Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,609)

Search Parameters:
Keywords = hormone contents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2073 KiB  
Article
Physiological Mechanisms of the Enhanced UV-B Radiation Triggering Plant-Specific Peroxidase-Mediated Antioxidant Defences
by Yijia Gao, Ling Wei, Chenyu Jiang, Shaopu Shi, Jiabing Jiao, Hassam Tahir, Minjie Qian and Kaibing Zhou
Antioxidants 2025, 14(8), 957; https://doi.org/10.3390/antiox14080957 (registering DOI) - 4 Aug 2025
Abstract
In this study, an artificially simulated enhanced UV-B radiation treatment of 96 kJ/m2·d−1 was applied with natural sunlight as the control. By observing changes in biological tissue damage, peroxidase (POD) enzyme activity, and hormone content, combined with transcriptome analysis and [...] Read more.
In this study, an artificially simulated enhanced UV-B radiation treatment of 96 kJ/m2·d−1 was applied with natural sunlight as the control. By observing changes in biological tissue damage, peroxidase (POD) enzyme activity, and hormone content, combined with transcriptome analysis and quantitative fluorescence PCR validation, this study preliminarily elucidated the physiological mechanisms of plant-specific peroxidase (POD) in responding to enhanced UV-B radiation stress. Enhanced UV-B treatment significantly inhibited biological tissue growth, particularly during the rapid growth stage. At this stage, the treatment exhibited higher malondialdehyde (MDA) content, indicating increased oxidative stress due to the accumulation of reactive oxygen species (ROS). Despite the inhibition in growth, the treatment showed improvements in the accumulation of organic nutrients as well as the contents of abscisic acid (ABA), salicylic acid (SA), and methyl jasmonate (MeJA). Additionally, an increase in POD activity and lignin content was observed in the treatment, especially during the middle period of the rapid growth period. Transcriptome analysis revealed that two POD multigene family members, LOC123198833 and LOC123225298, were significantly upregulated under enhanced UV-B radiation, which was further validated through qPCR. In general, enhanced UV-B radiation triggered a defence response in biological tissue by upregulating POD genes, which can effectively help to scavenge excess ROS. Full article
(This article belongs to the Special Issue Oxidative Stress in Plant Stress and Plant Physiology)
Show Figures

Figure 1

17 pages, 333 KiB  
Article
Changes, Desire, Fear and Beliefs: Women’s Feelings and Perceptions About Dental Care During Pregnancy
by Natália Correia Fonseca Castro, Vânia Maria Godoy Pimenta Barroso, Henrique Cerva Melo, Camilla Aparecida Silva de Oliveira Lima, Rafaela Silveira Pinto and Lívia Guimarães Zina
Int. J. Environ. Res. Public Health 2025, 22(8), 1211; https://doi.org/10.3390/ijerph22081211 - 31 Jul 2025
Viewed by 188
Abstract
Oral health during pregnancy is essential for maternal and child well-being, as hormonal and physiological changes increase women’s susceptibility to oral diseases. Despite the recognized importance of prenatal dental care, adherence to dental services remains a challenge in the public health context. This [...] Read more.
Oral health during pregnancy is essential for maternal and child well-being, as hormonal and physiological changes increase women’s susceptibility to oral diseases. Despite the recognized importance of prenatal dental care, adherence to dental services remains a challenge in the public health context. This study aimed to analyze oral health and the use of dental services during pregnancy through the perception of pregnant women. It represents the qualitative phase of a mixed-method study conducted with 25 pregnant women (with and without dental care) receiving prenatal care in the Brazilian Unified Health System (SUS). Participants were selected through saturation sampling, and data were collected via semi-structured interviews, followed by content analysis. The findings revealed four major themes: barriers and facilitators to dental care, changes during pregnancy and oral health. Discomfort from oral changes was a common concern. Barriers included misinformation, fear, cultural beliefs, and service organization. In contrast, facilitating factors were identified, such as care prioritization, support from healthcare teams, health education, and access through SUS. This study concludes that emotional, cultural, and contextual aspects shape the use of dental services during pregnancy. Access through SUS is perceived as an important facilitator, which simultaneously presents organizational weaknesses that need to be addressed. Full article
(This article belongs to the Special Issue Perceptions of Women, Child and Adolescents' Oral Health)
17 pages, 458 KiB  
Article
Effects of Chestnut Tannin Extract on Enteric Methane Emissions, Blood Metabolites and Lactation Performance in Mid-Lactation Cows
by Radiša Prodanović, Dušan Bošnjaković, Ana Djordjevic, Predrag Simeunović, Sveta Arsić, Aleksandra Mitrović, Ljubomir Jovanović, Ivan Vujanac, Danijela Kirovski and Sreten Nedić
Animals 2025, 15(15), 2238; https://doi.org/10.3390/ani15152238 - 30 Jul 2025
Viewed by 131
Abstract
Dietary tannin supplementation represents a potential strategy to modulate rumen fermentation and enhance lactation performance in dairy cows, though responses remain inconsistent. A 21-day feeding trial was conducted to evaluate the effect of chestnut tannin (CNT) extract on the enteric methane emissions (EME), [...] Read more.
Dietary tannin supplementation represents a potential strategy to modulate rumen fermentation and enhance lactation performance in dairy cows, though responses remain inconsistent. A 21-day feeding trial was conducted to evaluate the effect of chestnut tannin (CNT) extract on the enteric methane emissions (EME), blood metabolites, and milk production traits in mid-lactation dairy cows. Thirty-six Holstein cows were allocated to three homogeneous treatment groups: control (CNT0, 0 g/d CNT), CNT40 (40 g/d CNT), and CNT80 (80 g/d CNT). Measurements of EME, dry matter intake (DMI), milk yield (MY), and blood and milk parameters were carried out pre- and post-21-day supplementation period. Compared with the no-additive group, the CNT extract reduced methane production, methane yield, and methane intensity in CNT40 and CNT80 (p < 0.001). CNT40 and CNT80 cows exhibited lower blood urea nitrogen (p = 0.019 and p = 0.002) and elevated serum insulin (p = 0.003 and p < 0.001) and growth hormone concentrations (p = 0.046 and p = 0.034), coinciding with reduced aspartate aminotransferase (p = 0.016 and p = 0.045), and lactate dehydrogenase (p = 0.011 and p = 0.008) activities compared to control. However, CNT80 had higher circulating NEFA and BHBA than CNT0 (p = 0.003 and p = 0.004) and CNT40 (p = 0.035 and p = 0.019). The blood glucose, albumin, and total bilirubin concentrations were not affected. MY and fat- and protein-corrected milk (FPCM), MY/DMI, and FPCM/DMI were higher in both CNT40 (p = 0.004, p = 0.003, p = 0.014, p = 0.010) and CNT80 (p = 0.002, p = 0.003, p = 0.008, p = 0.013) cows compared with controls. Feeding CNT80 resulted in higher protein content (p = 0.015) but lower fat percentage in milk (p = 0.004) compared to CNT0. Milk urea nitrogen and somatic cell counts were significantly lower in both CNT40 (p < 0.001, p = 0.009) and CNT80 (p < 0.001 for both) compared to CNT0, while milk lactose did not differ between treatments. These findings demonstrate that chestnut tannin extract effectively mitigates EME while enhancing lactation performance in mid-lactation dairy cows. Full article
(This article belongs to the Special Issue Advances in Nutrition and Feeding Strategies for Dairy Cows)
Show Figures

Figure 1

14 pages, 8505 KiB  
Article
Overexpression of Ent-Kaurene Synthase Genes Enhances Gibberellic Acid Biosynthesis and Improves Salt Tolerance in Anoectochilus roxburghii (Wall.) Lindl.
by Lin Yang, Fuai Sun, Shanyan Zhao, Hangying Zhang, Haoqiang Yu, Juncheng Zhang and Chunyan Yang
Genes 2025, 16(8), 914; https://doi.org/10.3390/genes16080914 - 30 Jul 2025
Viewed by 250
Abstract
Background: Anoectochilus roxburghii (Wall.) Lindl. (A. roxburghii) was widely used in traditional Chinese medicine and also as a health food in China. Gibberellins (GAs) are plant hormones that regulate various aspects of growth and development in A. roxburghii. Ent-kaurene [...] Read more.
Background: Anoectochilus roxburghii (Wall.) Lindl. (A. roxburghii) was widely used in traditional Chinese medicine and also as a health food in China. Gibberellins (GAs) are plant hormones that regulate various aspects of growth and development in A. roxburghii. Ent-kaurene synthase (KS) plays a crucial role in the biosynthesis of GAs in plants. However, there is limited functional analysis of KS in GA biosynthesis and its effect on salt tolerance, especially in A. roxburghii. Methods: The ArKS genes were cloned from A. roxburghii, and its salt tolerance characteristics were verified by prokaryotic expression. Under salt stress, analyze the regulation of KS gene on GA and active ingredient content by qRT-PCR and HPLC-MS/MS, and explore the mechanism of exogenous GAs promoting active ingredient enrichment by regulating the expression level of the KS under salt stress. Results: The ArKS protein was highly homologous to KSs with other plant species; subcellular localization of KS protein was lacking kytic vacuole. The transformants displayed a significant increase in salt tolerance under the stress conditions of 300 mM NaCl. And the expression of ArKS genes and the GAs accumulation was downregulated under the salt stress; among them, the contents of GA3, GA7, GA8, GA24, and GA34 showed a significant decrease. It was further found that there was an increase (1.36 times) in MDA content and a decrease (0.84 times) in relative chlorophyll content under the salt conditions from A. roxburghii. However, the content of active constituents was elevated from A. roxburghii under the NaCl stress, including polysaccharides, total flavonoids, and free amino acids, which increased by 1.14, 1.23, and 1.44 times, respectively. Interestingly, the ArKS gene expression and the chlorophyll content was increased, MDA content showed a decrease from 2.02 μmoL·g−1 to 1.74 μmoL·g−1 after exogenous addition of GAs, and the elevation of active constituents of polysaccharides, total flavonoids, and free amino acids were increased by 1.02, 1.09, and 1.05 times, implying that GAs depletion mitigated the damage caused by adversity to A. roxburghii. Conclusions: The ArKS gene cloned from A. roxburghii improved the salt tolerance of plants under salt stress by regulating GA content. Also, GAs not only alleviate salt tolerance but also play a key role in the synthesis of active components in A. roxburghii. The functions of KS genes and GAs were identified to provide ideas for improving the salt tolerance and quality of ingredients in artificial cultivation from A. roxburghii. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

18 pages, 2409 KiB  
Article
Genome-Wide Identification and Expression Analysis of the Fructose-1,6-Bisphosphate Aldolase (FBA) Gene Family in Sweet Potato and Its Two Diploid Relatives
by Zhicheng Jiang, Taifeng Du, Yuanyuan Zhou, Zhen Qin, Aixian Li, Qingmei Wang, Liming Zhang and Fuyun Hou
Int. J. Mol. Sci. 2025, 26(15), 7348; https://doi.org/10.3390/ijms26157348 - 30 Jul 2025
Viewed by 213
Abstract
Fructose-1,6-bisphosphate aldolase (FBA; EC 4.1.2.13) is a key enzyme in glycolysis and the Calvin cycle, which plays crucial roles in carbon allocation and plant growth. The FBA family genes (FBA s) have been identified in several plants. However, their [...] Read more.
Fructose-1,6-bisphosphate aldolase (FBA; EC 4.1.2.13) is a key enzyme in glycolysis and the Calvin cycle, which plays crucial roles in carbon allocation and plant growth. The FBA family genes (FBA s) have been identified in several plants. However, their presence and roles in sweet potato remain unexplored. In this study, a total of 20 FBAs were identified in sweet potato and its wild wild diploidrelatives, including seven in sweet potato (Ipomoea batatas, 2n = 6x = 90), seven in I. trifida (2n = 2x = 30), and six in I. triloba (2n = 2x = 30). Their protein physicochemical properties, chromosomal localization, phylogenetic relationship, gene structure, promoter cis-elements, and expression patterns were systematically analyzed. The conserved genes and protein structures suggest a high degree of functional conservation among FBA genes. IbFBAs may participate in storage root development and starch biosynthesis, especially IbFBA1 and IbFBA6, which warrant further investigation as candidate genes. Additionally, the FBAs could respond to drought and salt stress. They are also implicated in hormone crosstalk, particularly with ABA and GA. This work provides valuable insights into the structure and function of FBAs and identifies candidate genes for improving yield, starch content, and abiotic stress tolerance in sweet potatoes. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 4805 KiB  
Article
Postharvest 2,4-Epibrassinolide Treatment Delays Senescence and Increases Chilling Tolerance in Flat Peach
by Bin Xu, Haixin Sun, Xuena Rang, Yanan Ren, Ting Zhang, Yaoyao Zhao and Yuquan Duan
Agronomy 2025, 15(8), 1835; https://doi.org/10.3390/agronomy15081835 - 29 Jul 2025
Viewed by 226
Abstract
Chilling injury (CI) frequently occurs in postharvest flat peach fruit during cold storage, leading to quality deterioration and a reduced shelf life. Therefore, investigating the key factors involved in alleviating CI and developing effective preservatives are vital scientific issues for the industry. 2,4-Epibrassinolide [...] Read more.
Chilling injury (CI) frequently occurs in postharvest flat peach fruit during cold storage, leading to quality deterioration and a reduced shelf life. Therefore, investigating the key factors involved in alleviating CI and developing effective preservatives are vital scientific issues for the industry. 2,4-Epibrassinolide (EBR) is a crucial endogenous hormone involved in plant response to both biological and environmental stressors. At present, most studies focus on the mechanisms of mitigating CI using a single concentration of EBR treatment, while few studies focus on the effects varying EBR concentrations have on CI. The purpose of this research is to explore the effects of varying concentrations of EBR on the postharvest quality and cold resistance of peach fruit, thereby establishing a basis for refining a technical framework of environmentally sustainable strategies to mitigate postharvest CI. The results show that EBR treatment effectively inhibits the generation of reactive oxygen species (ROS) and malondialdehyde (MDA) by maintaining the activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), thereby delaying the internal browning process of postharvest peaches. In addition, EBR treatment reduced the consumption of total phenolics by inhibiting the activities of polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL). Experimental results identify that 5 μmol L−1 EBR treatment emerged as the most effective concentration for maintaining core postharvest quality attributes. It significantly delayed the decrease in firmness, reduced weight loss, effectively inhibited the production of H2O2 and O2·, particularly during the early storage period, strongly restrained the activity of PAL, and maintained lower rot rates and internal browning indexes. While the 15 μmol L−1 EBR treatment enhanced antioxidant activity, increased total phenolic content at certain stages, and maintained higher soluble solids and acid content, its effects on key physical quality parameters, like firmness and weight loss, were less pronounced compared to the 5 μmol L−1 treatment. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

26 pages, 7715 KiB  
Article
Harnessing Nature’s Chemistry: Deciphering Olive Oil Phenolics for the Control of Invasive Breast Carcinoma
by Nehal A. Ahmed, Abu Bakar Siddique, Afsana Tajmim, Judy Ann King and Khalid A. El Sayed
Molecules 2025, 30(15), 3157; https://doi.org/10.3390/molecules30153157 - 28 Jul 2025
Viewed by 374
Abstract
Breast cancer (BC) is the most common malignancy and the second-leading cause of cancer-related mortalities in women. Epidemiological studies suggested the reduced BC incidence in Mediterranean populations due to the daily consumption of diets rich in extra-virgin olive oil (EVOO). EVOO secoiridoid phenolics [...] Read more.
Breast cancer (BC) is the most common malignancy and the second-leading cause of cancer-related mortalities in women. Epidemiological studies suggested the reduced BC incidence in Mediterranean populations due to the daily consumption of diets rich in extra-virgin olive oil (EVOO). EVOO secoiridoid phenolics are widely known for their positive outcomes on multiple cancers, including BC. The current study investigates the suppressive effects of individual and combined EVOO phenolics for BC progression and motility. Screening of a small library of EVOO phenolics at a single dose of 10 µM against the viability of the BC cell lines ZR-75-1 (luminal A) and MDA-MB-231 (triple negative BC, TNBC) identified oleocanthal (OC) and ligstroside aglycone (LA) as the most active hits. Screening of EVOO phenolics for BC cells migration inhibition identified OC, LA, and the EVOO lignans acetoxypinoresinol and pinoresinol as the most active hits. Combination studies of different olive phenolics showed that OC combined with LA had the best synergistic inhibitory effects against the TNBC MDA-MB-231 cells migration. A combination of 5 µM of each of OC and LA potently suppressed the migration and invasion of the MDA-MB-231 cells versus LA and OC individual therapies and vehicle control (VC). Animal studies using the ZR-75-1 BC cells orthotopic xenografting model in female nude mice showed significant tumor progression suppression by the combined OC-LA, 5 mg/kg each, ip, 3X/week treatments compared to individual LA and OC treatments and VC. The BC suppressive effects of the OC-LA combination were associated with the modulation of SMYD2–EZH2–STAT3 signaling pathway. A metastasis–clonogenicity animal study model using female nude mice subjected to tail vein injection of MDA-MB-231-Luc TNBC cells also revealed the effective synergy of the combined OC-LA, 5 mg/kg each, compared to their individual therapies and VC. Thus, EVOO cultivars rich in OC with optimal LA content can be useful nutraceuticals for invasive hormone-dependent BC and TNBC progression and metastasis. Full article
(This article belongs to the Special Issue Bioactive Molecules in Foods: From Sources to Functional Applications)
Show Figures

Graphical abstract

24 pages, 6890 KiB  
Article
Multi-Level Transcriptomic and Physiological Responses of Aconitum kusnezoffii to Different Light Intensities Reveal a Moderate-Light Adaptation Strategy
by Kefan Cao, Yingtong Mu and Xiaoming Zhang
Genes 2025, 16(8), 898; https://doi.org/10.3390/genes16080898 - 28 Jul 2025
Viewed by 283
Abstract
Objectives: Light intensity is a critical environmental factor regulating plant growth, development, and stress adaptation. However, the physiological and molecular mechanisms underlying light responses in Aconitum kusnezoffii, a valuable alpine medicinal plant, remain poorly understood. This study aimed to elucidate the adaptive [...] Read more.
Objectives: Light intensity is a critical environmental factor regulating plant growth, development, and stress adaptation. However, the physiological and molecular mechanisms underlying light responses in Aconitum kusnezoffii, a valuable alpine medicinal plant, remain poorly understood. This study aimed to elucidate the adaptive strategies of A. kusnezoffii under different light intensities through integrated physiological and transcriptomic analyses. Methods: Two-year-old A. kusnezoffii plants were exposed to three controlled light regimes (790, 620, and 450 lx). Leaf anatomical traits were assessed via histological sectioning and microscopic imaging. Antioxidant enzyme activities (CAT, POD, and SOD), membrane lipid peroxidation (MDA content), osmoregulatory substances, and carbon metabolites were quantified using standard biochemical assays. Transcriptomic profiling was conducted using Illumina RNA-seq, with differentially expressed genes (DEGs) identified through DESeq2 and functionally annotated via GO and KEGG enrichment analyses. Results: Moderate light (620 lx) promoted optimal leaf structure by enhancing palisade tissue development and epidermal thickening, while reducing membrane lipid peroxidation. Antioxidant defense capacity was elevated through higher CAT, POD, and SOD activities, alongside increased accumulation of soluble proteins, sugars, and starch. Transcriptomic analysis revealed DEGs enriched in photosynthesis, monoterpenoid biosynthesis, hormone signaling, and glutathione metabolism pathways. Key positive regulators (PHY and HY5) were upregulated, whereas negative regulators (COP1 and PIFs) were suppressed, collectively facilitating chloroplast development and photomorphogenesis. Trend analysis indicated a “down–up” gene expression pattern, with early suppression of stress-responsive genes followed by activation of photosynthetic and metabolic processes. Conclusions: A. kusnezoffii employs a coordinated, multi-level adaptation strategy under moderate light (620 lx), integrating leaf structural optimization, enhanced antioxidant defense, and dynamic transcriptomic reprogramming to maintain energy balance, redox homeostasis, and photomorphogenic flexibility. These findings provide a theoretical foundation for optimizing artificial cultivation and light management of alpine medicinal plants. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

16 pages, 1127 KiB  
Article
Effects of Corn–Soybean Meal-Based Fermented Feed Supplementation on Growth Performance, Meat Quality, Fatty Acid Profiles, Nutritional Values, and Gut Microbiota of Lean-Type Finishing Pigs
by Jiao Song, Xin Wang, Yuhan Cao, Yue He and Ye Yang
Foods 2025, 14(15), 2641; https://doi.org/10.3390/foods14152641 - 28 Jul 2025
Viewed by 421
Abstract
This research investigated the impact of corn–soybean meal-based fermented feed on the growth performance, pork quality, and fatty acid profiles of lean-type finishing pigs. A total of 80 lean-type growing DLY (Duroc × Landrace–Yorkshire) pigs were randomly assigned to 2 groups, with 5 [...] Read more.
This research investigated the impact of corn–soybean meal-based fermented feed on the growth performance, pork quality, and fatty acid profiles of lean-type finishing pigs. A total of 80 lean-type growing DLY (Duroc × Landrace–Yorkshire) pigs were randomly assigned to 2 groups, with 5 replicates of 8 pigs per pen. The pigs in control group (CON group) were fed a basal diet, while the pigs in fermented feed group (FF group) were fed a diet supplemented with 10% fermented feed. The experimental period lasted 70 days. Results exhibited that pigs in FF group had a significant increase in final body weight and average daily gain (ADG) (p < 0.05) and had a significant decrease in the feed-to-gain ratio (F/G) (p < 0.05). The FF group also exhibited significant promotion in muscle intramuscular fat content, marbling score, and meat color and significantly reduced the meat shear force and drip loss (p < 0.05). Serum analysis indicated that fermented feed significantly elevated blood glucose, total cholesterol, triglyceride levels, and serum hormones such as insulin, leptin, and IGF-1 (p < 0.05). Additionally, fermented feed significantly elevated the levels of polyunsaturated fatty acids (PUFAs) and monounsaturated fatty acids (MUFAs), whereas it decreased the saturated fatty acids (SFAs) contents (p < 0.05). The fermented feed also significantly enhanced pork nutritional values (p < 0.05). The fermented feed increased the expression of IGF-1, SREBP1c, PDE3, PPARγ, SCD5, and FAT/CD36 mRNA (p < 0.05). Furthermore, microbial 16S rDNA analysis uncovered that FF supplementation significantly reduced the Campilobacterota phylum abundance, while increasing the genus abundances of Clostridium_sensu_stricto, norank_f_Oscillospiraceae, unclassified_c_Clostridia, and V9D2013 (p < 0.05). In summary, the results indicated that the microbial fermented feed exhibited the regulation effects on pork quality and nutritional values of lean-type pigs through regulating lipid metabolism and gut microbial composition. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

22 pages, 4619 KiB  
Article
Physiological and Transcriptomic Analyses Reveal Regulatory Mechanisms of Adventitious Root Formation in In Vitro Culture of Cinnamomum camphora
by Yuntong Zhang, Ting Zhang, Yongjie Zheng, Jun Wang, Chenglin Luo, Yuhua Li and Xinliang Liu
Int. J. Mol. Sci. 2025, 26(15), 7264; https://doi.org/10.3390/ijms26157264 - 27 Jul 2025
Viewed by 365
Abstract
Cinnamomum camphora is an ecologically and economically significant species, highly valued for its essential oil production and environmental benefits. Although a tissue culture system has been established for C. camphora, large-scale propagation remains limited due to the inconsistent formation of adventitious roots [...] Read more.
Cinnamomum camphora is an ecologically and economically significant species, highly valued for its essential oil production and environmental benefits. Although a tissue culture system has been established for C. camphora, large-scale propagation remains limited due to the inconsistent formation of adventitious roots (ARs). This study investigated AR formation from callus tissue, focusing on associated physiological changes and gene expression dynamics. During AR induction, contents of soluble sugars and proteins decreased, alongside reduced activities of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and polyphenol oxidase (PPO). Levels of indole-3-acetic acid (IAA) and abscisic acid (ABA) decreased significantly throughout AR formation. Zeatin riboside (ZR) levels initially declined and then rose, whereas gibberellic acid (GA) levels displayed the opposite trend. Comparative transcriptomic and temporal expression analyses identified differentially expressed genes (DEGs), which were grouped into four distinct expression patterns. KEGG pathway enrichment indicated that 67 DEGs are involved in plant hormone signaling pathways and that 38 DEGs are involved in the starch and sucrose metabolism pathway. Additionally, protein–protein interaction network (PPI) analysis revealed ten key regulatory genes, which are mainly involved in auxin, cytokinin, GA, ABA, and ethylene signaling pathways. The reliability of the transcriptome data was further validated by quantitative real-time PCR. Overall, this study provides new insights into the physiological and molecular mechanisms underlying AR formation in C. camphora and offers valuable guidance for optimizing tissue culture systems. Full article
(This article belongs to the Special Issue Emerging Insights into Phytohormone Signaling in Plants)
Show Figures

Figure 1

18 pages, 3095 KiB  
Article
Investigating Seed Germination, Seedling Growth, and Enzymatic Activity in Onion (Allium cepa) Under the Influence of Plasma-Treated Water
by Sabnaj Khanam, Young June Hong, Eun Ha Choi and Ihn Han
Int. J. Mol. Sci. 2025, 26(15), 7256; https://doi.org/10.3390/ijms26157256 - 27 Jul 2025
Viewed by 340
Abstract
Seed germination and early seedling growth are pivotal stages that define crop establishment and yield potential. Conventional agrochemicals used to improve these processes often raise environmental concerns, highlighting the need for sustainable alternatives. In this study, we demonstrated that water treated with cylindrical [...] Read more.
Seed germination and early seedling growth are pivotal stages that define crop establishment and yield potential. Conventional agrochemicals used to improve these processes often raise environmental concerns, highlighting the need for sustainable alternatives. In this study, we demonstrated that water treated with cylindrical dielectric barrier discharge (c-DBD) plasma, enriched with nitric oxide (NO) and reactive nitrogen species (RNS), markedly enhanced onion (Allium cepa) seed germination and seedling vigor. The plasma-treated water (PTW) promoted rapid imbibition, broke dormancy, and accelerated germination rates beyond 98%. Seedlings irrigated with PTW exhibited significantly increased biomass, root and shoot length, chlorophyll content, and antioxidant enzyme activities, accompanied by reduced lipid peroxidation. Transcriptomic profiling revealed that PTW orchestrated a multifaceted regulatory network by upregulating gibberellin biosynthesis genes (GA3OX1/2), suppressing abscisic acid signaling components (ABI5), and activating phenylpropanoid metabolic pathways (PAL, 4CL) and antioxidant defense genes (RBOH1, SOD). These molecular changes coincided with elevated NO2 and NO3 levels and finely tuned hydrogen peroxide dynamics, underpinning redox signaling crucial for seed activation and stress resilience. Our findings establish plasma-generated NO-enriched water as an innovative, eco-friendly technology that leverages redox and hormone crosstalk to stimulate germination and early growth, offering promising applications in sustainable agriculture. Full article
(This article belongs to the Special Issue Plasma-Based Technologies for Food Safety and Health Enhancement)
Show Figures

Figure 1

22 pages, 5347 KiB  
Article
Transcriptome and Endogenous Hormones Reveal the Regulatory Mechanism of Flower Development in Camellia azalea
by Jian Xu, Fan Yang, Ruimin Nie, Wanyue Zhao, Fang Geng and Longqing Chen
Plants 2025, 14(15), 2291; https://doi.org/10.3390/plants14152291 - 25 Jul 2025
Viewed by 342
Abstract
Camellia azalea is an endemic species within the genus Camellia that exhibits the trait of summer flowering, which is of significant ornamental and research value. Nevertheless, research on the regulatory mechanisms of flower formation in C. azalea is still limited, so in this [...] Read more.
Camellia azalea is an endemic species within the genus Camellia that exhibits the trait of summer flowering, which is of significant ornamental and research value. Nevertheless, research on the regulatory mechanisms of flower formation in C. azalea is still limited, so in this study, transcriptome sequencing and analysis of endogenous hormone contents were conducted at three distinct growth stages: floral induction, floral organ maturation, and anthesis. Illumina sequencing yielded a total of 20,643 high-quality unigenes. Comparative analyses of representative samples from the three growth stages identified 6681, 1925, and 8400 differentially expressed genes (DEGs), respectively. These DEGs were further analyzed for functional enrichment using the GO and KEGG databases. Additionally, core genes from each flowering pathway underwent expression pattern analysis and network diagram construction. This revealed that the flower development process in C. azalea is linked to the specific expression of the genes involved in the photoperiod, temperature, and autonomous pathways and is subject to comprehensive regulation by multiple pathways. Further analysis of the dynamic trends of five endogenous hormone contents and plant hormone signal transduction genes revealed significant differences in the requirements of endogenous hormones, such as gibberellins and indoleacetic acid, by C. azalea at distinct growth stages. Additionally, the majority of genes on the phytohormone signal transduction pathway demonstrated a high correlation with the changes in the contents of each hormone. The present study integrates physiological and molecular approaches to identify key genes and metabolic pathways that regulate the summer flowering of C. azalea, thereby laying a theoretical foundation for further investigations into its flowering mechanism and related functional genes. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

20 pages, 4025 KiB  
Article
Genomic Analysis of Cadmium-Resistant and Plant Growth-Promoting Burkholderia alba Isolated from Plant Rhizosphere
by Luyao Feng, Xin Liu, Nan Wang, Zhuli Shi, Yu Wang, Jianpeng Jia, Zhufeng Shi, Te Pu and Peiwen Yang
Agronomy 2025, 15(8), 1780; https://doi.org/10.3390/agronomy15081780 - 24 Jul 2025
Viewed by 323
Abstract
Reducing the application of chemical fertilizers and remediating heavy metal pollution in soil are important directions in current agricultural research. Utilizing the plant-growth-promoting and remediation capabilities of bacteria can provide more environmentally friendly assistance to agricultural production. In this study, the Burkholderia alba [...] Read more.
Reducing the application of chemical fertilizers and remediating heavy metal pollution in soil are important directions in current agricultural research. Utilizing the plant-growth-promoting and remediation capabilities of bacteria can provide more environmentally friendly assistance to agricultural production. In this study, the Burkholderia alba YIM B08401 strain was isolated and identified from rhizospheric soil, subjected to whole-genome sequencing and analysis, and its Cd2+ adsorption efficiency and characteristics were confirmed using multiple experimental methods, including atomic absorption spectrometry (AAS), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS). The results showed that the genome of strain YIM B08401 has a total length of 7,322,157 bp, a GC content of 66.39%, and predicts 6504 protein-coding sequences. It contains abundant functional genes related to nutrient conversion (phosphate solubilization, sulfur metabolism, zinc solubilization, siderophore production), plant hormone regulation (indole-3-acetic acid secretion, ACC deaminase production), phenolic acid degradation, root colonization, heavy metal tolerance, pathogen antagonism, and the production of antagonistic secondary metabolites. Additionally, strain YIM B08401 can specifically bind to Cd2+ through various functional groups on the cell surface, such as C-O-C, P=O, and O-H, enabling biosorption. In conclusion, strain YIM B08401 is an excellent strain with plant-growth-promoting, disease-resistant, and bioremediation capabilities, warranting further development as a biofertilizer for agricultural applications to promote green and sustainable agricultural development. Full article
Show Figures

Figure 1

21 pages, 1285 KiB  
Article
Stage-Specific Transcriptomic Insights into Seed Germination and Early Development in Camellia oleifera Abel.
by Zhen Zhang, Caixia Liu, Ying Zhang, Zhilong He, Longsheng Chen, Chengfeng Xun, Yushen Ma, Xiaokang Yuan, Yanming Xu and Rui Wang
Plants 2025, 14(15), 2283; https://doi.org/10.3390/plants14152283 - 24 Jul 2025
Viewed by 228
Abstract
Seed germination is a critical phase in the plant lifecycle of Camellia oleifera (oil tea), directly influencing seedling establishment and crop reproduction. In this study, we examined transcriptomic and physiological changes across five defined germination stages (G0–G4), from radicle dormancy to cotyledon emergence. [...] Read more.
Seed germination is a critical phase in the plant lifecycle of Camellia oleifera (oil tea), directly influencing seedling establishment and crop reproduction. In this study, we examined transcriptomic and physiological changes across five defined germination stages (G0–G4), from radicle dormancy to cotyledon emergence. Using RNA sequencing (RNA-seq), we assembled 169,652 unigenes and identified differentially expressed genes (DEGs) at each stage compared to G0, increasing from 1708 in G1 to 10,250 in G4. Functional enrichment analysis revealed upregulation of genes associated with cell wall organization, glucan metabolism, and Photosystem II assembly. Key genes involved in cell wall remodeling, including cellulose synthase (CESA), phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL), caffeoyl-CoA O-methyltransferase (COMT), and peroxidase (POD) showed progressive activation during germination. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed dynamic regulation of phenylpropanoid and flavonoid biosynthesis, photosynthesis, carbohydrate metabolism, and hormone signaling pathways. Transcription factors such as indole-3-acetic acid (IAA), ABA-responsive element binding factor (ABF), and basic helix–loop–helix (bHLH) were upregulated, suggesting hormone-mediated regulation of dormancy release and seedling development. Physiologically, cytokinin (CTK) and IAA levels peaked in G4, antioxidant enzyme activities were highest in G2, and starch content increased toward later stages. These findings provide new insights into the molecular mechanisms underlying seed germination in C. oleifera and identify candidate genes relevant to rootstock breeding and nursery propagation. Full article
Show Figures

Figure 1

19 pages, 2677 KiB  
Article
Role of StAR Gene in Sex Steroid Hormone Regulation and Gonadal Development in Ark Shell Scapharca broughtonii
by Wenjing Wang, Zhihong Liu, Huaying Zhang, Zheying Gao, Sudong Xia, Xiujun Sun, Liqing Zhou, Zhuanzhuan Li, Peizhen Ma and Biao Wu
Biology 2025, 14(8), 925; https://doi.org/10.3390/biology14080925 - 23 Jul 2025
Viewed by 427
Abstract
This study elucidates the role of the steroidogenic acute regulatory protein (StAR) in sex steroid hormone dynamics and the gonadal development of the commercially important marine bivalve ark shell Scapharca broughtonii. The sequence of the StAR gene was obtained and [...] Read more.
This study elucidates the role of the steroidogenic acute regulatory protein (StAR) in sex steroid hormone dynamics and the gonadal development of the commercially important marine bivalve ark shell Scapharca broughtonii. The sequence of the StAR gene was obtained and verified from the transcriptome of ark shell, then the tissue localization and expression pattern during the gonad development of the StAR gene were detected by in situ hybridization and quantitative real-time PCR, respectively. Additionally, the concentrations of three critical sex steroid hormones (progesterone, testosterone, and estradiol) were measured throughout gonadal development using enzyme-linked immunosorbent assay (ELISA). The results showed that the length of the coding region of StAR was 1446 bp, encoding 481 amino acids. The results of qRT-PCR showed that the expression of the StAR gene varied with gonadal development, increased from the early active stage to the development stage, and decreased from the mature stage to the spent stage. Notably, the expression level in ovaries was higher than that in testes, suggesting the potential involvement of StAR in sex differentiation and gonadal development. Additionally, the results indicated that progesterone, testosterone, and estradiol accounted for 80%, 10%, and 10% of the total hormone content in the gonads, respectively. Correlation analysis revealed a highly significant strong positive correlation between progesterone/estradiol levels and StAR gene expression, demonstrating that StAR serves as a key regulator in sex steroid hormone biosynthesis. These findings provide crucial molecular evidence for StAR-mediated steroidogenesis in bivalve reproduction, offering fundamental insights into invertebrate endocrinology. Full article
Show Figures

Figure 1

Back to TopTop