A Multidisciplinary Approach to Mapping Morphostructural Features and Their Relation to Seismic Processes
Abstract
1. Introduction
2. Background
2.1. Geological and Geomorphological Settings
2.2. Seismicity
3. Materials and Methods
3.1. Field Observation and Multi-Temporal Satellite Image Analysis
3.2. Grain-Size and Morphoscopic Analyses
3.3. HVSR and MASW: Ambient Noise and Surface Waves Methods
3.4. Electrical Resistivity Tomography
4. Results
4.1. Surface Evolutions
4.2. Sedimentological Characterization
4.3. Geothematic Maps Used for Surface Deformation Analysis
4.4. ERT
5. Discussion
6. Conclusions
- (i)
- The reopening of anthropogenically filled fractures following the 2019 seismic swarm suggests that even low-intensity seismicity can trigger or reactivate near-surface gravitational deformations along pre-existing structural weaknesses.
- (ii)
- Field observations and multi-temporal Google Earth imagery reveal the presence of a slow-moving landslide bounded by morphostructural lineaments trending WNW–ESE and N–S. The landslide’s development appears structurally controlled and possibly influenced by nearby quarry excavations.
- (iii)
- The integration of geophysical data (HVSR, MASW, and ERT) allowed for the characterization of a two-layer subsurface model, consisting of a shallow, saturated, mechanically soft cover overlying a more consolidated substratum. This model supports the interpretation of zones prone to liquefaction and fluid circulation linked to surface fractures.
- (iv)
- Grain-size and morphoscopic analyses of sandy deposits in elliptical depressions strongly indicate a marine origin and support the hypothesis of the upward migration of sediment through preferential pathways created by structural lineaments, consistent with liquefaction processes induced or enhanced by seismic shaking.
- (v)
- The calculated seismic vulnerability index (Kg) highlights the areas susceptible to liquefaction, spatially correlating with observed fractures
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
ID | Criteria for a Reliable H/V Curve | Criteria for a Clear H/V Peak | |||||||
---|---|---|---|---|---|---|---|---|---|
f0 > 10/Lw | nc(f0) > 200 | σA(f) < 2 for 0.5f0 < f < 2f0 If f0 > 0.5 Hz σA(f) < 3 for 0.5f0 < f < 2f0 If f0 < 0.5 Hz | Exists f − in [f0/4, f0] | AH/V (f −) < A0/2 | Exists f + in [f0, 4f0] | AH/V (f +) < A0/2 | A0 > 2 | fpeak[AH/V(f) ± σA(f)] = f0 ± 5% | σf < ε(f0) | σA(f0) < θ(f0) | |
1 | OK | OK | OK | OK | OK | OK | OK | OK | OK |
2 | OK | OK | OK | OK | OK | OK | NO | NO | OK |
3 | OK | OK | OK | OK | OK | OK | NO | OK | OK |
4 | OK | OK | OK | OK | OK | OK | NO | NO | OK |
5 | OK | OK | OK | OK | OK | OK | NO | NO | OK |
6 | OK | OK | OK | NO | OK | OK | NO | NO | OK |
7 | OK | OK | OK | NO | OK | OK | NO | NO | OK |
8 | OK | OK | OK | NO | OK | OK | NO | OK | OK |
9 | OK | OK | OK | OK | OK | OK | NO | NO | OK |
10 | OK | OK | OK | NO | OK | OK | NO | OK | OK |
11 | OK | OK | OK | NO | OK | OK | NO | NO | OK |
12 | OK | OK | OK | NO | OK | OK | NO | NO | OK |
13 | OK | OK | OK | NO | OK | OK | NO | NO | OK |
14 | OK | OK | OK | NO | OK | OK | NO | NO | OK |
15 | OK | OK | OK | NO | OK | OK | NO | NO | OK |
16 | OK | OK | OK | NO | OK | OK | NO | NO | OK |
17 | OK | OK | OK | NO | OK | OK | NO | NO | OK |
18 | OK | OK | OK | NO | OK | OK | NO | NO | OK |
19 | OK | OK | OK | NO | OK | OK | NO | OK | OK |
20 | OK | OK | OK | NO | OK | OK | NO | NO | OK |
21 | OK | OK | OK | NO | OK | OK | NO | OK | OK |
22 | OK | OK | OK | OK | OK | OK | OK | OK | OK |
23 | OK | OK | OK | OK | OK | OK | NO | NO | OK |
24 | OK | OK | OK | OK | OK | OK | NO | NO | OK |
25 | OK | OK | OK | NO | OK | OK | OK | OK | OK |
26 | OK | OK | OK | OK | OK | OK | OK | OK | OK |
27 | OK | OK | OK | NO | OK | OK | NO | NO | OK |
28 | OK | OK | OK | OK | OK | OK | NO | NO | OK |
29 | OK | OK | OK | NO | OK | OK | NO | NO | OK |
30 | OK | OK | OK | OK | OK | OK | NO | NO | OK |
31 | OK | OK | OK | OK | OK | OK | NO | OK | OK |
32 | OK | OK | OK | NO | OK | OK | NO | NO | OK |
33 | OK | OK | OK | NO | OK | OK | NO | NO | OK |
34 | OK | OK | OK | NO | OK | OK | OK | OK | OK |
35 | OK | OK | OK | NO | OK | OK | NO | NO | OK |
36 | OK | OK | OK | NO | OK | OK | NO | NO | OK |
37 | OK | OK | OK | NO | OK | OK | NO | NO | OK |
38 | OK | OK | OK | OK | OK | OK | OK | OK | OK |
39 | OK | OK | OK | OK | OK | OK | NO | NO | OK |
40 | OK | OK | OK | OK | OK | OK | NO | NO | OK |
41 | OK | OK | OK | NO | OK | OK | NO | NO | OK |
References
- McCalpin, J. Paleoseismology, 2nd ed.; Academic Press: San Diego, CA, USA; London, UK, 2009; Volume 629. [Google Scholar]
- De Martini, P.M.; Cinti, F.R.; Cucci, L.; Smedile, A.; Pinzi, S.; Brunori, C.A.; Molisso, F. Sand volcanoes induced by the April 6th 2009 Mw 6.3 L’Aquila earthquake: A case study from the Fossa area. Ital. J. Geosci. 2012, 131, 410–422. [Google Scholar] [CrossRef]
- Tallini, M.; Maceroni, D.; Falcucci, E.; Galadini, F.; Gori, S.; Guerriero, V.; Spadi, M.; Moro, M.; Saroli, M. Multi-methodological approach for assessing surface faulting and paleoliquefaction history in central Italy: Applicative implications for seismic microzonation studies in the Quaternary L’Aquila basin. Front. Earth Sci. 2025, 13, 1523730. [Google Scholar] [CrossRef]
- Akkaya, I. Availability of Seismic Vulnerability Index (Kg) in the Assessment of Building Damage in Van, Eastern Turkey. Earthq. Eng. Eng. Vib. 2020, 19, 189–204. [Google Scholar] [CrossRef]
- Grippa, A.; Bianca, M.; Tropeano, M.; Cilumbriello, A.; Gallipoli, M.R.; Mucciarelli, M.; Sabato, L. Use of the HVSR method to detect buried paleomorphologies (filled incised-valleys) below a coastal plain: The case of the Metaponto plain (Basilicata, southern Italy). Boll. Geofis. Teor. Appl. 2011, 52, 225–240. [Google Scholar]
- Tarabusi, G.; Caputo, R. The use of HVSR measurements for investigating buried tectonic structures: The Mirandola anticline, Northern Italy, as a case study. Int. J. Earth Sci. 2017, 106, 341–353. [Google Scholar] [CrossRef]
- Mele, M.; Bersezio, R.; Bini, A.; Bruno, M.; Giudici, M.; Tantardini, D. Subsurface profiling of buried valleys in central alps (northern Italy) using HVSR single-station passive seismic. J. Appl. Geophys. 2021, 193, 104407. [Google Scholar] [CrossRef]
- Nakamura, Y. Seismic Vulnerability Indices for Ground and Structures Using Microtremor. In Proceedings of the World Congress on Railway Research, Florence, Italy, 16–19 November 1997; pp. 1–7. [Google Scholar]
- Alonso-Pandavenes, O.; Torrijo, F.J.; Torres, G. Analysis of the Liquefaction Potential at the Base of the San Marcos Dam (Cayambe, Ecuador)—A Validation in the Use of the Horizontal-to-Vertical Spectral Ratio. Geosciences 2024, 14, 306. [Google Scholar] [CrossRef]
- Sulli, A.; Morticelli, M.G.; Agate, M.; Zizzo, E. Active north-vergent thrusting in the Northern Sicily continental margin in the frame of the quaternary evolution of the Sicilian collisional system. Tectonophysics 2021, 802, 228717. [Google Scholar] [CrossRef]
- Catalano, R.; Franchino, A.; Merlini, S.; Sulli, A. Central western Sicily structural setting interpreted from seismic reflection profiles. Mem. Soc. Geol. It 2000, 55, 5–16. [Google Scholar]
- Barreca, G.; Bruno, V.; Cocorullo, C.; Cultrera, F.; Ferranti, L.; Guglielmino, F.; Guzzetta, L.; Mattia, M.; Monaco, C.; Pepe, F. Geodetic and geological evidence of active tectonics in south-western Sicily (Italy). J. Geodyn. 2014, 82, 138–149. [Google Scholar] [CrossRef]
- Di Stefano, P.; Renda, P.; Zarcone, G.; Nigro, F.; Cacciatore, M.S.; Di Stefano, E.; Sprovieri, R.; Bonomo, S.; Monteleone, S.; Sabatino, M. Note Illustrative della Carta Geologica d’Italia Allascala 1:50.000—Foglio 619 S. Margherita Belice; ISPRA, Servizio Geologico d’Italia, Regione Siciliana—Assessorato Territorio e Ambiente, SystemCart: Rome, Italy, 2013; pp. 1–178.
- Scognamiglio, L.; Tinti, E.; Quintiliani, M. Time Domain Tensor (TDMT) [Data Set]; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2006. [CrossRef]
- Monaco, C.; Mazzoli, S.; Tortorici, L. Active thrust tectonics in western Sicily (southern Italy): The 1968 Belice earthquake sequence. Terra Nova 1996, 8, 372–381. [Google Scholar] [CrossRef]
- Lavecchia, G.; Ferrarini, F.; de Nardis, R.; Visini, F.; Barbano, M.S. Active thrusting as a possible seismogenic source in Sicily (Southern Italy): Some insights from integrated structural–kinematic and seismological data. Tectonophysics 2007, 445, 145–167. [Google Scholar] [CrossRef]
- Azzaro, R.; Barbano, M.S.; Tertulliani, A.; Pirrotta, C. A reappraisal of the 1968 Valle del Belìce seismic sequence (western Sicily): A case study of intensity assessment with cumulated damage effects. Ann. Geophys. 2020, 63, SE105. [Google Scholar] [CrossRef]
- Scarfì, L.; Barberi, G.; Barreca, G.; Musumeci, C.; Tusa, G. Insights into Western Sicily’s seismotectonics from recent seismicity and 1968 Belice mainshock ground motion simulations. Nat. Hazards 2025, 121, 5757–5780. [Google Scholar] [CrossRef]
- Rovida, A.; Locati, M.; Camassi, R.; Lolli, B.; Gasperini, P. The Italian earthquake catalogue CPTI15. Bull. Earthq. Eng. 2020, 18, 2953–2984. [Google Scholar] [CrossRef]
- Rovida, A.; Locati, M.; Camassi, R.; Lolli, B.; Gasperini, P.; Antonucci, A. Catalogo Parametrico dei Terremoti Italiani (CPTI15), Versione 4.0 [Data Set]; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2022. [CrossRef]
- Bosi, C.; Cavallo, R.; Francaviglia, V. Aspetti geologici e geologico-tecnici del terremoto della Valle del Belice del 1968. Mem. Soc. Geol. Ital. 1973, 12, 81–130. [Google Scholar]
- McKenzie, D. Active tectonics of the Mediterranean Region. Geophys. J. Int. 1972, 30, 109–185. [Google Scholar] [CrossRef]
- Gasparini, c.; Iannaccone, G.; Scarpa, R. Fault-plane solutions and seismicity of the Italian peninsula. Tectonophysics 1985, 117, 59–78. [Google Scholar] [CrossRef]
- Anderson, H.; Jackson, J. Active tectonics of the Adriatic Region. Geophys. J. Int. 1987, 91, 937–983. [Google Scholar] [CrossRef]
- Latorre, D.; Di Stefano, R.; Castello, B.; Michele, M.; Chiaraluce, L. Catalogo delle Localizzazioni ASSolute (CLASS), (Version 1); Istituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2022. [CrossRef]
- ISIDe Working Group. ISIDe, Italian Seismological Instrumental and Parametric Database, Version 1.0; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2016. [CrossRef]
- ASTM. Test Designation D422. Standard Method for Particle Size Analysis of Soils; ASTM: Philadelphia, PA, USA, 1972. [Google Scholar]
- Zingg, T. Beitrag zur Shotteranalyse. Schweiz. Min. u. Pet. Mitt. 1935, 15, 39–140. [Google Scholar]
- Rittenhouse, G. Measuring intercept sphericity of sand grains. Am. J. Sci. 1943, 241, 109. [Google Scholar] [CrossRef]
- Powers, M.C. A new roundness scale for sedimentary particles. J. Sediment. Res. 1953, 23, 117–119. [Google Scholar] [CrossRef]
- Nakamura, Y. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute. Q. Rep. 1989, 30, 25–33. [Google Scholar]
- Nakamura, Y. What is the Nakamura method? Seismol. Res. Lett. 2019, 90, 1437–1443. [Google Scholar] [CrossRef]
- Ibs-von Seht, M.; Wohlenberg, J. Microtremor measurements used to map thickness of soft sediments. Bull. Seism. Soc. Am. 1999, 89, 250–259. [Google Scholar] [CrossRef]
- Delgado, J.; Casado, C.L.; Estevez, A.; Giner, J.; Cuenca, A.; Molina, S. Mapping soft soils in the Segura river valley (SE Spain): A case study of microtremors as an exploration tool. J. Appl. Geophys. 2000, 45, 19–32. [Google Scholar] [CrossRef]
- Havenith, H.B. Guidelines for the Implementation of the H/V Spectral Ratio Technique on Ambient Vibrations Measurements, Processing and Interpretation. 2004. Available online: http://sesame.geopsy.org/Papers/HV_User_Guidelines.pdf (accessed on 29 April 2025).
- Micromed. Dati Tecnici Tromino e Download Pacchetto Software Grilla. 2011. Available online: http://www.tromino.it (accessed on 29 April 2025).
- Fäh, D.; Kind, F.; Giardini, D. A theoretical investigation of average H/V ratios. Geophys. J. Int. 2001, 145, 535–549. [Google Scholar] [CrossRef]
- Canzoneri, A.; Capizzi, P.; Martorana, R.; Albano, L.; Bonfardeci, A.; Costa, N.; Favara, R. Geophysical Constraints to Reconstructing the Geometry of a Shallow Groundwater Body in Caronia (Sicily). Water 2023, 15, 3206. [Google Scholar] [CrossRef]
- Canzoneri, A.; Martorana, R.; Agate, M.; Gasparo Morticelli, M.; Capizzi, P.; Carollo, A.; Sulli, A. Reconstruction of a 3D Bedrock Model in an Urban Area Using Well Stratigraphy and Geophysical Data: A Case Study of the City of Palermo. Geosciences 2025, 15, 174. [Google Scholar] [CrossRef]
- Park, C.B.; Miller, R.D.; Xia, J. Multichannel analysis of surface waves. Geophysics 1999, 64, 800–808. [Google Scholar] [CrossRef]
- Zor, E.; Özalaybey, S.; Karaaslan, A.; Tapirdamaz, M.C.; Özalaybey, S.Ç.; Tarancioglu, A.; Erkan, B. Shear wave velocity structure of the Izmit Bay area (Turkey) estimated from active-passive array surface wave and single-station microtremor methods. Geophys. J. Int. 2010, 182, 1603–1618. [Google Scholar] [CrossRef]
- Capizzi, P.; Martorana, R. Integration of constrained electrical and seismic tomographies to study the landslide affecting the Cathedral of Agrigento. J. Geophys. Eng. 2014, 11, 045009. [Google Scholar] [CrossRef]
- Panzera, F.; Sicali, S.; Lombardo, G.; Imposa, S.; Gresta, S.; D’Amico, S. A microtremor survey to define the subsoil structure in a mud volcanoes area: The case study of Salinelle (Mt. Etna, Italy). Environ. Earth Sci. 2016, 75, 1140. [Google Scholar] [CrossRef]
- Reynolds, J.M. An Introduction to Applied and Environmental Geophysics, 2nd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2011. [Google Scholar]
- Binley, A.; Kemna, A. DC resistivity and induced polarization methods. In Hydrogeophysics; Springer: Dordrecht, The Netherlands, 2005; pp. 129–156. [Google Scholar]
- Loke, M.H. Tutorial: 2-D and 3-D Electrical Imaging Surveys. 2013. Available online: www.geotomosoft.com (accessed on 29 April 2025).
- Loke, M.H.; Barker, R.D. Rapid least-squares inversion of apparent resistivity pseudosections using a quasi-Newton method. Geophys. Prospect. 1996, 44, 131–152. [Google Scholar] [CrossRef]
- Keefer, D.K. Landslides caused by earthquakes. Geol. Soc. Am. Bull. 1994, 95, 406–421. [Google Scholar] [CrossRef]
- Rodríguez, C.E.; Bommer, J.J.; Chandler, R.J. Earthquake-induced landslides: 1980–1997. Soil Dyn. Earthq. Eng. 1999, 18, 325–346. [Google Scholar] [CrossRef]
- Papadopoulos, G.A.; Plessa, A. Magnitude-distance relations for earthquake–induced landslides in Greece. Eng. Geol. 2000, 58, 377–386. [Google Scholar] [CrossRef]
- Delgado, J.; Garrido, J.; López-Casado, C.; Martino, S.; Peláez, J.A. On far field occurrence of seismically induced landslides. Eng. Geol. 2011, 123, 204–213. [Google Scholar] [CrossRef]
- Wistuba, M.; Malik, I.; Krzemień, K.; Gorczyca, E.; Sobucki, M.; Wrońska-Wałach, D.; Gawior, D. Can low-magnitude earthquakes act as a triggering factor for landslide activity? Examples from the Western Carpathian Mts, Poland. CATENA 2018, 171, 359–375. [Google Scholar] [CrossRef]
- Galli, P. New empirical relationships between magnitude and distance for liquefaction. Tectonophysics 2000, 324, 169–187. [Google Scholar] [CrossRef]
- Papathanassiou, G.; Pavlides, S.; Ganas, A. The 2003 Lefkada earthquake: Field observations and preliminary microzonation map based on liquefaction potential index for the town of Lefkada. Eng. Geol. 2005, 82, 12–31. [Google Scholar] [CrossRef]
Sample | Grain-Size Nomenclature |
---|---|
1 | Sand with mud |
2 | Mud with gravel and sand |
3 | Mud with weakly gravely sand |
4 | Muddy sand |
5 | Muddy sand |
6 | Muddy sand |
7 (surface) | Muddy sand |
7 (depth) | Weakly gravely muddy sand |
8 (surface) | Muddy sand |
8 (depth) | Sand with mud |
9 (surface) | Muddy sand |
9 (depth) | Mud with weakly gravelly sand |
10 (surface) | Muddy sand |
10 (depth) | Sand with mud, weakly gravelly |
11 (surface) | Sand |
11 (depth) | Sand with mud, weakly gravelly |
12 (surface) | Sand with mud, weakly gravelly |
12 (depth) | Sand with mud, weakly gravelly |
13 | Sand with mud, weakly gravelly |
14 | Gravely sand |
15 (surface) | Weakly sandy mud |
15 (depth) | Mud with sand |
Sample | Sphericity | Roundness |
---|---|---|
1 | 0.81 | 0.30 |
4 | 0.87 | 0.40 |
5 | 0.87 | 0.30 |
6 | 0.87 | 0.40 |
7 (surface) | 0.87 | 0.60 |
7 (depth) | 0.89 | 0.40 |
8 (surface) | 0.85 | 0.30 |
8 (depth) | 0.87 | 0.40 |
9 (surface) | 0.85 | 0.30 |
10 (surface) | 0.85 | 0.30 |
10 (depth) | 0.85 | 0.40 |
11 (surface) | 0.85 | 0.30 |
11 (depth) | 0.87 | 0.40 |
12 (surface) | 0.85 | 0.30 |
12 (depth) | 0.87 | 0.30 |
13 | 0.85 | 0.30 |
14 | 0.79 | 0.20 |
ID | Elevation (m) | f0 [Hz] | A | Kg |
---|---|---|---|---|
1 | 238 | 1.88 | 3.2 | 5.4 |
2 | 237 | 1.88 | 3.5 | 6.5 |
3 | 236 | 1.88 | 3.5 | 6.5 |
4 | 235 | 1.88 | 3.7 | 7.3 |
5 | 234 | 1.88 | 3.5 | 6.5 |
6 | 233 | 1.5 | 3.2 | 6.8 |
7 | 232 | 1.53 | 3.2 | 6.7 |
8 | 231 | 1.56 | 3.1 | 6.2 |
9 | 231 | 1.53 | 3.1 | 6.3 |
10 | 230 | 1.56 | 3 | 5.8 |
11 | 229 | 1.53 | 2.8 | 5.1 |
12 | 228 | 0.94 | 2.8 | 8.3 |
13 | 227 | 1.06 | 2.7 | 6.9 |
14 | 224 | 0.94 | 1.3 | 1.8 |
15 | 223 | 1.03 | 2.8 | 7.6 |
16 | 220 | 1.06 | 2.4 | 5.4 |
17 | 217 | 1.03 | 2.6 | 6.6 |
18 | 214 | 0.94 | 2.1 | 4.7 |
19 | 212 | 1 | 2.5 | 6.2 |
20 | 210 | 0.94 | 2.2 | 5.1 |
21 | 208 | 0.91 | 2.2 | 5 |
22 | 234 | 1.81 | 2.9 | 4.6 |
23 | 235 | 2.09 | 3.5 | 5.9 |
24 | 236 | 1.5 | 2.9 | 5.6 |
25 | 230 | 1.53 | 2.8 | 5.1 |
26 | 233 | 1.72 | 3 | 5.2 |
27 | 238 | 1.56 | 3.1 | 6.2 |
28 | 235 | 1.88 | 3.2 | 5.4 |
29 | 232 | 1.5 | 3 | 6 |
30 | 231 | 1.25 | 2.8 | 6.3 |
31 | 235 | 1.72 | 3.1 | 5.6 |
32 | 222 | 1.28 | 2.1 | 3.4 |
33 | 222 | 1.09 | 2.8 | 7.2 |
34 | 211 | 0.94 | 2.3 | 5.6 |
35 | 210 | 1 | 2.7 | 7.2 |
36 | 219 | 1.06 | 2.5 | 5.9 |
37 | 221 | 1.16 | 3.1 | 8.3 |
38 | 223 | 1.16 | 3 | 7.8 |
39 | 209 | 1.09 | 2.8 | 7.2 |
40 | 210 | 1.09 | 2.9 | 7.7 |
41 | 214 | 1.13 | 2.8 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bongiovanni, S.; Martorana, R.; Canzoneri, A.; Gasparo Morticelli, M.; Sulli, A. A Multidisciplinary Approach to Mapping Morphostructural Features and Their Relation to Seismic Processes. Geosciences 2025, 15, 337. https://doi.org/10.3390/geosciences15090337
Bongiovanni S, Martorana R, Canzoneri A, Gasparo Morticelli M, Sulli A. A Multidisciplinary Approach to Mapping Morphostructural Features and Their Relation to Seismic Processes. Geosciences. 2025; 15(9):337. https://doi.org/10.3390/geosciences15090337
Chicago/Turabian StyleBongiovanni, Simona, Raffaele Martorana, Alessandro Canzoneri, Maurizio Gasparo Morticelli, and Attilio Sulli. 2025. "A Multidisciplinary Approach to Mapping Morphostructural Features and Their Relation to Seismic Processes" Geosciences 15, no. 9: 337. https://doi.org/10.3390/geosciences15090337
APA StyleBongiovanni, S., Martorana, R., Canzoneri, A., Gasparo Morticelli, M., & Sulli, A. (2025). A Multidisciplinary Approach to Mapping Morphostructural Features and Their Relation to Seismic Processes. Geosciences, 15(9), 337. https://doi.org/10.3390/geosciences15090337