Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,234)

Search Parameters:
Keywords = host feeding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 949 KiB  
Article
Context-Dependent Anti-Predator Behavior in Nymphs of the Invasive Spotted Lanternfly (Lycorma delicatula): Effects of Development, Microhabitat, and Social Environment
by Ellen van Wilgenburg, Crystal Aung and Julia N. Caputo
Insects 2025, 16(8), 815; https://doi.org/10.3390/insects16080815 (registering DOI) - 6 Aug 2025
Abstract
Antipredator behaviors in animals often vary with developmental stage, microhabitat, and social context, yet few studies examine how these factors interact in species that undergo ontogenetic shifts in chemical defense. The spotted lanternfly (Lycorma delicatula) is an invasive planthopper whose nymphs [...] Read more.
Antipredator behaviors in animals often vary with developmental stage, microhabitat, and social context, yet few studies examine how these factors interact in species that undergo ontogenetic shifts in chemical defense. The spotted lanternfly (Lycorma delicatula) is an invasive planthopper whose nymphs transition from cryptically colored early instars to aposematically colored fourth instars that feed primarily on chemically defended host plants. We conducted 1460 simulated predator attacks on nymphs across four developmental stages to examine how antipredator behavior varies with instar, plant location (leaf vs. stem), host plant species, and local conspecific density. Nymphs exhibited three primary responses: hiding, sidestepping, or jumping. We found that location on the plant had the strongest effect, with nymphs on stems more likely to hide than those on leaves. Older instars were significantly less likely to hide and more likely to sidestep, particularly on stems, suggesting reduced reliance on energetically costly escape behaviors as chemical defenses accumulate. First instars were less likely to jump from their preferred host plant (tree of heaven) compared to other plant species. Higher local conspecific density reduced hiding probability, likely due to the dilution effect. These results demonstrate that antipredator strategies in L. delicatula are flexibly deployed based on developmental stage, microhabitat structure, and social context, with implications for understanding evolution of antipredator behavior in chemically protected species. Full article
(This article belongs to the Section Insect Behavior and Pathology)
16 pages, 1994 KiB  
Article
Fall Webworm Host Plant Preferences Generate a Reduced Predation Enemy-Free Space in Its Interaction with Parasitoids
by Lina Pan, Wenfang Gao, Zhiqin Song, Xiaoyu Li, Yipeng Wei, Guangyan Qin, Yiping Hu, Zeyang Sun, Cuiqing Gao, Penghua Bai, Gengping Zhu, Wenjie Wang and Min Li
Insects 2025, 16(8), 804; https://doi.org/10.3390/insects16080804 - 4 Aug 2025
Abstract
Plants and insects are developing strategies to avoid each other’s defense systems. Host plants may release volatile compounds to attract the natural enemies of herbivores; insect pests may also select host plants that are deterrent to natural enemies to avoid such predation. Here [...] Read more.
Plants and insects are developing strategies to avoid each other’s defense systems. Host plants may release volatile compounds to attract the natural enemies of herbivores; insect pests may also select host plants that are deterrent to natural enemies to avoid such predation. Here we investigated whether the host plant preference of Hyphantria cunea correlates with the attractiveness of these plants to Chouioia cunea, a parasitoid wasp that serves as the primary natural enemy of H. cunea. We found Morus alba was the preferred host plant for female H. cunea. Although M. alba provided suboptimal nutritional value for H. cunea growth and development compared to other plants, it attracted fewer C. cunea relative to alternative host plants. Gas chromatography–mass spectrometry (GC–MS) coupled with gas chromatography–electroantennographic detection (GC-EAD) analysis identified six distinct compounds among the herbivore-induced plant volatiles (HIPVs) produced following H. cunea feeding. Notably, M. alba was the sole plant species that did not emit tridecane. These results suggest that H. cunea utilizes M. alba as a reduced predation enemy-free space, thereby minimizing parasitization by C. cunea. Our research emphasizes the importance of considering adaptive responses of herbivores within the context of multi-trophic relationships, rather than solely focusing on optimizing herbivore growth on the most nutritionally suitable plant host. Full article
(This article belongs to the Special Issue Advances in Chemical Ecology of Plant–Insect Interactions)
Show Figures

Graphical abstract

28 pages, 2816 KiB  
Article
Influence of the Origin, Feeding Status, and Trypanosoma cruzi Infection in the Microbial Composition of the Digestive Tract of Triatoma pallidipennis
by Everardo Gutiérrez-Millán, Alba N. Lecona-Valera, Mario H. Rodriguez and Ana E. Gutiérrez-Cabrera
Biology 2025, 14(8), 984; https://doi.org/10.3390/biology14080984 (registering DOI) - 2 Aug 2025
Viewed by 259
Abstract
Triatoma pallidipennis, the main vector of Chagas disease in central Mexico, hosts a diverse and complex gut bacterial community shaped by environmental and physiological factors. To gain insight into these microbes’ dynamics, we characterised the gut bacterial communities of wild and insectary [...] Read more.
Triatoma pallidipennis, the main vector of Chagas disease in central Mexico, hosts a diverse and complex gut bacterial community shaped by environmental and physiological factors. To gain insight into these microbes’ dynamics, we characterised the gut bacterial communities of wild and insectary insects under different feeding and Trypanosoma cruzi infection conditions, using 16S rRNA gene sequencing. We identified 91 bacterial genera across 8 phyla, with Proteobacteria dominating most samples. Wild insects showed greater bacterial diversity, led by Acinetobacter and Pseudomonas, while insectary insects exhibited lower diversity and were dominated by Arsenophonus. The origin of the insects, whether they were reared in the insectary (laboratory) or collected from wild populations, was the principal factor structuring the gut microbiota, followed by feeding and T. cruzi infection. A stable core microbiota of 12 bacterial genera was present across all conditions, suggesting key functional roles in host physiology. Co-occurrence and functional enrichment analyses revealed that feeding and infection induced condition-specific microbial interactions and metabolic pathways. Our findings highlight the ecological plasticity of the triatomine gut microbiota and its potential role in modulating vector competence, providing a foundation for future microbiota-based control strategies. Full article
(This article belongs to the Special Issue Metabolic Interactions between the Gut Microbiome and Host)
Show Figures

Graphical abstract

24 pages, 1542 KiB  
Review
Genome-Editing Tools for Lactic Acid Bacteria: Past Achievements, Current Platforms, and Future Directions
by Leonid A. Shaposhnikov, Aleksei S. Rozanov and Alexey E. Sazonov
Int. J. Mol. Sci. 2025, 26(15), 7483; https://doi.org/10.3390/ijms26157483 - 2 Aug 2025
Viewed by 148
Abstract
Lactic acid bacteria (LAB) are central to food, feed, and health biotechnology, yet their genomes have long resisted rapid, precise manipulation. This review charts the evolution of LAB genome-editing strategies from labor-intensive RecA-dependent double-crossovers to state-of-the-art CRISPR and CRISPR-associated transposase systems. Native homologous [...] Read more.
Lactic acid bacteria (LAB) are central to food, feed, and health biotechnology, yet their genomes have long resisted rapid, precise manipulation. This review charts the evolution of LAB genome-editing strategies from labor-intensive RecA-dependent double-crossovers to state-of-the-art CRISPR and CRISPR-associated transposase systems. Native homologous recombination, transposon mutagenesis, and phage-derived recombineering opened the door to targeted gene disruption, but low efficiencies and marker footprints limited throughput. Recent phage RecT/RecE-mediated recombineering and CRISPR/Cas counter-selection now enable scar-less point edits, seamless deletions, and multi-kilobase insertions at efficiencies approaching model organisms. Endogenous Cas9 systems, dCas-based CRISPR interference, and CRISPR-guided transposases further extend the toolbox, allowing multiplex knockouts, precise single-base mutations, conditional knockdowns, and payloads up to 10 kb. The remaining hurdles include strain-specific barriers, reliance on selection markers for large edits, and the limited host-range of recombinases. Nevertheless, convergence of phage enzymes, CRISPR counter-selection and high-throughput oligo recombineering is rapidly transforming LAB into versatile chassis for cell-factory and therapeutic applications. Full article
(This article belongs to the Special Issue Probiotics in Health and Disease)
Show Figures

Figure 1

10 pages, 960 KiB  
Article
Study on the Vectoring Potential of Halyomorpha halys for Pantoea stewartii subsp. stewartii, the Pathogen Causing Stewart’s Disease in Maize
by Francesca Costantini, Agostino Strangi, Fabio Mosconi, Leonardo Marianelli, Giuseppino Sabbatini-Peverieri, Pio Federico Roversi and Valeria Scala
Agriculture 2025, 15(15), 1671; https://doi.org/10.3390/agriculture15151671 - 2 Aug 2025
Viewed by 170
Abstract
Pantoea stewartii subsp. stewartii (Pss) is a Gram-negative bacterium first documented in North America, and is the causal agent of Stewart’s disease in maize (Zea mays), especially in sweet corn. First identified in North America, it is primarily spread by insect [...] Read more.
Pantoea stewartii subsp. stewartii (Pss) is a Gram-negative bacterium first documented in North America, and is the causal agent of Stewart’s disease in maize (Zea mays), especially in sweet corn. First identified in North America, it is primarily spread by insect vectors like the corn flea beetle (Chaetocnema Pulicaria) in the United States. However, Pss has since spread globally—reaching parts of Africa, Asia, the Americas, and Europe—mainly through the international seed trade. Although this trade is limited, it has still facilitated the pathogen’s global movement, as evidenced by numerous phytosanitary interceptions. Recent studies in Italy, as indicated in the EFSA journal, reported that potential alternative vectors were identified, including Phyllotreta spp. and the invasive Asian brown marmorated stink bug (Halyomorpha halys); the latter tested positive in PCR screenings, raising concerns due to its broad host range and global distribution. This information has prompted studies to verify the ability of Halyomorpha halys to vector Pss to assess the risk and prevent the further spread of Pss in Europe. In this study, we explored the potential transmission of Pss by the brown marmorated stink bugs in maize plants, following its feeding on Pss-inoculated maize, as well as the presence of Pss within the insect’s body. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

16 pages, 1632 KiB  
Article
Meloidogyne incognita Significantly Alters the Cucumber Root Metabolome and Enriches Differential Accumulated Metabolites Regulating Nematode Chemotaxis and Infection
by Naicun Chen, Qianqian Sun, Zhiqun Chen and Xu Zhang
Horticulturae 2025, 11(8), 892; https://doi.org/10.3390/horticulturae11080892 (registering DOI) - 1 Aug 2025
Viewed by 178
Abstract
Root-knot nematode (Meloidogyne incognita) is a globally destructive plant-parasitic nematode that severely impedes the sustainable production of horticultural crops. Metabolic reprogramming in plant roots represents the host response to M. incognita infection that can also be exploited by the nematode to [...] Read more.
Root-knot nematode (Meloidogyne incognita) is a globally destructive plant-parasitic nematode that severely impedes the sustainable production of horticultural crops. Metabolic reprogramming in plant roots represents the host response to M. incognita infection that can also be exploited by the nematode to facilitate its parasitism. In this study, untargeted metabolomics was employed to analyze metabolic changes in cucumber roots following nematode inoculation, with the goal of identifying differentially accumulated metabolites that may influence M. incognita behavior. Metabolomic analysis revealed that M. incognita significantly altered the cucumber root metabolome, triggering an accumulation of lipids and organic acids and enriching biotic stress-related pathways such as alkaloid biosynthesis and linoleic acid metabolism. Among differentially accumulated metabolites, myristic acid and hexadecanal were selected for further study due to their potential roles in nematode inhibition. In vitro assays demonstrated that both metabolites suppressed egg hatching and reduced infectivity of M. incognita, while pot experiments indicated a correlation between their application and reduced root gall formation. Chemotaxis assays further revealed that both metabolites exerted repellent effects on the chemotactic migration of M. incognita J2 and suppressed the transcriptional expression of two motility-and feeding-related neuropeptides, Mi-flp-1 and Mi-flp-18. In conclusion, this study demonstrates the significant potential of differentially accumulated metabolites induced by M. incognita infection for nematode disease control, achieved by interfering with nematode chemotaxis and subsequent infection. This work also provides deeper insights into the metabolomic mechanisms underlying the cucumber-M. incognita interaction. Full article
(This article belongs to the Special Issue 10th Anniversary of Horticulturae—Recent Outcomes and Perspectives)
Show Figures

Figure 1

24 pages, 3366 KiB  
Article
Real-Time Integrative Mapping of the Phenology and Climatic Suitability for the Spotted Lanternfly, Lycorma delicatula
by Brittany S. Barker, Jules Beyer and Leonard Coop
Insects 2025, 16(8), 790; https://doi.org/10.3390/insects16080790 - 31 Jul 2025
Viewed by 365
Abstract
We present a model that integrates the mapping of the phenology and climatic suitability for the spotted lanternfly (SLF), Lycorma delicatula (White, 1845) (Hemiptera: Fulgoridae), to provide guidance on when and where to conduct surveillance and management of this highly invasive pest. The [...] Read more.
We present a model that integrates the mapping of the phenology and climatic suitability for the spotted lanternfly (SLF), Lycorma delicatula (White, 1845) (Hemiptera: Fulgoridae), to provide guidance on when and where to conduct surveillance and management of this highly invasive pest. The model was designed for use in the Degree-Day, Establishment Risk, and Phenological Event Maps (DDRP) platform, which is an open-source decision support tool to help to detect, monitor, and manage invasive threats. We validated the model using presence records and phenological observations derived from monitoring studies and the iNaturalist database. The model performed well, with more than >99.9% of the presence records included in the potential distribution for North America, a large proportion of the iNaturalist observations correctly predicted, and a low error rate for dates of the first appearance of adults. Cold and heat stresses were insufficient to exclude the SLF from most areas of the conterminous United States (CONUS), but an inability for the pest to complete its life cycle in cold areas may hinder establishment. The appearance of adults occurred several months earlier in warmer regions of North America and Europe, which suggests that host plants in these areas may experience stronger feeding pressure. The near-real-time forecasts produced by the model are available at USPest.org and the USA National Phenology Network to support decision making for the CONUS. Forecasts of egg hatch and the appearance of adults are particularly relevant for surveillance to prevent new establishments and for managing existing populations. Full article
(This article belongs to the Special Issue Insect Dynamics: Modeling in Insect Pest Management)
Show Figures

Figure 1

19 pages, 5918 KiB  
Article
Distinct Patterns of Co-Evolution Among Protist Symbionts of Neoisoptera Termites
by Serena G. Aguilar, Jordyn Shevat, Daniel E. Jasso-Selles, Kali L. Swichtenberg, Carlos D. Vecco-Giove, Jan Šobotník, David Sillam-Dussès, Francesca De Martini and Gillian H. Gile
Diversity 2025, 17(8), 537; https://doi.org/10.3390/d17080537 - 31 Jul 2025
Viewed by 283
Abstract
Obligate symbionts often exhibit some degree of co-speciation with their hosts. One prominent example is the symbiosis between termites and their wood-feeding hindgut protists. This symbiosis is mutually obligate, vertically inherited by anal feeding, and it predates the emergence of termites from their [...] Read more.
Obligate symbionts often exhibit some degree of co-speciation with their hosts. One prominent example is the symbiosis between termites and their wood-feeding hindgut protists. This symbiosis is mutually obligate, vertically inherited by anal feeding, and it predates the emergence of termites from their cockroach ancestors. Termites and their symbiotic protists might therefore be expected to have congruent phylogenies, but symbiont loss, transfer, and independent diversification can impact the coevolutionary history to varying degrees. Here, we have characterized the symbiotic protist communities of eight Neoisoptera species from three families in order to gauge the phylogenetic congruence between each lineage of protists and their hosts. Using microscopy and 18S rRNA gene sequencing of individually isolated protist cells, we identified protists belonging to the Parabasalia genera Pseudotrichonympha, Holomastigotoides, Cononympha, and Cthulhu. Pseudotrichonympha were present in all of the investigated termites, with a strong pattern of codiversification with hosts, consistent with previous studies. The phylogeny of Holomastigotoides indicates several instances of diversification that occurred independently of the hosts’ diversification, along with lineage-specific symbiont loss. Cononympha occurs only in Heterotermitidae and Psammotermes. Surprisingly, the small flagellate Cthulhu is widespread and exhibits cophylogeny with its hosts. This study demonstrates that different symbiont lineages can show different coevolutionary patterns, even within the same host. Full article
(This article belongs to the Special Issue Diversity and Ecology of Termites)
Show Figures

Figure 1

20 pages, 1398 KiB  
Article
Effects of Multi-Generational Rearing on Job’s Tears on the Performance and Host Plant Preference of Spodoptera frugiperda (Lepidoptera: Noctuidae)
by Feng-Luan Yao, Yao-Yao Wu, Gao-Ke Lei, Xiao-Yan Huang, Xue-Ling Ding, Xue-Song Lu, Yu Zheng and Yu-Xian He
Insects 2025, 16(8), 773; https://doi.org/10.3390/insects16080773 - 28 Jul 2025
Viewed by 289
Abstract
The fall armyworm (FAW), Spodoptera frugiperda, is a highly polyphagous pest posing a major threat to Poaceae crops, particularly corn (Zea mays), in China. However, its ability to adapt to Job’s tears (Coix lacryma-jobi), an edible and medicinal [...] Read more.
The fall armyworm (FAW), Spodoptera frugiperda, is a highly polyphagous pest posing a major threat to Poaceae crops, particularly corn (Zea mays), in China. However, its ability to adapt to Job’s tears (Coix lacryma-jobi), an edible and medicinal Poaceae species, under continuous rearing remains insufficiently understood. In this study, FAW survival, development, and reproduction were assessed over eight generations on two cultivars of Job’s tears, ‘Cuiyi 1’ and ‘Puyi 6’. Feeding and oviposition preferences were also examined in FAW populations reared on ‘Puyi 6’ by offering corn and ‘Puyi 6’ as hosts. Sustained rearing for five to eight generations on both cultivars significantly increased population fitness, with greater improvements observed in the ‘Puyi 6’ group. FAW reared on corn or ‘Puyi 6’ for two generations exhibited strong preferences for corn, whereas those reared on ‘Puyi 6’ for five to eight generations showed no significant host preference. These findings suggest that transgenerational adaptation markedly improved FAW performance and acceptance of Job’s tears, underscoring the need for intensified monitoring of FAW dynamics during the cultivation of Job’s tears. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Graphical abstract

14 pages, 1299 KiB  
Article
Host-Dependent Variation in Tetranychus urticae Fitness and Microbiota Composition Across Strawberry Cultivars
by Xu Zhang, Hongjun Yang, Zhiming Yan, Yuanhua Wang, Quanzhi Wang, Shimei Huo, Zhan Chen, Jialong Cheng and Kun Yang
Insects 2025, 16(8), 767; https://doi.org/10.3390/insects16080767 - 25 Jul 2025
Viewed by 493
Abstract
Tetranychus urticae, commonly known as the two-spotted spider mite, is a highly adaptable and polyphagous arthropod in the family Tetranychidae, capable of feeding on over 1200 plant species, including strawberries (Fragaria × ananassa Duch.). The fitness and microbiota of herbivorous arthropods [...] Read more.
Tetranychus urticae, commonly known as the two-spotted spider mite, is a highly adaptable and polyphagous arthropod in the family Tetranychidae, capable of feeding on over 1200 plant species, including strawberries (Fragaria × ananassa Duch.). The fitness and microbiota of herbivorous arthropods can vary significantly across different plant species and cultivars. In this study, we investigated the fecundity, longevity, growth rate, and microbiota composition of T. urticae reared on seven Chinese strawberry cultivars: Hongyan (HY), Yuexiu (YX), Tianshi (TS), Ningyu (NY), Xuetu (XT), Zhangjj (ZJ), and Xuelixiang (XLX). Our findings revealed significant differences among cultivars: mites reared on the XT cultivar exhibited the highest fecundity (166.56 ± 7.82 eggs), while those on XLX had the shortest pre-adult period (7.71 ± 0.13 days). Longevity was significantly extended in mites reared on XLX, XT, and NY cultivars (25.95–26.83 days). Microbiota analysis via 16S rRNA sequencing showed that Proteobacteria dominated (>89.96% abundance) across all mite groups, with Wolbachia as the predominant symbiont (89.58–99.19%). Male mites exhibited higher bacterial diversity (Shannon and Chao1 indices) than females, though Wolbachia abundance did not differ significantly between sexes or cultivars. Functional predictions highlighted roles of microbiota in biosynthesis, detoxification, and energy metabolism. These findings underscore the influence of host plant variety on T. urticae fitness and microbiota composition, suggesting potential strategies for breeding resistant strawberry cultivars and leveraging microbial interactions for pest management. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

14 pages, 4833 KiB  
Article
A High-Quality Chromosome-Level Genome Assembly and Comparative Analyses Provide Insights into the Adaptation of Chrysomya megacephala (Fabricius, 1794) (Diptera: Calliphoridae)
by Dan Zhang, Liangliang Li, Junchao Ma, Jianfeng Jin, Chunli Ding, Qiang Fang, Jianjun Jin, Zhulidezi Aishan and Xuebo Li
Biology 2025, 14(8), 913; https://doi.org/10.3390/biology14080913 - 22 Jul 2025
Viewed by 181
Abstract
Chrysomya megacephala, as one of the common blowflies, displays biological characteristics, such as ovoviviparity and carrion-feeding adaptation. Thus, this species is generally considered of significant ecological, medical, and forensic importance. However, without a high-quality pseudo-chromosome genome for C. megacephala, elucidating its [...] Read more.
Chrysomya megacephala, as one of the common blowflies, displays biological characteristics, such as ovoviviparity and carrion-feeding adaptation. Thus, this species is generally considered of significant ecological, medical, and forensic importance. However, without a high-quality pseudo-chromosome genome for C. megacephala, elucidating its evolutionary trajectory proved difficult. Herein, we assembled and analyzed a high-quality chromosome-level genome assembly of the C. megacephala, combined with PacBio HiFi long reads, Hi-C data, and Illumina reads. The pseudo-chromosomes assembly of C. megacephala spans 629.44 Mb, with 97.05% anchored to five chromosomes. Final assembly includes 1056 contigs (N50 = 1.68 Mb), and 97 scaffolds (N50 = 121.37 Mb), achieving 98.90% BUSCO completeness (n = 1367). Gene annotation predicted 17,071 protein-coding genes (95.60% BUSCO completeness), while repeat masking identified 244.26 Mb (38.82%) as repetitive elements. Additionally, 3740 non-coding RNAs were characterized. Gene family analyses resulted in 10,579 gene families, containing 151 gene families that experienced rapid evolution. Comparative genomic analyses showed that the expanded genes are related to reproduction and necrophagous habits. In addition, we annotated the gene family P450s, CCEs, IRs, GRs, and ORs, all of which represent remarkable expansion, playing a crucial role in the mechanism of locating the hosts for forensic insects. Our research establishes a high-quality genome sequence to facilitate subsequent molecular investigations into significant species within forensic entomology. Full article
Show Figures

Figure 1

14 pages, 1146 KiB  
Article
Damage Potential and Feeding Preference of Halyomorpha halys (Stål), Nezara viridula (L.), and Leptoglossus zonatus (Dallas) Among Different Ripening Stages of Tomato
by Md Tafsir Nur Nabi Rashed, Adam G. Dale, Gideon Alake, Simon S. Riley, Nicole Benda and Amanda C. Hodges
Insects 2025, 16(7), 740; https://doi.org/10.3390/insects16070740 - 20 Jul 2025
Viewed by 460
Abstract
Tomato (Solanum lycopersicum L.) is one of the most preferred hosts of polyphagous stink bugs (Hemiptera: Pentatomidae) and leaf-footed bugs (Hemiptera: Coreidae). These hemipterans can infest tomato fruits at all stages of fruit ripening. However, it is unclear whether there is any [...] Read more.
Tomato (Solanum lycopersicum L.) is one of the most preferred hosts of polyphagous stink bugs (Hemiptera: Pentatomidae) and leaf-footed bugs (Hemiptera: Coreidae). These hemipterans can infest tomato fruits at all stages of fruit ripening. However, it is unclear whether there is any feeding preference for these true bugs among different ripening stages of tomato (green, breaker, pink, and red stages). Feeding and behavioral assays were performed to determine the feeding preference and damage potential of two common stink bugs—the brown marmorated stink bug (Halyomorpha halys (Stål)) and the southern green stink bug (Nezara viridula L.)—and a leaf-footed bug (Leptoglossus zonatus (Dallas)) among the various ripening stages of tomato. The results indicated that green is the most preferred ripening stage for N. viridula and L. zonatus, while pink tomatoes were found to be a more preferred feeding site for H. halys. Fully ripe red tomatoes were found to be the least preferred feeding site for all three insects. The findings of this study will be useful for developing fruit damage symptom-based monitoring programs and establishing economic threshold levels for these pests in tomatoes, as well as informing harvesting regimes. Full article
(This article belongs to the Collection Biology and Management of Sap-Sucking Pests)
Show Figures

Figure 1

20 pages, 1836 KiB  
Article
Advancing Semiochemical Tools for Mountain Pine Beetle Management: Dendroctonus ponderosae Responses to Saprophytic Fungal Volatiles
by Leah Crandall, Rashaduz Zaman, Guncha Ishangulyyeva and Nadir Erbilgin
Metabolites 2025, 15(7), 488; https://doi.org/10.3390/metabo15070488 - 20 Jul 2025
Viewed by 376
Abstract
Background/Objectives: Within their host trees, mountain pine beetles (MPBs, Dendroctonus ponderosae) interact with many fungal species, each releasing a unique profile of volatile organic compounds (VOCs). The FVOCs released by the two primary symbionts of MPBs, Grosmannia clavigera and Ophiostoma montium, [...] Read more.
Background/Objectives: Within their host trees, mountain pine beetles (MPBs, Dendroctonus ponderosae) interact with many fungal species, each releasing a unique profile of volatile organic compounds (VOCs). The FVOCs released by the two primary symbionts of MPBs, Grosmannia clavigera and Ophiostoma montium, have been found to enhance MPB attraction in the field and laboratory studies. Opportunistic, saprophytic fungal species, such as Aspergillus sp. and Trichoderma atroviride, are also common in MPB galleries and can negatively impact MPB fitness. However, little is known about the FVOCs produced by these fungal species and how they may impact MPB feeding and attraction. Methods: To address this knowledge gap, we characterized the FVOC profile of T. atroviride, and performed bioassays to test the effects of its FVOCs on MPB attraction and feeding activity. Results: Our chemical analysis revealed several FVOCs from T. atroviride known to inhibit the growth of competing fungal species and impact subcortical-beetle attraction. Conclusions: From those FVOCs, we recommended four compounds—2-pentanone, 2-heptanone, 2-pentanol, and phenylethyl alcohol—for use in future field tests as anti-attraction lures for MPBs. In bioassays, we also observed strong MPB repellency from FVOCs released by T. atroviride, as well as the mild effects of FVOCs on MPB feeding activity. Our findings highlight the potential for these FVOCs to be utilized in the development of more effective MPB anti-attractant lures, which are crucial for the monitoring and management of low-density MPB populations. Full article
(This article belongs to the Special Issue Dysbiosis and Metabolic Disorders of the Microbiota)
Show Figures

Figure 1

17 pages, 2091 KiB  
Article
A Novel Parvovirus Associated with the Whitefly Bemisia tabaci
by Fani Gousi, Zineb Belabess, Nathalie Laboureau, Michel Peterschmitt and Mikhail M. Pooggin
Pathogens 2025, 14(7), 714; https://doi.org/10.3390/pathogens14070714 - 19 Jul 2025
Viewed by 383
Abstract
The whitefly Bemisia tabaci (Hemiptera: Aleyrodoidea) causes direct feeding damage to crop plants and transmits pathogenic plant viruses, thereby threatening global food security. Although whitefly-infecting RNA viruses are known and proposed as biocontrol agents, no insect DNA virus has been found in any [...] Read more.
The whitefly Bemisia tabaci (Hemiptera: Aleyrodoidea) causes direct feeding damage to crop plants and transmits pathogenic plant viruses, thereby threatening global food security. Although whitefly-infecting RNA viruses are known and proposed as biocontrol agents, no insect DNA virus has been found in any member of Aleyrodoidea. Using rolling circle amplification (RCA) of viral DNA from whiteflies collected from crop fields in Morocco, followed by Illumina sequencing of the RCA products, we found a novel insect single-stranded (ss) DNA parvovirus (family Parvoviridae) in addition to plant ssDNA geminiviruses transmitted by whiteflies. Based on its genome organization with inverted terminal repeats and evolutionarily conserved proteins mediating viral DNA replication (NS1/Rep) and encapsidation (VP), encoded on the forward and reverse strands, respectively, we named this virus Bemisia tabaci ambidensovirus (BtaDV) and classified it as a founding member of a new genus within the subfamily Densovirinae. This subfamily also contains three distinct genera of ambisense densoviruses of other hemipteran insects (Aphidoidea, Coccoidea, and Psylloidea). Furthermore, we provide evidence for the genetic variants of BtaDV circulating in whitefly populations and for its partial sequences integrated into the B. tabaci genome, with one integrant locus potentially expressing a fusion protein composed of viral Rep endonuclease and host DNA-binding domains. This suggests a long-term virus-host interaction and neofunctionalization of BtaDV-derived endogenous viral elements. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

17 pages, 4515 KiB  
Article
Deoxycholic Acid Mitigates Necrotic Enteritis Through Selective Inhibition of Pathobionts and Enrichment of Specific Lactic Acid Bacteria
by Melanie A. Whitmore, Jiaqing Guo, Dohyung M. Kim, Jing Liu, Isabel Tobin and Guolong Zhang
Pathogens 2025, 14(7), 688; https://doi.org/10.3390/pathogens14070688 - 13 Jul 2025
Viewed by 958
Abstract
Necrotic enteritis (NE), caused by Clostridium perfringens, poses significant economic challenges to the global poultry industry. The widening ban on in-feed antibiotics in livestock production underscores the need for alternative strategies to combat NE. Deoxycholic acid (DCA), a secondary bile acid, has [...] Read more.
Necrotic enteritis (NE), caused by Clostridium perfringens, poses significant economic challenges to the global poultry industry. The widening ban on in-feed antibiotics in livestock production underscores the need for alternative strategies to combat NE. Deoxycholic acid (DCA), a secondary bile acid, has shown promise in NE mitigation. However, its protective mechanism remains largely unexplored. A total of 120 newly hatched, male Cobb broilers were randomly divided into four treatments to investigate the impact of DCA on host response and intestinal microbiome in both healthy and NE-infected chickens. The results demonstrated that the dietary supplementation of 1.5 g/kg DCA significantly improved animal survival, reversed growth inhibition, and alleviated intestinal lesions (p < 0.01). Furthermore, DCA selectively inhibited the NE-induced proliferation of C. perfringens and other pathobionts such as Escherichia and Enterococcus cecorum. Concurrently, DCA markedly enriched dominant lactic acid bacteria like Lactobacillus johnsonii in both the ileum and cecum of NE-infected chickens. However, DCA had a marginal effect on the jejunal transcriptomic response in both mock- and NE-infected chickens. Therefore, we conclude that DCA protects chicken from NE mainly through the targeted inhibition of pathobionts including C. perfringens, with minimum impact on the host. These findings elucidate the protective mechanisms of DCA, supporting its development as a promising antibiotic alternative for NE mitigation. Full article
(This article belongs to the Section Vaccines and Therapeutic Developments)
Show Figures

Figure 1

Back to TopTop