Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,669)

Search Parameters:
Keywords = host-defense

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 949 KiB  
Article
Context-Dependent Anti-Predator Behavior in Nymphs of the Invasive Spotted Lanternfly (Lycorma delicatula): Effects of Development, Microhabitat, and Social Environment
by Ellen van Wilgenburg, Crystal Aung and Julia N. Caputo
Insects 2025, 16(8), 815; https://doi.org/10.3390/insects16080815 (registering DOI) - 6 Aug 2025
Abstract
Antipredator behaviors in animals often vary with developmental stage, microhabitat, and social context, yet few studies examine how these factors interact in species that undergo ontogenetic shifts in chemical defense. The spotted lanternfly (Lycorma delicatula) is an invasive planthopper whose nymphs [...] Read more.
Antipredator behaviors in animals often vary with developmental stage, microhabitat, and social context, yet few studies examine how these factors interact in species that undergo ontogenetic shifts in chemical defense. The spotted lanternfly (Lycorma delicatula) is an invasive planthopper whose nymphs transition from cryptically colored early instars to aposematically colored fourth instars that feed primarily on chemically defended host plants. We conducted 1460 simulated predator attacks on nymphs across four developmental stages to examine how antipredator behavior varies with instar, plant location (leaf vs. stem), host plant species, and local conspecific density. Nymphs exhibited three primary responses: hiding, sidestepping, or jumping. We found that location on the plant had the strongest effect, with nymphs on stems more likely to hide than those on leaves. Older instars were significantly less likely to hide and more likely to sidestep, particularly on stems, suggesting reduced reliance on energetically costly escape behaviors as chemical defenses accumulate. First instars were less likely to jump from their preferred host plant (tree of heaven) compared to other plant species. Higher local conspecific density reduced hiding probability, likely due to the dilution effect. These results demonstrate that antipredator strategies in L. delicatula are flexibly deployed based on developmental stage, microhabitat structure, and social context, with implications for understanding evolution of antipredator behavior in chemically protected species. Full article
(This article belongs to the Section Insect Behavior and Pathology)
24 pages, 3858 KiB  
Review
Emerging Strategies for Aflatoxin Resistance in Peanuts via Precision Breeding
by Archana Khadgi, Saikrisha Lekkala, Pankaj K. Verma, Naveen Puppala and Madhusudhana R. Janga
Toxins 2025, 17(8), 394; https://doi.org/10.3390/toxins17080394 - 6 Aug 2025
Abstract
Aflatoxin contamination, primarily caused by Aspergillus flavus, poses a significant threat to peanut (Arachis hypogaea L.) production, food safety, and global trade. Despite extensive efforts, breeding for durable resistance remains difficult due to the polygenic and environmentally sensitive nature of resistance. [...] Read more.
Aflatoxin contamination, primarily caused by Aspergillus flavus, poses a significant threat to peanut (Arachis hypogaea L.) production, food safety, and global trade. Despite extensive efforts, breeding for durable resistance remains difficult due to the polygenic and environmentally sensitive nature of resistance. Although germplasm such as J11 have shown partial resistance, none of the identified lines demonstrated stable or comprehensive protection across diverse environments. Resistance involves physical barriers, biochemical defenses, and suppression of toxin biosynthesis. However, these traits typically exhibit modest effects and are strongly influenced by genotype–environment interactions. A paradigm shift is underway with increasing focus on host susceptibility (S) genes, native peanut genes exploited by A. flavus to facilitate colonization or toxin production. Recent studies have identified promising S gene candidates such as AhS5H1/2, which suppress salicylic acid-mediated defense, and ABR1, a negative regulator of ABA signaling. Disrupting such genes through gene editing holds potential for broad-spectrum resistance. To advance resistance breeding, an integrated pipeline is essential. This includes phenotyping diverse germplasm under stress conditions, mapping resistance loci using QTL and GWAS, and applying multi-omics platforms to identify candidate genes. Functional validation using CRISPR/Cas9, Cas12a, base editors, and prime editing allows precise gene targeting. Validated genes can be introgressed into elite lines through breeding by marker-assisted and genomic selection, accelerating the breeding of aflatoxin-resistant peanut varieties. This review highlights recent advances in peanut aflatoxin resistance research, emphasizing susceptibility gene targeting and genome editing. Integrating conventional breeding with multi-omics and precision biotechnology offers a promising path toward developing aflatoxin-free peanut cultivars. Full article
(This article belongs to the Special Issue Strategies for Mitigating Mycotoxin Contamination in Food and Feed)
Show Figures

Figure 1

16 pages, 3142 KiB  
Review
Mechanisms of Resistance of Oryza sativa to Phytophagous Insects and Modulators Secreted by Nilaparvata lugens (Hemiptera, Delphacidae) When Feeding on Rice Plants
by Xiaohong Zheng, Weiling Wu, Yuting Huang, Kedong Xu and Xinxin Shangguan
Agronomy 2025, 15(8), 1891; https://doi.org/10.3390/agronomy15081891 - 6 Aug 2025
Abstract
The brown planthopper, Nilaparvata lugens (Stål, 1854), is the most devastating pest of rice (Oryza sativa L.). Although insecticides are used to control this pest, host plant resistance is a more effective and economic solution. Therefore, identification of N. lugens-resistant genes [...] Read more.
The brown planthopper, Nilaparvata lugens (Stål, 1854), is the most devastating pest of rice (Oryza sativa L.). Although insecticides are used to control this pest, host plant resistance is a more effective and economic solution. Therefore, identification of N. lugens-resistant genes and elucidation of their underlying resistance mechanisms are critical for developing elite rice cultivars with enhanced and durable resistance. Research has shown that in the long-term evolutionary arms race, rice has developed complex defense systems against N. lugens, while N. lugens has developed diverse and sophisticated strategies to overcome the plant’s defenses. This review emphasizes recent advances in the molecular interactions between rice and the N. lugens, particularly focusing on the resistance mechanisms of 17 cloned major N. lugens resistance genes, which have significantly improved our understanding of the molecular basis of rice–N. lugens interactions. We also highlight the roles of several N. lugens salivary components in activating or suppressing rice defense responses. These insights provide a foundation for developing sustainable and effective strategies to manage this devastating pest of rice. Full article
(This article belongs to the Special Issue New Insights into Pest and Disease Control in Rice)
Show Figures

Figure 1

17 pages, 6632 KiB  
Article
Metabolomic and Physiological Analysis of Blueberry (Vaccinium spp.) in Response to Ericoid Mycorrhizal Fungi (Oidiodendron maius H14)
by Haifeng Zhu, Yixiao Wang, Jing Jiang, Zhiyu Yang, Lili Li and Hongyi Yang
Horticulturae 2025, 11(8), 918; https://doi.org/10.3390/horticulturae11080918 (registering DOI) - 5 Aug 2025
Abstract
Ericoid mycorrhizal fungi (EMF) enhance plant fitness and metabolic regulations in nutrient-poor soils, though the mechanisms diving these interactions require further elucidation. This study investigated the physiological and metabolic responses of blueberry seedlings following 2- and 3-weeks inoculation with Oidiodendron maius H14. The [...] Read more.
Ericoid mycorrhizal fungi (EMF) enhance plant fitness and metabolic regulations in nutrient-poor soils, though the mechanisms diving these interactions require further elucidation. This study investigated the physiological and metabolic responses of blueberry seedlings following 2- and 3-weeks inoculation with Oidiodendron maius H14. The results indicated that EMF could significantly increases plant biomass, improve the accumulation of osmoregulatory substances in leaves. Additionally, the colonization rate of EMF are 26.18% and 30.22% after 2- and 3-weeks, respectively. The Metabolomics analysis identified 758 (593 up- and 165 down-regulated) and 805 (577 up- and 228 down-regulated) differential metabolites in roots at 2- and 3-weeks inoculation with O. maius H14, respectively. KEGG pathway annotation revealed that O. maius H14 triggered various amino acid metabolism pathways, including tryptophan metabolism and arginine and proline metabolism. These findings suggested that O. maius H14 stimulated root-specific biosynthesis of growth-promoting compounds and antimicrobial compounds. Concomitant downregulation of stress-associated genes and upregulation of glutamine synthetase suggest EMF modulates host defense responses to facilitate symbiosis. Thus, our results demonstrated that O. maius H14 orchestrates a metabolic reprogramming in blueberry roots, enhancing growth and stress tolerance through coordinated changes in primary and specialized metabolism, which could inform strategies for improving symbiosis and metabolic engineering in horticultural practices. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Graphical abstract

18 pages, 3120 KiB  
Article
Měnglà Virus VP40 Localizes to the Nucleus and Impedes the RIG-I Signaling Pathway
by Joyce Sweeney Gibbons, Naveen Thakur, Emma Komers, Olivia A. Vogel, Poushali Chakraborty, JoAnn M. Tufariello and Christopher F. Basler
Viruses 2025, 17(8), 1082; https://doi.org/10.3390/v17081082 - 5 Aug 2025
Abstract
Měnglà virus (MLAV) is a member of the genus Dianlovirus in the family Filoviridae, which also includes Ebola virus (EBOV) and Marburg virus (MARV). Whether MLAV poses a threat to human health is uncertain. However, the MLAV VP35 and VP40 proteins can impair [...] Read more.
Měnglà virus (MLAV) is a member of the genus Dianlovirus in the family Filoviridae, which also includes Ebola virus (EBOV) and Marburg virus (MARV). Whether MLAV poses a threat to human health is uncertain. However, the MLAV VP35 and VP40 proteins can impair IFNα/β gene expression and block IFNα/β-induced Jak-STAT signaling, respectively, suggesting the capacity to counteract human innate immune defenses. In this study, MLAV VP40 is demonstrated to impair the Sendai virus (SeV)-induced activation of the IFNβ promoter. Inhibition is independent of the MLAV VP40 PPPY late-domain motif that interacts with host proteins possessing WW-domains to promote viral budding. Similar IFNβ promoter inhibition was not detected for EBOV or MARV VP40. MLAV VP40 exhibited lesser capacity to inhibit TNFα activation of an NF-κB reporter gene. MLAV VP40 impaired IFNβ promoter activation by an over-expressed, constitutively active form of RIG-I and by the over-expressed IRF3 kinases TBK1 and IKKε. However, MLAV VP40 did not inhibit IFNβ promoter activation by constitutively active IRF3 5D. Consistent with these findings, MLAV VP40 inhibited SeV-induced IRF3 phosphorylation. Although IRF3 phosphorylation occurs in the cytoplasm, MLAV VP40 exhibits substantial nuclear localization, accumulating in foci in HeLa cell nuclei. In contrast, the VP40 of EBOV and MARV exhibited lower degrees of nuclear localization and did not accumulate in foci. MLAV VP40 interacts with importin alpha-1 (IMPα1), suggesting entry via the IMPα/IMPβ nuclear import pathway. Cumulatively, these data identify novel features that distinguish MLAV VP40 from its homologues in EBOV and MARV. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

16 pages, 1994 KiB  
Article
Fall Webworm Host Plant Preferences Generate a Reduced Predation Enemy-Free Space in Its Interaction with Parasitoids
by Lina Pan, Wenfang Gao, Zhiqin Song, Xiaoyu Li, Yipeng Wei, Guangyan Qin, Yiping Hu, Zeyang Sun, Cuiqing Gao, Penghua Bai, Gengping Zhu, Wenjie Wang and Min Li
Insects 2025, 16(8), 804; https://doi.org/10.3390/insects16080804 - 4 Aug 2025
Abstract
Plants and insects are developing strategies to avoid each other’s defense systems. Host plants may release volatile compounds to attract the natural enemies of herbivores; insect pests may also select host plants that are deterrent to natural enemies to avoid such predation. Here [...] Read more.
Plants and insects are developing strategies to avoid each other’s defense systems. Host plants may release volatile compounds to attract the natural enemies of herbivores; insect pests may also select host plants that are deterrent to natural enemies to avoid such predation. Here we investigated whether the host plant preference of Hyphantria cunea correlates with the attractiveness of these plants to Chouioia cunea, a parasitoid wasp that serves as the primary natural enemy of H. cunea. We found Morus alba was the preferred host plant for female H. cunea. Although M. alba provided suboptimal nutritional value for H. cunea growth and development compared to other plants, it attracted fewer C. cunea relative to alternative host plants. Gas chromatography–mass spectrometry (GC–MS) coupled with gas chromatography–electroantennographic detection (GC-EAD) analysis identified six distinct compounds among the herbivore-induced plant volatiles (HIPVs) produced following H. cunea feeding. Notably, M. alba was the sole plant species that did not emit tridecane. These results suggest that H. cunea utilizes M. alba as a reduced predation enemy-free space, thereby minimizing parasitization by C. cunea. Our research emphasizes the importance of considering adaptive responses of herbivores within the context of multi-trophic relationships, rather than solely focusing on optimizing herbivore growth on the most nutritionally suitable plant host. Full article
(This article belongs to the Special Issue Advances in Chemical Ecology of Plant–Insect Interactions)
Show Figures

Graphical abstract

22 pages, 1427 KiB  
Review
The Susceptibility Profiles of Human Peripheral Blood Cells to Staphylococcus aureus Cytotoxins
by Tyler K. Nygaard and Jovanka M. Voyich
Microorganisms 2025, 13(8), 1817; https://doi.org/10.3390/microorganisms13081817 - 4 Aug 2025
Viewed by 11
Abstract
Staphylococcus aureus is a Gram-positive bacterium that causes significant human morbidity and mortality. The capacity of S. aureus to cause disease is primarily attributed to an array of virulence factors produced by this pathogen that collectively overcome immune defenses and promote survival in [...] Read more.
Staphylococcus aureus is a Gram-positive bacterium that causes significant human morbidity and mortality. The capacity of S. aureus to cause disease is primarily attributed to an array of virulence factors produced by this pathogen that collectively overcome immune defenses and promote survival in a variety of host tissues. These include an arsenal of different cytotoxins that compromise plasma membrane integrity, with the specificity of each dependent upon the host organism and cell type. S. aureus encounters a variety of peripheral blood cell types during infection that play important roles in maintaining homeostasis and defending against microbial invasion, namely erythrocytes, thrombocytes, and leukocytes. S. aureus targets each of these cell types with specific cytotoxins to successfully establish disease. This review summarizes our current understanding of the susceptibility of different human peripheral blood cell types to each of these cytotoxins. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

19 pages, 2667 KiB  
Article
VdSOX1 Negatively Regulates Verticillium dahliae Virulence via Enhancing Effector Expression and Suppressing Host Immune Responses
by Di Xu, Xiaoqiang Zhao, Can Xu, Chongbo Zhang and Jiafeng Huang
J. Fungi 2025, 11(8), 576; https://doi.org/10.3390/jof11080576 - 1 Aug 2025
Viewed by 213
Abstract
The soil-borne fungal pathogen Verticillium dahliae causes devastating vascular wilt disease in numerous crops, including cotton. In this study, we reveal that VdSOX1, a highly conserved sarcosine oxidase gene, is significantly upregulated during host infection and plays a multifaceted role in fungal [...] Read more.
The soil-borne fungal pathogen Verticillium dahliae causes devastating vascular wilt disease in numerous crops, including cotton. In this study, we reveal that VdSOX1, a highly conserved sarcosine oxidase gene, is significantly upregulated during host infection and plays a multifaceted role in fungal physiology and pathogenicity. Functional deletion of VdSOX1 leads to increased fungal virulence, accompanied by enhanced microsclerotia formation, elevated carbon source utilization, and pronounced upregulation of effector genes, including over 50 predicted secreted proteins genes. Moreover, the VdSOX1 knockout strains suppress the expression of key defense-related transcription factors in cotton, such as WRKY, MYB, AP2/ERF, and GRAS families, thereby impairing host immune responses. Transcriptomic analyses confirm that VdSOX1 orchestrates a broad metabolic reprogramming that links nutrient acquisition to immune evasion. Our findings identify VdSOX1 as a central regulator that promotes V. dahliae virulence by upregulating effector gene expression and suppressing host immune responses, offering novel insights into the molecular basis of host–pathogen interactions and highlighting potential targets for disease management. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

17 pages, 5703 KiB  
Review
IFN γ and the IFN γ Signaling Pathways in Merkel Cell Carcinoma
by Lina Song, Jinye Guan, Qunmei Zhou, Wenshang Liu, Jürgen C. Becker and Dan Deng
Cancers 2025, 17(15), 2547; https://doi.org/10.3390/cancers17152547 - 1 Aug 2025
Viewed by 181
Abstract
Recent preclinical and clinical studies have confirmed the essential role of interferons in the host’s immune response against malignant cells. Merkel cell carcinoma (MCC) is a rare, aggressive skin cancer strongly associated with Merkel cell polyomavirus (MCPyV). Despite progress in understanding MCC pathogenesis, [...] Read more.
Recent preclinical and clinical studies have confirmed the essential role of interferons in the host’s immune response against malignant cells. Merkel cell carcinoma (MCC) is a rare, aggressive skin cancer strongly associated with Merkel cell polyomavirus (MCPyV). Despite progress in understanding MCC pathogenesis, the role of innate immune signaling, particularly interferon-γ (IFN γ) and its downstream pathways, remains underexplored. This review summarizes recent findings on IFN-γ in MCC, highlighting its dual role in promoting both antitumor immunity and immune evasion. IFN-γ enhances cytotoxic T cell responses, upregulates MHC class I/II expression, and induces tumor cell apoptosis. Transcriptomic studies have shown that IFN-γ treatment upregulates immune-regulatory genes including PD-L1, HLA-A/B/C, and IDO1 by over threefold; it also activates APOBEC3B and 3G, contributing to antiviral defense and tumor editing. Clinically, immune checkpoint inhibitors (ICIs) such as pembrolizumab and avelumab yield objective response rates of 30–56% and two-year overall survival rates exceeding 60% in advanced MCC. However, approximately 50% of patients do not respond, in part due to IFN-γ signaling deficiencies. This review further discusses IFN-γ’s crosstalk with the STAT1/3/5 pathways and emerging combination strategies aimed at restoring immune sensitivity. Understanding these mechanisms may inform personalized immunotherapeutic approaches and guide the development of IFN-γ–based interventions in MCC. Full article
(This article belongs to the Special Issue Histopathology and Pathogenesis of Skin Cancer)
Show Figures

Figure 1

17 pages, 3272 KiB  
Review
Timing Is Everything: The Fungal Circadian Clock as a Master Regulator of Stress Response and Pathogenesis
by Victor Coca-Ruiz and Daniel Boy-Ruiz
Stresses 2025, 5(3), 47; https://doi.org/10.3390/stresses5030047 - 1 Aug 2025
Viewed by 101
Abstract
Fungi, from saprophytes to pathogens, face predictable daily fluctuations in light, temperature, humidity, and nutrient availability. To cope, they have evolved an internal circadian clock that confers a major adaptive advantage. This review critically synthesizes current knowledge on the molecular architecture and physiological [...] Read more.
Fungi, from saprophytes to pathogens, face predictable daily fluctuations in light, temperature, humidity, and nutrient availability. To cope, they have evolved an internal circadian clock that confers a major adaptive advantage. This review critically synthesizes current knowledge on the molecular architecture and physiological relevance of fungal circadian systems, moving beyond the canonical Neurospora crassa model to explore the broader phylogenetic diversity of timekeeping mechanisms. We examine the core transcription-translation feedback loop (TTFL) centered on the FREQUENCY/WHITE COLLAR (FRQ/WCC) system and contrast it with divergent and non-canonical oscillators, including the metabolic rhythms of yeasts and the universally conserved peroxiredoxin (PRX) oxidation cycles. A central theme is the clock’s role in gating cellular defenses against oxidative, osmotic, and nutritional stress, enabling fungi to anticipate and withstand environmental insults through proactive regulation. We provide a detailed analysis of chrono-pathogenesis, where the circadian control of virulence factors aligns fungal attacks with windows of host vulnerability, with a focus on experimental evidence from pathogens like Botrytis cinerea, Fusarium oxysporum, and Magnaporthe oryzae. The review explores the downstream pathways—including transcriptional cascades, post-translational modifications, and epigenetic regulation—that translate temporal signals into physiological outputs such as developmental rhythms in conidiation and hyphal branching. Finally, we highlight critical knowledge gaps, particularly in understudied phyla like Basidiomycota, and discuss future research directions. This includes the exploration of novel clock architectures and the emerging, though speculative, hypothesis of “chrono-therapeutics”—interventions designed to disrupt fungal clocks—as a forward-looking concept for managing fungal infections. Full article
(This article belongs to the Collection Feature Papers in Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

21 pages, 2141 KiB  
Article
Integrating Full-Length and Second-Generation Transcriptomes to Elucidate the ApNPV-Induced Transcriptional Reprogramming in Antheraea pernyi Midgut
by Xinlei Liu, Ying Li, Xinfeng Yang, Xuwei Zhu, Fangang Meng, Yaoting Zhang and Jianping Duan
Insects 2025, 16(8), 792; https://doi.org/10.3390/insects16080792 - 31 Jul 2025
Viewed by 227
Abstract
The midgut of Antheraea pernyi plays a critical role in antiviral defense. However, its transcriptional complexity remains poorly understood. Here, a full-length (FL) transcriptome atlas of A. pernyi midgut was developed by integrating PacBio Iso-Seq and RNA-seq techniques. The transcriptome sequences included 1850 [...] Read more.
The midgut of Antheraea pernyi plays a critical role in antiviral defense. However, its transcriptional complexity remains poorly understood. Here, a full-length (FL) transcriptome atlas of A. pernyi midgut was developed by integrating PacBio Iso-Seq and RNA-seq techniques. The transcriptome sequences included 1850 novel protein-coding genes, 17,736 novel alternative isoforms, 1664 novel long non-coding RNAs (lncRNAs), and 858 transcription factors (TFs). In addition, 2471 alternative splicing (AS) events and 3070 alternative polyadenylation (APA) sites were identified. Moreover, 3426 and 4796 differentially expressed genes (DEGs) and isoforms were identified after ApNPV infection, respectively, besides the differentially expressed lncRNAs (164), TFs (171), and novel isoforms of ApRelish (1) and ApSOCS2 (4). Enrichment analyses showed that KEGG pathways related to metabolism were suppressed, whereas GO terms related to DNA synthesis and replication were induced. Furthermore, the autophagy and apoptosis pathways were significantly enriched among the upregulated genes. Protein–protein interaction network (PPI) analysis revealed the coordinated downregulation of genes involved in mitochondrial ribosomes, V-type and F-type ATPases, and oxidative phosphorylation, indicating the disruption of host energy metabolism and organelle acidification. Moreover, coordinated upregulation of genes associated with cytoplasmic ribosomes was observed, suggesting that the infection by ApNPV interferes with host translational machinery. These results show that ApNPV infection reprograms energy metabolism, biosynthetic processes, and immune response in A. pernyi midgut. Our study provides a foundation for elucidating the mechanisms of A. pernyi–virus interactions, particularly how the viruses affect host defense strategies. Full article
(This article belongs to the Special Issue Genomics and Molecular Biology in Silkworm)
Show Figures

Graphical abstract

16 pages, 2174 KiB  
Article
TwinFedPot: Honeypot Intelligence Distillation into Digital Twin for Persistent Smart Traffic Security
by Yesin Sahraoui, Abdessalam Mohammed Hadjkouider, Chaker Abdelaziz Kerrache and Carlos T. Calafate
Sensors 2025, 25(15), 4725; https://doi.org/10.3390/s25154725 - 31 Jul 2025
Viewed by 255
Abstract
The integration of digital twins (DTs) with intelligent traffic systems (ITSs) holds strong potential for improving real-time management in smart cities. However, securing digital twins remains a significant challenge due to the dynamic and adversarial nature of cyber–physical environments. In this work, we [...] Read more.
The integration of digital twins (DTs) with intelligent traffic systems (ITSs) holds strong potential for improving real-time management in smart cities. However, securing digital twins remains a significant challenge due to the dynamic and adversarial nature of cyber–physical environments. In this work, we propose TwinFedPot, an innovative digital twin-based security architecture that combines honeypot-driven data collection with Zero-Shot Learning (ZSL) for robust and adaptive cyber threat detection without requiring prior sampling. The framework leverages Inverse Federated Distillation (IFD) to train the DT server, where edge-deployed honeypots generate semantic predictions of anomalous behavior and upload soft logits instead of raw data. Unlike conventional federated approaches, TwinFedPot reverses the typical knowledge flow by distilling collective intelligence from the honeypots into a central teacher model hosted on the DT. This inversion allows the system to learn generalized attack patterns using only limited data, while preserving privacy and enhancing robustness. Experimental results demonstrate significant improvements in accuracy and F1-score, establishing TwinFedPot as a scalable and effective defense solution for smart traffic infrastructures. Full article
Show Figures

Figure 1

14 pages, 6242 KiB  
Article
Characteristic Analysis of Ictalurus punctatus STING and Screening Validation of Interacting Proteins with Ictalurid herpesvirus 1
by Lihui Meng, Shuxin Li, Hongxun Chen, Sheng Yuan and Zhe Zhao
Microorganisms 2025, 13(8), 1780; https://doi.org/10.3390/microorganisms13081780 - 30 Jul 2025
Viewed by 213
Abstract
The innate immune response is an important defense against invading pathogens. Stimulator of interferon gene (STING) plays an important role in the cyclic GMP-AMP synthase (cGAS)-mediated activation of type I IFN responses. However, some viruses have evolved the ability to inhibit the function [...] Read more.
The innate immune response is an important defense against invading pathogens. Stimulator of interferon gene (STING) plays an important role in the cyclic GMP-AMP synthase (cGAS)-mediated activation of type I IFN responses. However, some viruses have evolved the ability to inhibit the function of STING and evade the host antiviral defenses. Understanding both the mechanism of action and the viruses targets of STING effector is important because of their importance to evade the host antiviral defenses. In this study, the STING (IpSTING) of Ictalurus punctatus was first identified and characterized. Subsequently, the yeast two-hybrid system (Y2HS) was used to screen for proteins from channel catfish virus (CCV, Ictalurid herpesvirus 1) that interact with IpSTING. The ORFs of the CCV were cloned into the pGBKT7 vector and expressed in the AH109 yeast strain. The bait protein expression was validated by autoactivation, and toxicity investigation compared with control (AH109 yeast strain transformed with empty pGBKT7 and pGADT7 vector). Two positive candidate proteins, ORF41 and ORF65, were identified through Y2HS screening as interacting with IpSTING. Their interactions were further validated using co-immunoprecipitation (Co-IP). This represented the first identification of interactions between IpSTING and the CCV proteins ORF41 and ORF65. The data advanced our understanding of the functions of ORF41 and ORF65 and suggested that they might contribute to the evasion of host antiviral defenses. However, the interaction mechanism between IpSTING, and CCV proteins ORF41 and ORF65 still needs to be further explored. Full article
Show Figures

Figure 1

25 pages, 1199 KiB  
Review
Gut-Microbiota-Derived Metabolites and Probiotic Strategies in Colorectal Cancer: Implications for Disease Modulation and Precision Therapy
by Yi-Chu Yang, Shih-Chang Chang, Chih-Sheng Hung, Ming-Hung Shen, Ching-Long Lai and Chi-Jung Huang
Nutrients 2025, 17(15), 2501; https://doi.org/10.3390/nu17152501 - 30 Jul 2025
Viewed by 514
Abstract
The human gut microbiota significantly influences host health through its metabolic products and interaction with immune, neural, and metabolic systems. Among these, short-chain fatty acids (SCFAs), especially butyrate, play key roles in maintaining gut barrier integrity, modulating inflammation, and supporting metabolic regulation. Dysbiosis [...] Read more.
The human gut microbiota significantly influences host health through its metabolic products and interaction with immune, neural, and metabolic systems. Among these, short-chain fatty acids (SCFAs), especially butyrate, play key roles in maintaining gut barrier integrity, modulating inflammation, and supporting metabolic regulation. Dysbiosis is increasingly linked to diverse conditions such as gastrointestinal, metabolic, and neuropsychiatric disorders, cardiovascular diseases, and colorectal cancer (CRC). Probiotics offer therapeutic potential by restoring microbial balance, enhancing epithelial defenses, and modulating immune responses. This review highlights the physiological functions of gut microbiota and SCFAs, with a particular focus on butyrate’s anti-inflammatory and anti-cancer effects in CRC. It also examines emerging microbial therapies like probiotics, synbiotics, postbiotics, and engineered microbes. Emphasis is placed on the need for precision microbiome medicine, tailored to individual host–microbiome interactions and metabolomic profiles. These insights underscore the promising role of gut microbiota modulation in advancing preventive and personalized healthcare. Full article
(This article belongs to the Special Issue Diet, Gut Microbiota, and Gastrointestinal Disease)
Show Figures

Graphical abstract

16 pages, 8060 KiB  
Article
Transcriptomic Reprogramming and Key Molecular Pathways Underlying Huanglongbing Tolerance and Susceptibility in Six Citrus Cultivars
by Xiaohong Chen, Fang Fang, Tingting Chen, Jinghua Wu, Zheng Zheng and Xiaoling Deng
Int. J. Mol. Sci. 2025, 26(15), 7359; https://doi.org/10.3390/ijms26157359 - 30 Jul 2025
Viewed by 237
Abstract
Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CLas), is the most devastating disease threatening global citrus production. Although no commercial citrus varieties exhibit complete HLB resistance, genotype-specific tolerance variations remain underexplored. This study conducted a comparative transcriptomic profiling of six commercially citrus cultivars [...] Read more.
Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CLas), is the most devastating disease threatening global citrus production. Although no commercial citrus varieties exhibit complete HLB resistance, genotype-specific tolerance variations remain underexplored. This study conducted a comparative transcriptomic profiling of six commercially citrus cultivars in South China, four susceptible cultivars (C. reticulata cv. Tankan, Gongkan, Shatangju, and C. sinensis Osbeck cv. Newhall), and two tolerant cultivars (C. limon cv. Eureka; C. maxima cv Guanxi Yu) to dissect molecular mechanisms underlying HLB responses. Comparative transcriptomic analyses revealed extensive transcriptional reprogramming, with tolerant cultivars exhibiting fewer differentially expressed genes (DEGs) and targeted defense activation compared to susceptible genotypes. The key findings highlighted the genotype-specific regulation of starch metabolism, where β-amylase 3 (BAM3) was uniquely upregulated in tolerant varieties, potentially mitigating starch accumulation. Immune signaling diverged significantly: tolerant cultivars activated pattern-triggered immunity (PTI) via receptor-like kinases (FLS2) and suppressed ROS-associated RBOH genes, while susceptible genotypes showed the hyperactivation of ethylene signaling and oxidative stress pathways. Cell wall remodeling in susceptible cultivars involved upregulated xyloglucan endotransglucosylases (XTH), contrasting with pectin methylesterase induction in tolerant Eureka lemon for structural reinforcement. Phytohormonal dynamics revealed SA-mediated defense and NPR3/4 suppression in Eureka lemon, whereas susceptible cultivars prioritized ethylene/JA pathways. These findings delineate genotype-specific strategies in citrus–CLas interactions, identifying BAM3, FLS2, and cell wall modifiers as critical targets for breeding HLB-resistant cultivars through molecular-assisted selection. This study provides a foundational framework for understanding host–pathogen dynamics and advancing citrus immunity engineering. Full article
(This article belongs to the Special Issue Plant-Microbe Interaction: Current Status and Future Directions)
Show Figures

Figure 1

Back to TopTop