Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (877)

Search Parameters:
Keywords = honeycomb structures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5299 KB  
Article
Study on the Deterioration Characteristics of Sandstone Cultural Relics Under the Synergistic Action of Dry-Wet Cycles and Acids, Alkalis, Salts and Composite Solutions
by Jiawei Zhang, Pu Hu, Yushan Lian, Wei Huang, Yong Zheng, Qingyang Wu and Yuanchun Niu
Appl. Sci. 2026, 16(2), 770; https://doi.org/10.3390/app16020770 - 12 Jan 2026
Viewed by 129
Abstract
Stone cultural relics are primarily composed of sandstone, a water-sensitive rock that is highly susceptible to deterioration from environmental solutions and dry-wet cycles. Sandstone pagodas are often directly exposed to natural elements, posing significant risks to their preservation. Therefore, it is crucial to [...] Read more.
Stone cultural relics are primarily composed of sandstone, a water-sensitive rock that is highly susceptible to deterioration from environmental solutions and dry-wet cycles. Sandstone pagodas are often directly exposed to natural elements, posing significant risks to their preservation. Therefore, it is crucial to investigate the performance of sandstone towers in complex solution environments and understand the degradation mechanisms influenced by multiple environmental factors. This paper focuses on the twin towers of the Huachi Stone Statue in Qingyang City, Gansu Province, China, analyzing the changes in chemical composition, surface/microstructure, physical properties, and mechanical characteristics of sandstone under the combined effects of various solutions and dry-wet cycles. The results indicate that distilled water has the least effect on the mineral composition of sandstone, while a 5% Na2SO4 solution can induce the formation of gypsum (CaSO4·2H2O). An acidic solution, such as sulfuric acid, significantly dissolves calcite and diopside, leading to an increase in gypsum diffraction peaks. Additionally, an alkaline solution (sodium hydroxide) slightly hydrolyzes quartz and albite, promoting calcite precipitation. The composite solution demonstrates a synergistic ion effect when mixed with various single solutions. Microstructural examinations reveal that sandstone experiences only minor pulverization in distilled water. In contrast, the acidic solution causes micro-cracks and particle shedding, while the alkaline solution results in layered spalling of the sandstone surface. A salt solution leads to salt frost formation and pore crystallization, with the composite solution of sodium hydroxide and 5% Na2SO4 demonstrating the most severe deterioration. The sandstone is covered with salt frost and spalling, exhibiting honeycomb pores and interlaced crystal structures. From a physical and mechanical perspective, as dry-wet cycles increase, the water absorption and porosity of the sandstone initially decrease slightly before increasing, while the longitudinal wave velocity and uniaxial compressive strength continually decline. In summary, the composite solution of NaOH and 5% Na2SO4 results in the most significant deterioration of sandstone, whereas distilled water has the least impact. The combined effects of acidic/alkaline and salt solutions generally exacerbate sandstone damage more than individual solutions. This study offers insights into the regional deterioration characteristics of the Huachi Stone Statue Twin Towers and lays the groundwork for disease control and preventive preservation of sandstone cultural relics in similar climatic and geological contexts. Full article
Show Figures

Figure 1

17 pages, 4208 KB  
Article
Equivalent Elastic Modulus Study of a Novel Quadrangular Star-Shaped Zero Poisson’s Ratio Honeycomb Structure
by Aling Luo, Dong Yan, Zewei Wu, Hong Lu and He Ling
Symmetry 2026, 18(1), 127; https://doi.org/10.3390/sym18010127 - 9 Jan 2026
Viewed by 225
Abstract
This study proposes a novel four-pointed-star-shaped honeycomb structure having zero Poisson’s ratio, designed to overcome the stress concentration inherent in traditional point-to-point connected star-shaped honeycombs.By introducing a horizontal connecting wall at cell junctions, the new configuration achieves a more uniform stress distribution and [...] Read more.
This study proposes a novel four-pointed-star-shaped honeycomb structure having zero Poisson’s ratio, designed to overcome the stress concentration inherent in traditional point-to-point connected star-shaped honeycombs.By introducing a horizontal connecting wall at cell junctions, the new configuration achieves a more uniform stress distribution and enhanced structural stability. An analytical model for the in-plane equivalent elastic modulus was derived using homogenization theory and the energy method. The model, along with the structure’s zero Poisson’s ratio characteristic, was validated through finite element simulations and experimental compression tests. The simulations predicted an equivalent elastic modulus of 51.71 MPa (Y-direction) and 74.67 MPa (X-direction), which aligned closely with the experimental measurements of 56.61 MPa and 60.50 MPa, respectively. The experimental Poisson’s ratio was maintained near zero (v = 0.02). Parametric analysis further revealed that the in-plane equivalent elastic modulus decreases with increases in the wall angle, horizontal wall length, and wall thickness. This work demonstrates a successful structural optimization strategy that improves both mechanical performance and manufacturability for zero Poisson’s ratio honeycomb applications. Full article
Show Figures

Figure 1

18 pages, 3925 KB  
Article
Performance Optimization of Triangular Cantilever Beam Piezoelectric Energy Harvesters: Synergistic Design Research on Mass Block Structure Optimization and Negative Poisson’s Ratio Substrate
by Ruijie Ren, Binbin Li, Jun Liu, Yu Zhang, Gang Xu and Weijia Liu
Micromachines 2026, 17(1), 78; https://doi.org/10.3390/mi17010078 - 7 Jan 2026
Viewed by 290
Abstract
The widespread adoption of low-power devices and microelectronic systems has intensified the need for efficient energy harvesting solutions. While cantilever-beam piezoelectric energy harvesters (PEHs) are popular for their simplicity, their performance is often limited by conventional mass block designs. This study addresses this [...] Read more.
The widespread adoption of low-power devices and microelectronic systems has intensified the need for efficient energy harvesting solutions. While cantilever-beam piezoelectric energy harvesters (PEHs) are popular for their simplicity, their performance is often limited by conventional mass block designs. This study addresses this by proposing a comprehensive structural optimization framework for a triangular cantilever PEH to significantly enhance its electromechanical conversion efficiency. The methodology involved a multi-stage approach: first, an embedded coupling design was introduced to connect the mass block and cantilever beam, improving space utilization and strain distribution. Subsequently, the mass block’s shape was optimized. Furthermore, a negative Poisson’s ratio (NPR) honeycomb structure was integrated into the cantilever beam substrate to induce biaxial strain in the piezoelectric layer. Finally, a variable-density mass block was implemented. The synergistic combination of all optimizations—embedded coupling, NPR substrate, and variable-density mass block—culminated in a total performance enhancement of 69.07% (17.76 V) in voltage output and a 44.34% (28.01 Hz) reduction in resonant frequency. Through experimental testing, the output performance of the prototype machine showed good consistency with the simulation results, successfully verifying the effectiveness of the structural optimization method proposed in this study. These findings conclusively show that strategic morphological reconfiguration of key components is highly effective in developing high-performance, low-frequency adaptive piezoelectric energy harvesting systems. Full article
(This article belongs to the Special Issue Micro-Energy Harvesting Technologies and Self-Powered Sensing Systems)
Show Figures

Figure 1

16 pages, 2324 KB  
Article
High-Fidelity Finite Element Modelling (FEM) and Dynamic Analysis of a Hybrid Aluminium–Honeycomb Railway Vehicle Carbody
by Alessio Cascino, Enrico Meli and Andrea Rindi
Appl. Sci. 2026, 16(1), 549; https://doi.org/10.3390/app16010549 - 5 Jan 2026
Viewed by 230
Abstract
This study presents the development and high-fidelity finite element modelling of an innovative hybrid railway carbody structure, designed to achieve a substantial reduction in mass while maintaining the required mechanical performance under service conditions. The proposed concept integrates a traditional aluminium frame with [...] Read more.
This study presents the development and high-fidelity finite element modelling of an innovative hybrid railway carbody structure, designed to achieve a substantial reduction in mass while maintaining the required mechanical performance under service conditions. The proposed concept integrates a traditional aluminium frame with an advanced honeycomb sandwich panel, joined through adhesive bonding to ensure structural continuity, compensate for thermal effects, and minimize over constraining stresses. Detailed numerical simulations were conducted to evaluate both the static and dynamic behaviour of the structure under the most demanding load cases prescribed by standards. Modal analysis showed excellent agreement with the original carbody, with variations in the first natural frequency about 3%, while a change in the nature of the corresponding eigenvector was observed. Static simulations under maximum vertical loading confirmed comparable stiffness and stress distributions. Localised stress peaks increased by approximately 19%; the corresponding material utilization factor remained below unity, demonstrating that the structure operates safely within its allowable limits. The introduction of the sandwich panel enabled a mass saving of approximately 60% in the replaced components, corresponding to 3.9% if referred to the whole structure. The results validate the structural feasibility and mechanical reliability of the proposed hybrid concept, laying the foundations for the subsequent experimental phase and for refining its predictive accuracy and industrial applicability. Full article
Show Figures

Figure 1

17 pages, 6377 KB  
Article
Performance Design of Bio-Inspired Arc-Circular Honeycombs Under In-Plane Loading
by Chengliang Zhu and Yangyang Liu
Biomimetics 2026, 11(1), 33; https://doi.org/10.3390/biomimetics11010033 - 4 Jan 2026
Viewed by 271
Abstract
This study proposes an arc-circular lightweight honeycomb structure. Three different configurations of honeycomb specimens, namely arched honeycombs (AHs), arc-circular honeycombs with a first-order hierarchical configuration (ACH-1), and arc-circular honeycombs with a second-order hierarchical configuration (ACH-2), are prepared using metal additive manufacturing technology, and [...] Read more.
This study proposes an arc-circular lightweight honeycomb structure. Three different configurations of honeycomb specimens, namely arched honeycombs (AHs), arc-circular honeycombs with a first-order hierarchical configuration (ACH-1), and arc-circular honeycombs with a second-order hierarchical configuration (ACH-2), are prepared using metal additive manufacturing technology, and quasi-static compression tests are conducted. The results show that all configurations exhibit significant multi-stage load responses, with the ACH-2 configuration, which incorporates smaller sub-cells, demonstrating higher compressive stress and energy absorption potential. The specific energy absorption (SEA) of ACH-2 is enhanced by 210% compared to the baseline AH. The effectiveness of the finite element analysis is validated against experimental results. Further parametric analysis of the wall thickness parameters, cell number, and macroscopic dimensions of ACH-2 reveals significant variations in how wall thickness at different local locations affects the mechanical properties. Additionally, although increasing the macroscopic dimension significantly enhances the energy absorption capacity, the effect of increasing the number of cells on the overall energy absorption performance at the same relative density is limited. Finally, a reverse design framework for ACH-2 with multi-stage plateau stress is established. The effectiveness of this performance design framework is validated through experiments, providing a feasible technical approach for the design of honeycomb structures with multi-stage plateau stress characteristics. Full article
(This article belongs to the Special Issue Computer-Aided Biomimetics: 3rd Edition)
Show Figures

Figure 1

17 pages, 3550 KB  
Article
Auricularia auricula Polysaccharide Modulates Rheological, Thermal, and Structural Properties of Wheat Gluten via Selective Regulation of Glutenin and Gliadin
by Haowei Li, Jialu He, Yingxu Liu, Xiaolong Liu and Tingting Liu
Foods 2026, 15(1), 136; https://doi.org/10.3390/foods15010136 - 2 Jan 2026
Viewed by 307
Abstract
This study investigated the effects of Auricularia auricula Polysaccharide (AAP) concentrations on the rheological and thermal properties of gluten and its subunit components. We used multiple techniques, including dynamic rheology, differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), free thiol group analysis, and [...] Read more.
This study investigated the effects of Auricularia auricula Polysaccharide (AAP) concentrations on the rheological and thermal properties of gluten and its subunit components. We used multiple techniques, including dynamic rheology, differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), free thiol group analysis, and scanning electron microscopy (SEM). The results revealed that AAP increased the storage (G′) and loss (G″) modulus of gluten, glutenin, and gliadin, promoting compact elastic protein networks. DSC and free thiol group analysis demonstrated that AAP enhanced thermal stability and disulfide bond cross-linking in gluten and glutenin, but reduced thermostability and inhibited disulfide formation in gliadin. Secondary structure analysis showed 31.93% and 17.72% increases in α-helix and β-sheet content, respectively, in glutenin at 8% AAP, thereby enhancing the orderliness of the gluten structure and improving structural rigidity, while reducing gliadin’s structural order. Microscopy confirmed AAP narrowed gluten matrix pores, forming uniform honeycomb structures (though high concentrations caused disruption). In summary, AAP primarily stabilizes gluten conformation by modulating glutenin structure, thereby enhancing rheological and thermal properties. Full article
Show Figures

Graphical abstract

11 pages, 1445 KB  
Article
Integrated Analysis of an Innovative Composite Polycaprolactone Membrane and a Jason Membrane in Guided Bone Regeneration
by Alexandra Papuc, Simion Bran, Marioara Moldovan, Gabriel Armencea, Bogdan Crisan, Liana Crisan, Grigore Baciut, Cristian Dinu, Florin Onișor, Winfried Kretschmer and Mihaela Baciut
Bioengineering 2026, 13(1), 23; https://doi.org/10.3390/bioengineering13010023 - 26 Dec 2025
Viewed by 267
Abstract
In the context of guided bone regeneration (GBR), the selection of an appropriate resorbable membrane plays a crucial role in the clinical success of the procedure. Precise knowledge about the distinct differences in properties is fundamental for correct selection of the membrane. This [...] Read more.
In the context of guided bone regeneration (GBR), the selection of an appropriate resorbable membrane plays a crucial role in the clinical success of the procedure. Precise knowledge about the distinct differences in properties is fundamental for correct selection of the membrane. This article presents an integrated comparative analysis between membranes, conducted for this given purpose and one step beyond: to fabricate a novel membrane with dedicated enhanced properties according to the targeted function. Our previous analysis showed that polymer membranes that met most histopathological criteria also produced the most remarkable results when radiologically observed. The most effective scaffolds were those containing active macromolecules released conditionally and staged. The PLGA and polycaprolactone scaffolds were found in this category and they granted a marked increase in bone density and improvement in osteoinduction. Based on these results, we decided to create a new polycaprolactone membrane in order to compare it with a standard currently on the market, the Jason membrane. The Jason® membrane is a natural collagen scaffold derived from porcine pericardium. Due to the unique production process, the membrane shows a natural honeycomb-like, multilayered collagen structure with an increased content of collagen type III, leading to remarkable tear resistance and a slow degradation rate. Also, the low thickness of 0.05–0.35 mm facilitates the soft tissue management. The Jason scaffold was compared to an innovative synthetic membrane based on polycaprolactone (PCL), focusing on their physicochemical characteristics, biological behavior, and clinical applicability. The Jason® membrane was distinguished by its high biocompatibility and rapid integration, while PCL offered superior mechanical stability and long-term durability, making it a preferred option for complex or customized 3D regenerations. Based on this integrated analysis, we fabricated an innovative electrospun PCL membrane, enriched with a novel synthesized nanohydroxyapatite, in order to enhance its specific properties for the beneficial use in targeted reconstructions. Full article
Show Figures

Figure 1

12 pages, 2987 KB  
Article
Formation Mechanisms of Micro-Nano Structures on Steels by Strong-Field Femtosecond Laser Filament Processing
by Liansheng Zheng, Shuo Wang, Yingbo Cong, Chenxing Wang, Haowen Li, Hongyin Jiang, Helong Li, Hongwei Zang and Huailiang Xu
Nanomaterials 2026, 16(1), 37; https://doi.org/10.3390/nano16010037 - 25 Dec 2025
Viewed by 278
Abstract
Functional steel surfaces engineered through tailored micro-nano structures are increasingly vital for various applications such as high-performance aerospace components, energy conversion systems and defense equipment. Femtosecond laser filament processing is a recently proposed remote fabrication technique, showing the capability of fabricating micro-nano structures [...] Read more.
Functional steel surfaces engineered through tailored micro-nano structures are increasingly vital for various applications such as high-performance aerospace components, energy conversion systems and defense equipment. Femtosecond laser filament processing is a recently proposed remote fabrication technique, showing the capability of fabricating micro-nano structures on irregular and large-area surfaces without the need of tight focusing. Nevertheless, the mechanisms underlying the formation of filament-induced structures remain not fully understood. Here we systematically investigate the formation mechanisms of filament-induced micro-nano structures on stainless steel surfaces by processing stainless steel in three manners: point, line, and area. We clarify the decisive role of the unique core–reservoir energy distribution of the filament in the formation of filament-induced micro-nano structures, and reveal that ablation, molten metal flow, and metal vapor condensation jointly drive the structure evolution through a dynamic interplay of competition and coupling, giving rise to the sequential morphological transitions of surface structures, from laser-induced periodic surface structures to ripple-like, crater-like, honeycomb-like, and ultimately taro-leaf-like structures. Our work not only clarifies the mechanisms of femtosecond laser filament processed morphological structures on steels but also provides insights onto intelligent manufacturing and design of advanced functional steel materials. Full article
Show Figures

Graphical abstract

11 pages, 1612 KB  
Communication
Hydrogel Microsphere-Based Alveolar Models for Toxicity Assessment and Pathogen Infection Studies
by Chang Zhou, Jingyuan Ji, Meiling Fu, Yuhui Tang, Yuan Liu, Yang Zheng and Yuan Pang
Bioengineering 2026, 13(1), 17; https://doi.org/10.3390/bioengineering13010017 - 25 Dec 2025
Viewed by 230
Abstract
The alveolar epithelium plays a critical role in respiratory function, facilitating air exchange and serving as a barrier against inhaled pathogens. Its unique three-dimensional architecture, in which epithelial cells grow on spherical alveolar structures, significantly increases the surface area-to-volume ratio for efficient gas [...] Read more.
The alveolar epithelium plays a critical role in respiratory function, facilitating air exchange and serving as a barrier against inhaled pathogens. Its unique three-dimensional architecture, in which epithelial cells grow on spherical alveolar structures, significantly increases the surface area-to-volume ratio for efficient gas exchange but poses challenges for in vitro reconstruction. Here, we present a biomimetic alveolar model based on gelatin methacryloyl (GelMA) hydrogel microspheres with precisely controlled sizes and composition fabricated via microfluidic technology. These microspheres function as micro-scaffolds for cell adhesion and growth, and an oxygen-permeable honeycomb microwell array facilitates the rapid assembly of cell-laden microspheres into physiologically relevant alveolar-like structures. Using this model, the effects of toxic gas exposure and pathogen infection, and demonstrated its potential use for both basic physiological studies and pathological applications, was investigated. This system recapitulates key features of the alveolar microenvironment and offers a versatile platform for respiratory research and drug screening. Full article
(This article belongs to the Section Nanobiotechnology and Biofabrication)
Show Figures

Figure 1

21 pages, 9201 KB  
Article
Study on the Complex Band Structure and Auxetic Behavior of Fractal Re-Entrant Honeycomb Metamaterials
by Jingru Li, Siyu Chen, Wei Lin and Yuzhang Lin
Materials 2025, 18(24), 5695; https://doi.org/10.3390/ma18245695 - 18 Dec 2025
Viewed by 374
Abstract
In order to break the limitation of metamaterials used in the vibration and sound reduction field, this work designed a two-dimensional metamaterial based on the re-entrant honeycomb lattice and using the fractal technique. The first, second, and third-order fractal re-entrant honeycomb metamaterials are [...] Read more.
In order to break the limitation of metamaterials used in the vibration and sound reduction field, this work designed a two-dimensional metamaterial based on the re-entrant honeycomb lattice and using the fractal technique. The first, second, and third-order fractal re-entrant honeycomb metamaterials are analyzed, respectively, within the established numerical models responsible for predicting the effective Poisson’s ratio, the real band structure, and the attenuation diagram. The effects of the fractal order, fractal ratio, and geometrical characteristics on these multiple functionalities are investigated simultaneously. Through adjusting the proposed fractal metamaterials, the results show that the transformation of auxetic performance, the number and location of multiple stop bands, the attenuation level inside the stop bands, and the wave decaying directionality can be flexibly tuned. This demonstrates that the compatibility of mechanical features and wave motion characteristics is successfully achieved in the present work. It provides a theoretical and technical basis for the development of multi-functional design methods of metamaterials in solving engineering problems. Full article
(This article belongs to the Special Issue Advanced Materials in Acoustics and Vibration)
Show Figures

Graphical abstract

14 pages, 12242 KB  
Article
Understanding Pith Paper: Anatomical Characteristics and Ageing of a Challenging Cultural Heritage Support
by Raquel Sousa, Vicelina Sousa, Susana França de Sá and Sílvia O. Sequeira
Heritage 2025, 8(12), 542; https://doi.org/10.3390/heritage8120542 - 17 Dec 2025
Viewed by 308
Abstract
Produced from the parenchymatous tissue of the stem pith of Tetrapanax papyrifer, the material known as pith paper served as a distinctive support medium for Chinese export paintings during the 19th and early 20th centuries. Today, it is commonly found in collections [...] Read more.
Produced from the parenchymatous tissue of the stem pith of Tetrapanax papyrifer, the material known as pith paper served as a distinctive support medium for Chinese export paintings during the 19th and early 20th centuries. Today, it is commonly found in collections worldwide. Due to its inherently fragile structure, conservation interventions are often necessary. However, the material’s chemical composition and deterioration mechanisms remain poorly understood, which not only complicates treatment decisions but also undermines preventive conservation efforts. This study presents a systematic investigation into the anatomical structure and ageing behaviour of pith paper using a multi-analytical approach. Optical and scanning electron microscopy revealed a preserved honeycomb-like cellular architecture composed of thin-walled, entirely of non-lignified parenchyma cells, which contributes to the material’s mechanical fragility. Artificial ageing experiments showed a significant loss of flexibility, increased yellowing, and a decline in pH with ageing time. Infrared spectroscopy identified molecular changes consistent with cellulose chain scission, with decreases in O–H and C–O–C absorptions revealing acid-hydrolysis-driven breakdown, while colourimetry pointed to the formation of chromophoric degradation products. These findings offer a foundational understanding of pith paper’s vulnerabilities and provide essential insights for the development of informed conservation and storage strategies. Full article
Show Figures

Figure 1

13 pages, 4070 KB  
Article
Analysis of Heat Dissipation Performance for a Ventilated Honeycomb Sandwich Structure Based on the Fluid–Solid–Thermal Coupling Method
by Pengfei Xiao, Xin Zhang, Chunping Zhou, Heng Zhang and Jie Li
Energies 2025, 18(24), 6593; https://doi.org/10.3390/en18246593 - 17 Dec 2025
Viewed by 283
Abstract
In recent years, honeycomb sandwich structures have seen continuous development due to their excellent structural performance and design flexibility in heat dissipation. However, their complex heat transfer mechanisms and diverse modes of thermal exchange necessitate research on the air flow behavior and temperature [...] Read more.
In recent years, honeycomb sandwich structures have seen continuous development due to their excellent structural performance and design flexibility in heat dissipation. However, their complex heat transfer mechanisms and diverse modes of thermal exchange necessitate research on the air flow behavior and temperature distribution characteristics of micro-channels and lattice pores. This study investigates the internal flow field within a ventilated honeycomb sandwich structure through numerical simulation. The spatial flow characteristics and temperature distribution are analyzed, with a focus on the effects of turbulent kinetic energy, heat flux distribution on the heated surface, and varying pressure drop conditions on the thermal performance. The results indicate that the micro-channels inside the honeycomb core lead to a strong correlation between temperature distribution, flow velocity, and turbulence intensity. Regions with higher flow velocity and turbulent kinetic energy exhibit lower temperatures, confirming the critical role of flow motion in heat transfer. Heat flux analysis further verifies that heat is primarily removed by airflow, with superior heat exchange occurring inside the honeycomb cells compared to the solid regions. The intensive mixing induced by highly turbulent flow within the small cells enhances contact with the solid surface, thereby improving heat conduction from the solid to the flow. Moreover, as the inlet pressure increases, the overall temperature gradually decreases but exhibits a saturation trend. This indicates that beyond a certain pressure level, further increasing the inlet pressure yields diminishing returns in heat dissipation enhancement. Full article
(This article belongs to the Topic Heat and Mass Transfer in Engineering)
Show Figures

Figure 1

29 pages, 5655 KB  
Article
Study on the Influence of 3D Printing Material Filling Patterns on Marine Photovoltaic Performance
by Huiling Zhang, Shengqing Zeng, Yining Zhang, Sixing Guo, Huaxian Feng and Dapeng Zhang
J. Mar. Sci. Eng. 2025, 13(12), 2373; https://doi.org/10.3390/jmse13122373 - 14 Dec 2025
Viewed by 281
Abstract
With the rapid development of offshore photovoltaic (PV) systems, PV support structures have become a critical component in offshore PV installations. The material properties of these structures significantly influence the safety and reliability of the entire system. 3D printing technology, leveraging its advantages [...] Read more.
With the rapid development of offshore photovoltaic (PV) systems, PV support structures have become a critical component in offshore PV installations. The material properties of these structures significantly influence the safety and reliability of the entire system. 3D printing technology, leveraging its advantages such as rapid prototyping, complex structure manufacturing, and high material utilization, holds broad application prospects in the field of offshore PV. However, the infill pattern of 3D printing materials can significantly affect their mechanical properties. Marine PV systems require extremely high resistance to wave action, tensile strength, and torsional performance, while offshore PV support structures need sufficient compressive capacity. Therefore, this study aims to investigate how different infill patterns affect the compressive properties of 3D printed materials, thereby optimizing material selection and printing processes for offshore PV applications. Through experimental design, a variety of common infill patterns were selected. Universal testing machines and torsion testing machines were used to conduct systematic tests on compressive strength, elastic modulus, and compressive fracture strain. The results showed that different infill patterns have a significant impact on compressive properties, among which the honeycomb infill exhibited the best overall mechanical performance, effectively enhancing load-bearing capacity and stability. Based on the experimental results, appropriate infill configurations and material combinations for different components of offshore PV systems were proposed. The feasibility of optimizing 3D printing processes to improve the overall performance of offshore PV structures was further explored. The findings of this study not only provide a theoretical basis for material selection and process optimization in 3D printing for offshore PV systems but also offer important references for promoting the application of 3D printing technology in this field. Full article
Show Figures

Figure 1

18 pages, 3267 KB  
Article
Bending Properties of Standardized Photopolymer–Silicone Hybrid Structures Manufactured via PolyJet Matrix
by Mateusz Rudnik, Wiktor Szot, Natalia Kowalska and Paweł Szczygieł
Materials 2025, 18(24), 5612; https://doi.org/10.3390/ma18245612 - 14 Dec 2025
Viewed by 293
Abstract
The study presented an analysis of the behaviour of cellular structures under bending, produced using the PolyJet Matrix (PJM) additive manufacturing method with photopolymer resin. Structures with regular cell geometry were designed to achieve a balance between stiffness, weight reduction, and energy absorption [...] Read more.
The study presented an analysis of the behaviour of cellular structures under bending, produced using the PolyJet Matrix (PJM) additive manufacturing method with photopolymer resin. Structures with regular cell geometry were designed to achieve a balance between stiffness, weight reduction, and energy absorption capacity. The aim of this study was to investigate the influence of unit-cell topology (quasi-similar, spiral, hexagonal honeycomb, and their core–skin hybrid combinations) on the flexural properties and deformation mechanisms of PolyJet-printed photopolymer beams under three-point bending. Additionally, all cellular configurations were fully infiltrated with a low-modulus platinum-cure silicone to evaluate the effect of complete polymer–elastomer interpenetration on load-bearing capacity, stiffness, ductility, and energy absorption. All tests were performed according to bending standard on specimens fabricated using a Stratasys Objet Connex350 printer with RGD720 photopolymer at 16 µm layer thickness. The results showed that the dominant failure mechanism was local buckling and gradual collapse of the cell walls. Among the silicone-filled cellular beams, the QS-Silicone configuration exhibited the best overall flexural performance, achieving a mean peak load of 37.7 ± 4.2 N, mid-span deflection at peak load of 11.4 ± 1.1 mm, and absorbed energy to peak load of 0.43 ± 0.06 J. This hybrid core–skin design (quasi-similar core + spiral skin) provided the optimum compromise between load-bearing capacity and deformation capacity within the infiltrated series. In contrast, the fully dense solid reference reached a significantly higher peak load of 136.6 ± 10.2 N, but failed in a brittle manner at only ~3 mm deflection, characteristic of UV-cured rigid photopolymers. All open-cell silicone-filled lattices displayed pseudo-ductile behaviour with extended post-peak softening, enabled by large-scale elastic buckling and silicone deformation and progressive buckling of the thin photopolymer struts. The results provided a foundation for optimising the geometry and material composition of photopolymer–silicone hybrid structures for lightweight applications with controlled stiffness-to-weight ratios. Full article
Show Figures

Figure 1

22 pages, 4141 KB  
Article
Enhanced Low-Energy Impact Localization for Carbon-Fiber Honeycomb Sandwich Panels Using LightGBM
by Zifan He, Jiyun Lu, Shengming Cui, Chunhua Zhou, Yinuo Shao, Qi Wu and Hongfu Zuo
Sensors 2025, 25(24), 7570; https://doi.org/10.3390/s25247570 - 12 Dec 2025
Viewed by 373
Abstract
Low-energy impacts have been demonstrated to cause damage and failure in aircraft structures, thereby affecting the structural load-bearing performance and creating safety hazards. In this study, an innovative damage-monitoring method based on a fiber Bragg grating (FBG) is proposed for honeycomb sandwich composites. [...] Read more.
Low-energy impacts have been demonstrated to cause damage and failure in aircraft structures, thereby affecting the structural load-bearing performance and creating safety hazards. In this study, an innovative damage-monitoring method based on a fiber Bragg grating (FBG) is proposed for honeycomb sandwich composites. The proposed method is applicable to honeycomb sandwich composites and integrates a light gradient boosting machine (LightGBM)-optimized impact localization method with feature-parallel and data-parallel processing in the machine learning architecture. An impact localization algorithm is applied to honeycomb sandwich composites using an array of multiplexed FBG sensors. The proposed algorithm exhibited substantial localization accuracy. The LightGBM method was employed to identify the optimal branching points for impact localization in real time, addressing the low-accuracy challenge in localizing low-energy impacts on the board structure when the fiber grating sensing system operates at a high sampling frequency. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

Back to TopTop