Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (218)

Search Parameters:
Keywords = horizontal deformation control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 28956 KB  
Article
Load–Deformation Behavior and Risk Zoning of Shallow-Buried Gas Pipelines in High-Intensity Longwall Mining-Induced Subsidence Zones
by Shun Liang, Yingnan Xu, Jinhang Shen, Qiang Wang, Xu Liang, Shaoyou Xu, Changheng Luo, Miao Yang and Yindou Ma
Appl. Sci. 2025, 15(19), 10618; https://doi.org/10.3390/app151910618 - 30 Sep 2025
Abstract
In recent years, controlling the integrity of shallow-buried natural gas pipelines within surface subsidence zones caused by high-intensity underground longwall mining in the Daniudi Gas Field of China’s Ordos Basin has emerged as a critical challenge impacting both mine planning and the safe, [...] Read more.
In recent years, controlling the integrity of shallow-buried natural gas pipelines within surface subsidence zones caused by high-intensity underground longwall mining in the Daniudi Gas Field of China’s Ordos Basin has emerged as a critical challenge impacting both mine planning and the safe, efficient co-exploitation of coal and deep natural gas resources. This study included field measurements and an analysis of surface subsidence data from high-intensity longwall mining operations at the Xiaobaodang No. 2 Coal Mine, revealing characteristic ground movement patterns under intensive extraction conditions. The subsidence basin was systematically divided into pipeline hazard zones using three key deformation indicators: horizontal strain, tilt, and curvature. Through ABAQUS-based 3D numerical modeling of coupled pipeline–coal seam mining systems, this research elucidated the spatiotemporal evolution of pipeline Von Mises stress under varying mining parameters, including working face advance rates, mining thicknesses, and pipeline orientation angles relative to the advance direction. The simulations further uncovered non-synchronous deformation behavior between the pipeline and its surrounding sand and soil, identifying two distinct evolutionary phases and three characteristic response patterns. Based on these findings, targeted pipeline integrity preservation measures were developed, with numerical validation demonstrating that maintaining advance rates below 10 m/d, restricting mining heights to under 2.5 m within the 260 m pre-mining influence zone, and where geotechnically feasible, the maximum stress of the pipeline laid perpendicular to the propulsion direction (90°) can be controlled below 480 MPa, and the separation amount between the pipe and the sand and soil can be controlled below 8.69 mm, which can effectively reduce the interference caused by mining. These results provide significant engineering guidance for optimizing longwall mining parameters while ensuring the structural integrity of shallow-buried pipelines in high-intensity extraction environments. Full article
20 pages, 10567 KB  
Article
Kinematic and Dynamic Behavior of a Coastal Colluvial Landslide in a Low-Elevation Forest
by Chia-Cheng Fan, Chung-Jen Yang, Tsung-Hsien Wang and Kuo-Wei Huang
Appl. Sci. 2025, 15(19), 10593; https://doi.org/10.3390/app151910593 - 30 Sep 2025
Abstract
This study examines the kinematic behavior of a large-scale colluvial landslide in a coastal low-elevation forest, where rainfall, geological formations, and hydrological conditions drive substantial slope displacement. The landslide comprises a colluvial layer overlying mudstone, with downslope movement toward the coastline induced by [...] Read more.
This study examines the kinematic behavior of a large-scale colluvial landslide in a coastal low-elevation forest, where rainfall, geological formations, and hydrological conditions drive substantial slope displacement. The landslide comprises a colluvial layer overlying mudstone, with downslope movement toward the coastline induced by gravitational forces and infiltration. Using GPS surveys, inclinometers, soil moisture sensors, and numerical modeling, the temporal and spatial patterns of displacement were analyzed. Maximum horizontal displacements reach 8.1 cm/year, with deep-seated movements extending over 25 m into the mudstone. Key mechanisms include weakening of the colluvium–mudstone interface and creep within saturated mudstone, while a hydraulic barrier near the coastline restricts subsurface flow. Progressive upslope migration of the freshwater-bearing mudstone zone under annual rainfall further contributes to long-term deformation. These findings provide critical insights into the hydrologically controlled kinematics of coastal colluvial landslides. Full article
(This article belongs to the Special Issue A Geotechnical Study on Landslides: Challenges and Progresses)
Show Figures

Figure 1

23 pages, 3082 KB  
Article
Horizontal Wellbore Stability in the Production of Offshore Natural Gas Hydrates via Depressurization
by Zhengfeng Shan, Zhiyuan Wang, Shipeng Wei, Peng Liu, En Li, Jianbo Zhang and Baojiang Sun
Sustainability 2025, 17(19), 8738; https://doi.org/10.3390/su17198738 - 29 Sep 2025
Abstract
Wellbore stability is a crucial factor affecting the safe exploitation of offshore natural gas hydrates. As a sustainable energy source, natural gas hydrate has significant reserves, high energy density, and low environmental impact, making it an important candidate for alternative energy. Although research [...] Read more.
Wellbore stability is a crucial factor affecting the safe exploitation of offshore natural gas hydrates. As a sustainable energy source, natural gas hydrate has significant reserves, high energy density, and low environmental impact, making it an important candidate for alternative energy. Although research on the stability of screen pipes during horizontal-well hydrate production is currently limited, its importance in sustainable energy extraction is growing. This study therefore considers the effects of hydrate phase change, gas–water seepage, energy and mass exchange, reservoir deformation, and screen pipe influence and develops a coupled thermal–fluid–solid–chemical field model for horizontal-well natural gas hydrate production. The model results were validated using experimental data and standard test cases from the literature. The results obtained by applying this model in COMSOL Multiphysics 6.1 showed that the errors in all simulations were less than 2%, with errors of 12% and 6% observed at effective stresses of 0.5 MPa and 3 MPa, respectively. The simulation results indicate that the presence of the screen pipe in the hydrate reservoir exerts little effect on the decomposition of gas hydrates, but it effectively mitigates stress concentration in the near-wellbore region, redistributing the effective stress and significantly reducing the instability risk of the hydrate reservoir. Furthermore, the distribution of mechanical parameters around the screen pipe is uneven, with maximum values of equivalent Mises stress, volumetric strain, and displacement generally occurring on the inner side of the screen pipe in the horizontal crustal stress direction, making plastic instability most likely to occur in this area. With other basic parameters held constant, the maximum equivalent Mises stress and the instability area within the screen increase with the rise in the production pressure drop and wellbore size, and the decrease in screen pipe thickness. The results of this study lay the foundation for wellbore instability control in the production of offshore natural gas hydrates via depressurization. The study provides new insights into sustainable energy extraction, as improving wellbore stability during the extraction process can enhance resource utilization, reduce environmental impact, and promote sustainable development in energy exploitation. Full article
Show Figures

Figure 1

24 pages, 28279 KB  
Article
Optimization Study on Key Parameters for Mechanical Excavation of Deep-Buried Large-Section Metro Station
by Chenyang Zhu, Xin Huang, Fei Wang, Meng Huang, Chanlong He and Jiaqi Guo
Appl. Sci. 2025, 15(18), 10218; https://doi.org/10.3390/app151810218 - 19 Sep 2025
Viewed by 243
Abstract
When mechanically excavating deep-buried large-section metro stations, stringent deformation control requirements for the surrounding rock must be adhered to. Calculations indicate that horizontal convergence in certain areas of the station exceeds acceptable limits, necessitating adjustments to construction parameters to comply with these requirements. [...] Read more.
When mechanically excavating deep-buried large-section metro stations, stringent deformation control requirements for the surrounding rock must be adhered to. Calculations indicate that horizontal convergence in certain areas of the station exceeds acceptable limits, necessitating adjustments to construction parameters to comply with these requirements. This study, based on a project for the Chongqing Metro Line 18, establishes a three-dimensional numerical analysis model for an underground excavation station by utilizing the characteristics of the stratum-structure model. A comprehensive 3D numerical simulation was conducted to evaluate the deformation characteristics of the stratum and surrounding rock resulting from excavation, and to determine optimal excavation parameters based on deformation control. The key findings are as follows: (1) Under the original excavation design parameters, the horizontal convergence displacement at the arch foot met specification requirements and was smaller than that at the sidewall. However, the horizontal convergence displacement at the sidewall exceeded the 20 mm limit specified by the relevant codes, failing to satisfy deformation control standards. (2) The deformation of the surrounding rock increased with factors such as the distance between the excavation face and the initial support, as well as the length of the excavation step. While the spacing between adjacent pilot tunnels had a relatively minor impact on overall station deformation, the number of pilot tunnels, in conjunction with other parameters, proved beneficial for controlling surrounding rock deformation. (3) Among the parameters examined, the distance between the excavation face and the initial support, along with the excavation step length, exerted the greatest influence on deformation. Based on deformation control criteria, the optimal excavation parameters were determined as follows: the distance between the excavation face and the initial support should not exceed 6 m; the excavation step length is set to 1.5 m; the number of pilot tunnels is established at 11; and the spacing between adjacent pilot tunnels is set at 10.5 m. (4) Field monitoring data closely corresponded with the effects observed from implementing the optimized parameters, thus validating the reliability of the optimization scheme. The results of this study provide a valuable reference for the excavation of metro stations under similar conditions in the future. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

26 pages, 9364 KB  
Article
Shear–Flexural Performance of Steel Fiber-Reinforced Concrete Composite Beams: Experimental Investigation and Modeling
by Qing Zhi, Zihui Xu, Weimin Chen, Huaxin Zhang, Sha Liu and Zhijun Yuan
Materials 2025, 18(18), 4322; https://doi.org/10.3390/ma18184322 - 15 Sep 2025
Viewed by 434
Abstract
Steel fiber-reinforced concrete (SFRC) exhibits superior tensile and flexural strengths, crack resistance, compressive toughness, and ductility. These characteristics make SFRC attractive for precast beam joints, shear-critical regions without stirrups, and retrofitted overlays, thereby enabling composite members. However, the shear and flexural responses of [...] Read more.
Steel fiber-reinforced concrete (SFRC) exhibits superior tensile and flexural strengths, crack resistance, compressive toughness, and ductility. These characteristics make SFRC attractive for precast beam joints, shear-critical regions without stirrups, and retrofitted overlays, thereby enabling composite members. However, the shear and flexural responses of such members often differ from monolithically cast elements. To clarify these effects, nine composite specimens and one cast-in-place control were tested under four-point bending. Key parameters, including load-bearing capacity, failure evolution, and failure modes, were documented, together with load–deformation behavior, reinforcement strains, and concrete deformations. Results showed that horizontal joints reduced shear resistance and altered crack propagation compared to monolithic beams. Incorporating 1.0% hooked-end steel fibers improved both shear and flexural performance. SFRC above the joint was more effective for shear, while SFRC in both zones improved flexure. The fully SFRC specimen without stirrups achieved 63% higher shear capacity than its NC counterpart, with ductility rising from 2.2 to 3.1. A 1.0% fiber dosage provided shear resistance equivalent to D8@200 stirrups, confirming the potential of SFRC to reduce transverse reinforcement. Analytical models, including a fiber beam–column element and strut-and-tie approach, showed reasonable agreement with experiments. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

32 pages, 9586 KB  
Article
Experimental Study on the Horizontal Bearing Performance of Pile–Soil Composite Foundation Under Coupled Action of Active and Passive Loads
by Yuhao Zhang, Yuancheng Guo and Qianyi Zhang
Buildings 2025, 15(17), 3184; https://doi.org/10.3390/buildings15173184 - 4 Sep 2025
Viewed by 532
Abstract
The pile–soil composite foundation system, highly acclaimed for its remarkable load-bearing capacity and limited deformation characteristics, has emerged as a fundamental element in geotechnical engineering practices. In the applications of adjacent slope engineering, such composite foundations are influenced by intricate loading scenarios. These [...] Read more.
The pile–soil composite foundation system, highly acclaimed for its remarkable load-bearing capacity and limited deformation characteristics, has emerged as a fundamental element in geotechnical engineering practices. In the applications of adjacent slope engineering, such composite foundations are influenced by intricate loading scenarios. These scenarios involve both active vertical–horizontal combined load and passive soil-displacement forces generated due to the alteration of soil constraints. In this study, a self-designed movable retaining wall model box was employed. By applying different vertical and horizontal loads and controlling the rotation of the retaining wall around its base, a systematic investigation was conducted on the horizontal bearing mechanisms of single-pile and four-pile composite. The experimental data indicate that for every increment of 15 kPa in the vertical load, the horizontal bearing capacity experiences an average growth of approximately 18.9%, and the extreme value of the bending moment shows an average increase of 19.6. The analysis reveals coupled effects in internal force distribution and deformation patterns within load-bearing pile segments under concurrent active–passive loading conditions, while the embedded sections remain unaffected. Among four-pile composite foundations, the horizontal bearing mechanism of the front-row piles is consistent with that of a single-pile system. However, the maximum bending moments of the front-row and rear-row piles, compared to the single-pile system, have reached 0.68 times and 1.74 times, respectively. Notably, the bending moment of the front-row piles under the translational mode of the retaining wall is approximately 2.9 times that under the rotational mode, posing a potential risk of damage to the retaining structure, and necessary intervention is required. The results of this study provide a scientific basis for the force and deformation mechanism of piles at different positions in the composite foundation near foundation pit engineering, as well as their design for bending and shear resistance. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 4614 KB  
Article
The Formation Process of Coal-Bearing Strata Normal Faults Based on Physical Simulation Experiments: A New Experimental Approach
by Zhiguo Xia, Junbo Wang, Wenyu Dong, Chenglong Ma and Bing Chen
Processes 2025, 13(9), 2799; https://doi.org/10.3390/pr13092799 - 1 Sep 2025
Viewed by 507
Abstract
This study investigates the formation mechanism and stress response characteristics of normal faults in coal-bearing strata through large-scale physical simulation experiments. A multi-layer heterogeneous model with a geometric similarity ratio of 1:300 was constructed using similar materials that were tailored to match the [...] Read more.
This study investigates the formation mechanism and stress response characteristics of normal faults in coal-bearing strata through large-scale physical simulation experiments. A multi-layer heterogeneous model with a geometric similarity ratio of 1:300 was constructed using similar materials that were tailored to match the mechanical properties of real strata. Real-time monitoring techniques, including fiber Bragg grating strain sensors and a DH3816 static strain system, were employed to record the evolution of deformation, strain, and displacement fields during the fault development. The results show that the normal fault formation process includes five distinct stages: initial compaction, fault initiation, crack propagation, fault slip, and structural stabilization. Quantitatively, the vertical displacement of the hanging wall reached up to 5.6 cm, equivalent to a prototype value of 16.8 m, and peak horizontal stress increments near the fault exceeded 0.07 MPa. The experimental data reveal that stress concentration during the fault slip stage causes severe damage to the upper coal seam roof, with localized vertical stress fluctuations exceeding 35%. Structural planes were found to control crack nucleation and slip paths, conforming to the Mohr–Coulomb shear failure criterion. This research provides new insights into the dynamic coupling of tectonic stress and fault mechanics, offering novel experimental evidence for understanding fault-induced disasters. The findings contribute to the predictive modeling of stress redistribution in fault zones and support safer deep mining practices in structurally complex coalfields, which has potential implications for petroleum geomechanics and energy resource extraction in similar tectonic settings. Full article
Show Figures

Figure 1

30 pages, 20277 KB  
Article
A Multidisciplinary Approach to Mapping Morphostructural Features and Their Relation to Seismic Processes
by Simona Bongiovanni, Raffaele Martorana, Alessandro Canzoneri, Maurizio Gasparo Morticelli and Attilio Sulli
Geosciences 2025, 15(9), 337; https://doi.org/10.3390/geosciences15090337 - 1 Sep 2025
Viewed by 1052
Abstract
A multidisciplinary investigation was conducted in southwestern Sicily, near the seismically active Belice Valley, based on the analysis of morphostructural features. These were observed as open fractures between 2014 and 2017; they were subsequently filled anthropogenically and then reactivated during a seismic swarm [...] Read more.
A multidisciplinary investigation was conducted in southwestern Sicily, near the seismically active Belice Valley, based on the analysis of morphostructural features. These were observed as open fractures between 2014 and 2017; they were subsequently filled anthropogenically and then reactivated during a seismic swarm in 2019. We generated a seismic event distribution map to analyze the location, magnitude, and depth of earthquakes. This analysis, combined with multitemporal satellite imagery, allowed us to investigate the spatial and temporal relationship between seismic activity and fracture evolution. To investigate the spatial variation in thickness of the superficial cover and to assess the depth to the underlying bedrock or stiffer substratum, 45 Horizontal-to-Vertical Spectral Ratio (HVSR) ambient noise measurements were conducted. This method, which analyzes the resonance frequency of the ground, produced maps of the amplitude, frequency, and vulnerability index of the ground (Kg). By inverting the HVSR curves, constrained by Multichannel Analysis of Surface Waves (MASW) results, a subsurface model was created aimed at supporting the structural interpretation by highlighting variations in sediment thickness potentially associated with fault-controlled subsidence or deformation zones. The surface investigation revealed depressed elliptical deformation zones, where mainly sands outcrop. Grain-size and morphoscopic analyses of sediment samples helped understand the processes generating these shapes and predict future surface deformation. These elliptical shapes recall the liquefaction process. To investigate the potential presence of subsurface fluids that could have contributed to this process, Electrical Resistivity Tomography (ERT) was performed. The combination of the maps revealed a correlation between seismic activity and surface deformation, and the fractures observed were interpreted as inherited tectonic and/or geomorphological structures. Full article
Show Figures

Figure 1

15 pages, 9602 KB  
Article
Photothermal and Magnetic Actuation of Multimodal PNIPAM Hydrogel-Based Soft Robots
by Xiangyu Teng, Zhizheng Gao, Xuehao Feng, Shuliang Zhu and Wenguang Yang
Gels 2025, 11(9), 692; https://doi.org/10.3390/gels11090692 - 1 Sep 2025
Viewed by 499
Abstract
Soft robot motion performance has long been a core focus in scientific research. This study investigates the motion capabilities of soft robots constructed using poly(N-isopropylacrylamide) (PNIPAM) hydrogels, with key innovations in material design and functional enhancement. By optimizing the hydrogel formulation and incorporating [...] Read more.
Soft robot motion performance has long been a core focus in scientific research. This study investigates the motion capabilities of soft robots constructed using poly(N-isopropylacrylamide) (PNIPAM) hydrogels, with key innovations in material design and functional enhancement. By optimizing the hydrogel formulation and incorporating molybdenum disulfide (MoS2) to endow it with photothermal response properties, the material achieves muscle-like controllable contraction and expansion deformation—a critical breakthrough in mimicking biological motion mechanics. Building on this material advancement, the research team developed a series of soft robotic prototypes to systematically explore the hydrogel’s motion characteristics. A flytrap-inspired soft robot demonstrates rapid opening–closing movements, replicating the swift responsiveness of natural carnivorous plants. For terrestrial locomotion, a hexapod crawling robot utilizes the photo-induced stretch-recovery mechanism of both horizontally configured and pre-bent feet to achieve stable directional propulsion. Most notably, a magnetically driven rolling robot integrates magnetic units to realize versatile multimodal movement: it achieves a stable rolling speed of 1.8 cm/s across flat surfaces and can surmount obstacles up to 1.5 times its own body size. This work not only validates the strong potential of PNIPAM hydrogel-based soft robots in executing complex motion tasks but also provides valuable new insights for the development of multimodal soft robotic systems, paving the way for future innovations in adaptive and bio-inspired robotics. Full article
(This article belongs to the Special Issue Functional Hydrogels for Soft Electronics and Robotic Applications)
Show Figures

Figure 1

20 pages, 4743 KB  
Review
Research Progress on Subdivision Water Injection Development Technology for Full-Scale Water Injection Wells
by Fushen Ren, Jinzhao Hu, Yan An, Xiaolong Liu, Baojin Wang and Tiancheng Fang
Appl. Sci. 2025, 15(17), 9492; https://doi.org/10.3390/app15179492 - 29 Aug 2025
Viewed by 394
Abstract
Water injection development represents the predominant development method for enhancing oil recovery (EOR) efficiency and achieving the balanced utilization of oil reservoirs. In light of the current situation of oilfield water injection technology, a comprehensive overview of the evolution of full-scale water injection [...] Read more.
Water injection development represents the predominant development method for enhancing oil recovery (EOR) efficiency and achieving the balanced utilization of oil reservoirs. In light of the current situation of oilfield water injection technology, a comprehensive overview of the evolution of full-scale water injection technology is given, with particular emphasis on the influence of geological factors, technological advancements, and existing challenges. The principal issues currently encountered include an unequal distribution of layers, the complexity of subdivision, casing deformation, and damage to deep well equipment, which collectively impede the effective implementation of subdivision water injection development technology. The novelty of the research lies in the current development status of full-scale injection wells, which is not only reflected in the depth-scale, but also in the operational difficulty-scale. A thorough exploration of subdivision water injection development technologies has been conducted, and the applicability and limitations of these technologies in diverse reservoir conditions have been evaluated. The proposal is for intelligent injection technology to be adopted for medium–shallow heterogeneous wells, and for ball-pitching plugging profile control technology to be adopted for deep/horizontal/special condition wells. A comparative analysis was conducted to evaluate the characteristics, application scenarios, advantages, and disadvantages of intelligent injection technologies, demonstrating its intelligence, automation, and precision in the practical application. In regard to the ball-pitching plugging profile control technology, the design and performance of the plugging ball, the plugging mechanism, and the application effect were elucidated. Based on the existing challenges in the realm of water injection development, the research prospects for full-scale subdivision water injection development technologies were proposed, and the importance of interdisciplinary cooperation and the integration of artificial intelligence technology were also emphasized. This research would provide a technical foundation for increasing oil displacement efficiency, markedly augmenting EOR, and would also be imperative for improving the economic benefits and alleviating the global oil resource tension. Full article
(This article belongs to the Special Issue Current Advances and Future Trend in Enhanced Oil Recovery)
Show Figures

Figure 1

22 pages, 8974 KB  
Article
Deformation Analysis of Wall-Pile-Anchor Retaining Structures During Shield Tunneling Considering Tunnel-Pit Spatial Interaction
by Yuran Lu, Hongsheng Qiu and Bin Zhu
Appl. Sci. 2025, 15(17), 9310; https://doi.org/10.3390/app15179310 - 25 Aug 2025
Viewed by 547
Abstract
In recent years, the increasing complexity of shield tunneling environments has made it critical to control the deformation of adjacent excavation structures and surrounding soils. This study employs numerical simulation using MIDAS GTS/NX to comprehensively analyze the spatial interaction factors between shield tunnels [...] Read more.
In recent years, the increasing complexity of shield tunneling environments has made it critical to control the deformation of adjacent excavation structures and surrounding soils. This study employs numerical simulation using MIDAS GTS/NX to comprehensively analyze the spatial interaction factors between shield tunnels and wall-pile-anchor-supported foundation pits. Structural parameters of the retaining system and tunneling conditions are also evaluated to identify the key factors influencing construction-induced deformation. The results show that the maximum settlement of the adjacent retaining wall occurs when the tunnel burial depth reaches 1.4L, where L is the height of the diaphragm wall. In addition, when the horizontal distance between the tunnel and the excavation is less than 0.75D (D being the tunnel diameter), significant settlement deformation is observed in the nearby support structures. A linear correlation is also identified between the variation in tunnel crown settlement and the excavation depth of the overlying pit during tunnel undercrossing. Furthermore, sensitivity analysis indicates that increasing the embedment depth of the diaphragm wall effectively reduces horizontal displacement at the wall base. Increasing the wall thickness decreases displacement in the upper section of the wall. Similarly, increasing pile diameter and anchor length and diameter, while reducing the inclination angle of anchors, are all effective in minimizing the lateral displacement of the support structure. Full article
Show Figures

Figure 1

29 pages, 8435 KB  
Article
Study on the Bearing Characteristics of a Novel Inner Support Structure for Deep Foundation Pits Based on Full-Scale Experiments
by Xingui Zhang, Jianhang Liang, Gang Wei, Chengkao Liang, Li’e Yan, Wei Han, Yidan Zhang, Yingzhi Tian and Huai Zhang
Buildings 2025, 15(16), 2887; https://doi.org/10.3390/buildings15162887 - 15 Aug 2025
Viewed by 356
Abstract
Traditional internal support systems for deep foundation pits often suffer from issues such as insufficient stiffness, excessive displacement, and large support areas. To address these problems, the authors developed a novel spatial steel joist internal support system. Based on a large-scale field model [...] Read more.
Traditional internal support systems for deep foundation pits often suffer from issues such as insufficient stiffness, excessive displacement, and large support areas. To address these problems, the authors developed a novel spatial steel joist internal support system. Based on a large-scale field model test, this study investigates the bearing characteristics of the proposed system in deep foundation pits. A stiffness formulation for the novel support system was analytically derived and experimentally validated through a calibrated finite element model. After validation with test results, the effects of different vertical prestressing forces on the structure were analyzed. The results indicate that the proposed system provides significant support in deep foundation pits. The application of both horizontal and vertical prestressing increases the internal forces within the support structure while reducing overall displacement. The numerical predictions of horizontal displacement, bending moment, and the axial force distribution of the main support, as well as their development trends, align well with the model test results. Moreover, increasing the prestressing force of the steel tie rods effectively controls the deformation of the vertical arch support and enhances the stability of the spatial structure. The derived stiffness formula shows a small error compared with the finite element results, demonstrating its high accuracy. Furthermore, the diagonal support increases the stiffness of the lower chord bar support by 28.24%. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

28 pages, 13096 KB  
Article
Study on Failure Mechanism and Synergistic Support–Unloading Control Approach in Goaf-Side Roadways in Deep Thick Coal Seams
by Chong Zhang, Yue Sun, Yan Zhang, Yubing Huang, Huayu Yang, Zhenqing Zhang, Chen Chen and Hongdi Tian
Energies 2025, 18(16), 4330; https://doi.org/10.3390/en18164330 - 14 Aug 2025
Viewed by 410
Abstract
With coal mines’ mining depth increasing, the stress environment in deep mining (including key factors such as high ground stress, strong disturbance, and complex geological structures, as well as stress redistribution after deformation of surrounding roadway rock) is complex, which leads to increasingly [...] Read more.
With coal mines’ mining depth increasing, the stress environment in deep mining (including key factors such as high ground stress, strong disturbance, and complex geological structures, as well as stress redistribution after deformation of surrounding roadway rock) is complex, which leads to increasingly prominent deformation and failure problems for goaf-side roadways in thick coal seams. Surrounding rock deformation is difficult to control, and mine pressure behavior is violent, making traditional support technologies no longer able to meet the mining safety requirements of roadways in deep thick coal seams. Taking the 6311 working face of Tangkou Coal Mine as the engineering research background, this paper systematically summarizes the deformation and failure characteristics of goaf-side roadways in deep thick coal seams through field monitoring, borehole peeping, and other means, and conducts in-depth analysis of their failure mechanisms and influencing factors. Aiming at these problems, a synergistic support–unloading control method for goaf-side roadways is proposed, which integrates roof blasting pressure relief, coal pillar grouting reinforcement, and constant-resistance energy-absorbing anchor cable support. The effects of the unsupported scheme, original support scheme, and synergistic support–unloading control scheme are compared and analyzed through FLAC3D numerical simulation. Further verification through field application shows that it has remarkable effects in controlling roadway convergence deformation, roof separation, and bolt (cable) stress. Specifically, compared with the original support schemes, the horizontal displacement on the coal pillar side is reduced by 89.5% compared with the original support scheme, and the horizontal displacement on the solid coal side is reduced by 79.3%; the vertical displacement on the coal pillar side is reduced by 45.8% and the vertical displacement on the solid coal side is reduced by 42.4%. Compared with the original support scheme, the maximum deformation of the roadway’s solid coal rib, roof, and coal pillar rib is reduced by 76%, 83%, and 88%, respectively, while the separation between the shallow and deep roof remains at a low level. The coal stress continues fluctuating stably during the monitoring period; the force on the bolts (cables) does not exceed the designed anchoring force, with sufficient bearing reserve space (47% remaining), and no breakage occurs, which fully proves the feasibility and effectiveness of the synergistic support–unloading control technology scheme. This technology realizes the effective control of on-site roadways and provides technical reference for the support engineering of coal mine goaf-side roadways under similar conditions. Full article
Show Figures

Figure 1

34 pages, 5960 KB  
Article
Motor Temperature Observer for Four-Mass Thermal Model Based Rolling Mills
by Boris M. Loginov, Stanislav S. Voronin, Roman A. Lisovskiy, Vadim R. Khramshin and Liudmila V. Radionova
Sensors 2025, 25(14), 4458; https://doi.org/10.3390/s25144458 - 17 Jul 2025
Viewed by 456
Abstract
Thermal control in rolling mills motors is gaining importance as more and more hard-to-deform steel grades are rolled. The capabilities of diagnostics monitoring also expand as digital IIoT-based technologies are adopted. Electrical drives in modern rolling mills are based on synchronous motors with [...] Read more.
Thermal control in rolling mills motors is gaining importance as more and more hard-to-deform steel grades are rolled. The capabilities of diagnostics monitoring also expand as digital IIoT-based technologies are adopted. Electrical drives in modern rolling mills are based on synchronous motors with frequency regulation. Such motors are expensive, while their reliability impacts the metallurgical plant output. Hence, developing the on-line temperature monitoring systems for such motors is extremely urgent. This paper presents a solution applying to synchronous motors of the upper and lower rolls in the horizontal roll stand of plate mill 5000. The installed capacity of each motor is 12 MW. According to the digitalization tendency, on-line monitoring systems should be based on digital shadows (coordinate observers) that are similar to digital twins, widely introduced at metallurgical plants. Modern reliability requirements set the continuous temperature monitoring for stator and rotor windings and iron core. This article is the first to describe a method for calculating thermal loads based on the data sets created during rolling. The authors have developed a thermal state observer based on four-mass model of motor heating built using the Simscape Thermal Models library domains that is part of the MATLAB Simulink. Virtual adjustment of the observer and of the thermal model was performed using hardware-in-the-loop (HIL) simulation. The authors have validated the results by comparing the observer’s values with the actual values measured at control points. The discrete masses heating was studied during the rolling cycle. The stator and rotor winding temperature was analysed at different periods. The authors have concluded that the motors of the upper and lower rolls are in a satisfactory condition. The results of the study conducted generally develop the idea of using object-oriented digital shadows for the industrial electrical equipment. The authors have introduced technologies that improve the reliability of the rolling mills electrical drives which accounts for the innovative development in metallurgy. The authors have also provided recommendations on expanded industrial applications of the research results. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

24 pages, 5988 KB  
Article
Research on Construction Sequencing and Deformation Control for Foundation Pit Groups
by Ziwei Yin, Ruizhe Jin, Shouye Guan, Zhiwei Chen, Guoliang Dai and Wenbo Zhu
Appl. Sci. 2025, 15(14), 7719; https://doi.org/10.3390/app15147719 - 9 Jul 2025
Cited by 1 | Viewed by 540
Abstract
With the rapid urbanization and increasing development of underground spaces, foundation pit groups in complex geological environments encounter considerable challenges in deformation control. These challenges are especially prominent in cases of adjacent constructions, complex geology, and environmentally sensitive areas. Nevertheless, existing research is [...] Read more.
With the rapid urbanization and increasing development of underground spaces, foundation pit groups in complex geological environments encounter considerable challenges in deformation control. These challenges are especially prominent in cases of adjacent constructions, complex geology, and environmentally sensitive areas. Nevertheless, existing research is lacking in systematic analysis of construction sequencing and the interaction mechanisms between foundation pit groups. This results in gaps in comprehending stress redistribution and optimal excavation strategies for such configurations. To address these gaps, this study integrates physical model tests and PLAXIS 3D numerical simulations to explore the Nanjing Jiangbei New District Phase II pit groups. It concentrates on deformations in segmented and adjacent configurations under varying excavation sequences and spacing conditions. Key findings reveal that simultaneous excavation in segmented pit groups optimizes deformation control through symmetrical stress relief via bilateral unloading, reducing shared diaphragm wall displacement by 18–25% compared to sequential methods. Sequential excavations induce complex soil stress redistribution from asymmetric unloading, with deep-to-shallow sequencing minimizing exterior wall deformation (≤0.12%He). For adjacent foundation pit groups, simultaneous excavation achieves minimum displacement interference, while phased construction requires prioritizing large-section excavation first to mitigate cumulative deformations through optimized stress transfer. When the spacing-to-depth ratio (B/He) is below 1, horizontal displacements of retaining structures increase by 43% due to spacing effects. This study quantifies the effects of excavation sequences and spacing configurations on pit group deformation, establishing a theoretical framework for optimizing construction strategies and enhancing retaining structure stability. The findings are highly significant for underground engineering design and construction in complex urban geological settings, especially in high-density areas with spatial and geotechnical constraints. Full article
Show Figures

Figure 1

Back to TopTop