Euclidean distance for data alignment and EEG channel selection, and combines the convex envelope with MMD distance to form an effective source domain selection method. Lowpd, San and UNM datasets are used to verify the effectiveness of the proposed method through experiments on different brain regions and frequency bands in Parkinson’s. The results show that this method has good classification performance in different regions of the brain and frequency bands. The research in this paper provides a new idea and method for disease detection of Parkinson’s disease across datasets. Full article
Show Figures

Graphical abstract

24 pages, 12833 KB  
Article
Numerical Investigation of Wind-Wave Loads on Nuclear-Powered Icebreakers in Tornado Extreme Environments
by Linlin Yin, Zhenju Chuang, Ankang Hu, Zhenze Yang and Jixu Yang
J. Mar. Sci. Eng. 2026, 14(1), 28; https://doi.org/10.3390/jmse14010028 - 23 Dec 2025
Viewed by 270
Abstract
As critical assets for polar development and global strategy, nuclear-powered icebreakers necessitate rigorous safety research under extreme meteorological conditions. Evaluating their reliability under tornado loads is essential to ensure sustainable Arctic operations. This study employed numerical methods to solve tornado loads and assess [...] Read more.
As critical assets for polar development and global strategy, nuclear-powered icebreakers necessitate rigorous safety research under extreme meteorological conditions. Evaluating their reliability under tornado loads is essential to ensure sustainable Arctic operations. This study employed numerical methods to solve tornado loads and assess the safety performance of an icebreaker subjected to tornado-induced loads. Tornado loads at varying azimuth angles were solved using a modified Ward-type simulator, while wave loads under tornado conditions were determined by a numerical wave model. The results demonstrated that the tornado applied the maximum wind load on the structure at a 0° azimuth angle. The total wind load was reduced by approximately 39% at a 60° azimuth angle. The tornado-induced moment on the ship exhibited a strongly nonlinear relationship with the azimuth angle. The maximum total moment occurred at a 15° azimuth angle, whereas the minimum total moment was observed at a 90° azimuth angle, where the hull experienced minimal wind loads. Full article
Show Figures

Figure 1

30 pages, 2625 KB  
Article
Hybrid Neutrosophic Fuzzy Multi-Criteria Assessment of Energy Efficiency Enhancement Systems: Sustainable Ship Energy Management and Environmental Aspect
by Hakan Demirel, Mehmet Karadağ, Veysi Başhan, Yusuf Tarık Mutlu, Cenk Kaya, Muhammet Gul and Emre Akyuz
Sustainability 2026, 18(1), 166; https://doi.org/10.3390/su18010166 - 23 Dec 2025
Viewed by 286
Abstract
Improving ship energy efficiency has become a critical priority for reducing fuel consumption and meeting international decarbonization targets. In this study, eight major groups of energy efficiency improvement systems—including wind and solar energy technologies, hull and propeller modifications, air lubrication, green propulsion options, [...] Read more.
Improving ship energy efficiency has become a critical priority for reducing fuel consumption and meeting international decarbonization targets. In this study, eight major groups of energy efficiency improvement systems—including wind and solar energy technologies, hull and propeller modifications, air lubrication, green propulsion options, waste heat recovery, and engine power limitation—were evaluated against seven critical success factors. A hybrid neutrosophic fuzzy multi-criteria decision-making (MCDM) framework was employed to capture expert uncertainty and prioritize alternatives. Neutrosophic fuzzy sets were adopted because they more comprehensively represent uncertainty—simultaneously modeling truth, indeterminacy, and falsity, providing superior capability to address expert ambiguity compared with classical fuzzy, intuitionistic fuzzy, gray, or other uncertainty-handling frameworks. Trapezoidal Neutrosophic Fuzzy Analytic Hierarchy Process (AHP) (TNF-AHP) was first applied to determine the relative importance of the criteria, highlighting fuel savings and cost-effectiveness as dominant factors with 38% weight. Subsequently, the Fuzzy Combined Compromise Solution (F-CoCoSo) method was used to rank the alternatives. Results indicate that solar energy systems and wind-assisted propulsion consistently rank highest (with 3.35 and 2.92 performance scores) across different scenarios, followed by green propulsion technologies, while waste heat recovery and engine power limitation show lower performance. These findings not only provide a structured assessment of current technological options, but also offer actionable guidance for shipowners, operators, and policymakers seeking to prioritize investments in sustainable maritime operations. Full article
(This article belongs to the Special Issue Sustainable Maritime Governance and Shipping Risk Management)
Show Figures

Figure 1

31 pages, 3838 KB  
Article
Automated Morphological Characterization of Mediterranean Dehesa Using a Low-Density Airborne LiDAR Technique: A DBSCAN–Concaveman Approach for Segmentation and Delineation of Tree Vegetation Units
by Adrián J. Montero-Calvo, Miguel A. Martín-Tardío and Ángel M. Felicísimo
Forests 2026, 17(1), 16; https://doi.org/10.3390/f17010016 - 22 Dec 2025
Viewed by 228
Abstract
Mediterranean dehesa ecosystems are highly valuable agroforestry systems from ecological, social and economic perspectives. Their structural characterization has traditionally relied on resource-intensive field inventories. This study assesses the applicability of low-density airborne LiDAR data from the Spanish National Aerial Orthophotography Plan (PNOA) for [...] Read more.
Mediterranean dehesa ecosystems are highly valuable agroforestry systems from ecological, social and economic perspectives. Their structural characterization has traditionally relied on resource-intensive field inventories. This study assesses the applicability of low-density airborne LiDAR data from the Spanish National Aerial Orthophotography Plan (PNOA) for the automated morphological characterization of Quercus ilex dehesas. This novel workflow integrates the DBSCAN clustering algorithm for unsupervised segmentation of tree vegetation units and Concaveman for crown perimeter delineation and slicing using concave hulls. The technique was applied over 116 hectares in Santibáñez el Bajo (Cáceres), identifying 1254 vegetation units with 99.8% precision, 97.3% recall and an F-score of 98.5%. A field validation on 35 trees revealed strong agreement with the LiDAR-derived metrics, including crown diameter (R2 = 0.985; bias = −0.96 m) and total height (R2 = 0.955; bias = −0.34 m). Crown base height was overestimated (+0.77 m), leading to a 20.9% underestimation of crown volume, which was corrected using a regression model (R2 = 0.952). This methodology allows us to produce scalable, fully automated forest inventories across extensive Iberian dehesas with similar structural characteristics using publicly available LiDAR data, even with a six-year acquisition gap. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Graphical abstract

26 pages, 3795 KB  
Article
The Archeology of Oil Tanker Shipwrecks and Their Potential to Pollute
by Michael L. Brennan
Heritage 2026, 9(1), 3; https://doi.org/10.3390/heritage9010003 - 22 Dec 2025
Cited by 1 | Viewed by 579
Abstract
Oil tanker shipwrecks represent both cultural heritage and environmental risk. These wrecks are historically significant as war graves and simultaneously pose long-term threats to marine ecosystems through the potential release of petroleum cargo. During World War II, German U-boats targeted tankers along the [...] Read more.
Oil tanker shipwrecks represent both cultural heritage and environmental risk. These wrecks are historically significant as war graves and simultaneously pose long-term threats to marine ecosystems through the potential release of petroleum cargo. During World War II, German U-boats targeted tankers along the U.S. East Coast, especially during Operation Drumbeat in 1942. Hundreds of tankers were sunk globally, and many of these wrecks remain intact and retain much of their fuel cargo, classifying them as potentially polluting wrecks (PPWs) which could release millions of gallons of oil if hull structures collapse. Tankers developed from modified sailing ships to standardized steel designs, highlighting petroleum’s strategic importance in modern warfare. The wrecks of these vessels exemplify the intersection of maritime archeology and environmental conservation, demanding urgent interdisciplinary study to safeguard ecosystems while preserving ocean heritage. Full article
Show Figures

Figure 1

Back to TopTop