Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = honey chemical markers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 3723 KiB  
Review
Chemical Profiling and Quality Assessment of Food Products Employing Magnetic Resonance Technologies
by Chandra Prakash and Rohit Mahar
Foods 2025, 14(14), 2417; https://doi.org/10.3390/foods14142417 - 9 Jul 2025
Viewed by 638
Abstract
Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) are powerful techniques that have been employed to analyze foodstuffs comprehensively. These techniques offer in-depth information about the chemical composition, structure, and spatial distribution of components in a variety of food products. Quantitative NMR [...] Read more.
Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) are powerful techniques that have been employed to analyze foodstuffs comprehensively. These techniques offer in-depth information about the chemical composition, structure, and spatial distribution of components in a variety of food products. Quantitative NMR is widely applied for precise quantification of metabolites, authentication of food products, and monitoring of food quality. Low-field 1H-NMR relaxometry is an important technique for investigating the most abundant components of intact foodstuffs based on relaxation times and amplitude of the NMR signals. In particular, information on water compartments, diffusion, and movement can be obtained by detecting proton signals because of H2O in foodstuffs. Saffron adulterations with calendula, safflower, turmeric, sandalwood, and tartrazine have been analyzed using benchtop NMR, an alternative to the high-field NMR approach. The fraudulent addition of Robusta to Arabica coffee was investigated by 1H-NMR Spectroscopy and the marker of Robusta coffee can be detected in the 1H-NMR spectrum. MRI images can be a reliable tool for appreciating morphological differences in vegetables and fruits. In kiwifruit, the effects of water loss and the states of water were investigated using MRI. It provides informative images regarding the spin density distribution of water molecules and the relationship between water and cellular tissues. 1H-NMR spectra of aqueous extract of kiwifruits affected by elephantiasis show a higher number of small oligosaccharides than healthy fruits do. One of the frauds that has been detected in the olive oil sector reflects the addition of hazelnut oils to olive oils. However, using the NMR methodology, it is possible to distinguish the two types of oils, since, in hazelnut oils, linolenic fatty chains and squalene are absent, which is also indicated by the 1H-NMR spectrum. NMR has been applied to detect milk adulterations, such as bovine milk being spiked with known levels of whey, urea, synthetic urine, and synthetic milk. In particular, T2 relaxation time has been found to be significantly affected by adulteration as it increases with adulterant percentage. The 1H spectrum of honey samples from two botanical species shows the presence of signals due to the specific markers of two botanical species. NMR generates large datasets due to the complexity of food matrices and, to deal with this, chemometrics (multivariate analysis) can be applied to monitor the changes in the constituents of foodstuffs, assess the self-life, and determine the effects of storage conditions. Multivariate analysis could help in managing and interpreting complex NMR data by reducing dimensionality and identifying patterns. NMR spectroscopy followed by multivariate analysis can be channelized for evaluating the nutritional profile of food products by quantifying vitamins, sugars, fatty acids, amino acids, and other nutrients. In this review, we summarize the importance of NMR spectroscopy in chemical profiling and quality assessment of food products employing magnetic resonance technologies and multivariate statistical analysis. Full article
(This article belongs to the Special Issue Quantitative NMR and MRI Methods Applied for Foodstuffs)
Show Figures

Figure 1

25 pages, 7132 KiB  
Article
Effect of Elaeagnus angustifolia Honey in the Protection Against Ethanol-Induced Chronic Gastric Injury via Counteracting Oxidative Stress, Interfering with Inflammation and Regulating Gut Microbiota in Mice
by Min Zhu, Jiayan Yang, Haoan Zhao, Yu Qiu, Lin Yuan, Jingyang Hong and Wei Cao
Foods 2025, 14(9), 1600; https://doi.org/10.3390/foods14091600 - 1 May 2025
Cited by 1 | Viewed by 818
Abstract
Chronic alcohol consumption is a major contributor to gastric injury, yet current therapeutic strategies predominantly rely on chemical agents with limited efficacy and potential side effects. Natural products, with their multi-target biocompatibility and safety advantages, offer promising alternatives for gastric protection. We examined [...] Read more.
Chronic alcohol consumption is a major contributor to gastric injury, yet current therapeutic strategies predominantly rely on chemical agents with limited efficacy and potential side effects. Natural products, with their multi-target biocompatibility and safety advantages, offer promising alternatives for gastric protection. We examined the phenolic compounds of Elaeagnus angustifolia honey (EAH) and investigated its prophylactic potential against ethanol-induced chronic gastric injury in mice. HPLC-DAD-Q-TOF-MS analysis showed that 21 phenolic compounds were tentatively and qualitatively identified in EAH, as well as 14 phenolic compounds. Moreover, gastric ulcer indices, histopathological morphology, oxidative stress markers (MDA, GSH, SOD), inflammatory mediators (NO, PGE2), and cytokine gene expression (TNF-α, IL-6, IL-1β, iNOS) were evaluated via enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR. Western blot was employed to assess COX-2 protein expression, while 16S rRNA sequencing analyzed gut microbiota composition. The results demonstrated that EAH could play a role in gastric injury caused by long-term alcoholism by protecting gastric tissue structure, interfering with oxidative stress and inflammatory response, and remodeling the intestinal microbial community. Full article
(This article belongs to the Special Issue Bee Products Consumption and Human Health)
Show Figures

Figure 1

22 pages, 879 KiB  
Article
Metabolomic Profiling and Antioxidant Properties of Chilean Eucryphia cordifolia Cav.: Insights from Leaves, Flowers, and Monofloral Honey
by Rafael Viteri, Ady Giordano, Gloria Montenegro, Mario J. Simirgiotis and Flavia C. Zacconi
Antioxidants 2025, 14(3), 292; https://doi.org/10.3390/antiox14030292 - 28 Feb 2025
Cited by 1 | Viewed by 827
Abstract
This study aimed to characterize the metabolomic profile of monofloral honey from Eucryphia cordifolia (ulmo) and evaluate the potential transfer of bioactive compounds from the plant parts, including the leaves and flowers, to the honey. Using UHPLC/Q-TOF-MS analysis, various flavonoids and phenolic acids [...] Read more.
This study aimed to characterize the metabolomic profile of monofloral honey from Eucryphia cordifolia (ulmo) and evaluate the potential transfer of bioactive compounds from the plant parts, including the leaves and flowers, to the honey. Using UHPLC/Q-TOF-MS analysis, various flavonoids and phenolic acids were identified and quantified in extracts from the leaves, flowers, and honey from E. cordifolia. Given their rich polyphenolic composition, E. cordifolia leaves were included in this study to assess their potential contribution to the antioxidant properties and chemical markers of ulmo honey. Additionally, the polyphenolic compounds in honey samples were quantified. Chromatographic analysis via UHPLC-MS/MS revealed that ulmo honey contains phenolic acids such as gallic, syringic, ferulic, chlorogenic, caffeic, and coumaric acid, as well as flavonoids including pinocembrin, quercetin, luteolin, kaempferol, epicatechin, apigenin, and isorhamnetin. The results indicate that pinocembrin and gallic acid are the main chemical markers of ulmo honey, while isorhamnetin could complement its characterization as a complementary marker. UHPLC/Q-TOF-MS analysis was also utilized to compare the compounds present in the honey with those found in the plant parts (leaves and flowers), respectively. A total of 10 shared compounds were identified, 9 of which were preliminarily identified, while 1 remains unknown. Notably, dihydroquercetin 3-O-rhamnoside, quercetin 3-O-rhamnoside, cyanidin 3-(p-coumaroyl)-glucoside, and eupatorin were detected in ulmo honey for the first time. Along with gallic acid, pinocembrin, and isorhamnetin, these compounds could contribute to a characteristic fingerprint for identifying the botanical origin of the honey. Overall, these findings provide valuable insights into the chemical composition of ulmo honey and its potential application as a functional product with antioxidant properties. Full article
(This article belongs to the Special Issue Plant Materials and Their Antioxidant Potential, 2nd Edition)
Show Figures

Figure 1

17 pages, 2379 KiB  
Article
New Insights on Quality, Safety, Nutritional, and Nutraceutical Properties of Honeydew Honeys from Italy
by Andrea Mara, Federica Mainente, Vasiliki Soursou, Yolanda Picó, Iratxe Perales, Asma Ghorab, Gavino Sanna, Isabel Borrás-Linares, Gianni Zoccatelli and Marco Ciulu
Molecules 2025, 30(2), 410; https://doi.org/10.3390/molecules30020410 - 19 Jan 2025
Cited by 4 | Viewed by 1462
Abstract
Honeydew honey is less studied than nectar honey, although it is characterized by peculiar nutritional properties. This is mainly due to its challenging production, which leads to easy counterfeiting and difficult valorization. This contribution aims to provide a comprehensive characterization of the physico-chemical, [...] Read more.
Honeydew honey is less studied than nectar honey, although it is characterized by peculiar nutritional properties. This is mainly due to its challenging production, which leads to easy counterfeiting and difficult valorization. This contribution aims to provide a comprehensive characterization of the physico-chemical, palynological, functional, and food safety properties of a large sampling of honeydew honeys collected throughout Italy. The honeydew elements, conductivity, color, antioxidant properties, total polyphenol content, hydroxymethylfurfural, major and trace elements, toxic and rare earth elements, and pesticide residues were measured in 59 samples of honeydew honey from forest, eucalyptus, fir, oak, and citrus sources. Physico-chemical and antioxidant properties were unable to differentiate the botanical origin of Italian honeydew honeys. Similarly, the mineral composition did not vary significantly, whereas rare earth elements appeared to be promising markers for classifying their origin. Multivariate analysis allowed discriminating fir honeydews from the other varieties. Concerning safety aspects, pesticide residues were detected in 90% of the samples, with fir honeydews exhibiting the lowest contamination levels, probably due to its production in less industrialized areas. Acetamiprid and imidacloprid were the most prevalent pesticide residues, but their concentrations were below the limit indicated by the EFSA. These findings suggest the need for a continuous monitoring program for contaminants to ensure safety and to assess risk. Full article
Show Figures

Graphical abstract

15 pages, 3164 KiB  
Article
Comparison of the Physicochemical Properties, Microbial Communities, and Hydrocarbon Composition of Honeys Produced by Different Apis Species
by Guozhi Zhang, Yao Liu, Yaling Luo, Cuiping Zhang, Shanshan Li, Huoqing Zheng, Xiasen Jiang and Fuliang Hu
Foods 2024, 13(23), 3753; https://doi.org/10.3390/foods13233753 - 23 Nov 2024
Viewed by 1101
Abstract
The chemical composition and quality of honey are influenced by its botanical, geographic, and entomological origins, as well as climatic conditions. In this study, the physicochemical characteristics, microbial communities, and hydrocarbon compounds of honey produced by Apis mellifera, Apis cerana, Apis [...] Read more.
The chemical composition and quality of honey are influenced by its botanical, geographic, and entomological origins, as well as climatic conditions. In this study, the physicochemical characteristics, microbial communities, and hydrocarbon compounds of honey produced by Apis mellifera, Apis cerana, Apis laboriosa, Apis dorsata, and Apis florea were elucidated. The physicochemical profile of the honey exhibited significant differences across species, including moisture content (18.27–23.66%), fructose (33.79–38.70%), maltose (1.10–1.93%), electrical conductivity (0.37–0.74 mS/cm), pH (3.36–3.72), diastase activity (4.50–29.97 diastase number), and color (37.90–102.47 mm). Microbial analysis revealed a significant abundance of lactic acid bacteria, particularly the Apilactobacillus genus in A. laboriosa honey and the Lactobacillus in A. florea honey, indicating significant probiotic potential. Chemometric methods, principal component analysis, hierarchical cluster analysis, and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to classify the honey samples based on the 12 beeswax-derived hydrocarbons. The OPLS-DA model demonstrated 100% accuracy in predicting the entomological origin of honey, indicating that specific hydrocarbons are reliable markers for honey classification. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

27 pages, 5525 KiB  
Review
Chromatography-Based Metabolomics as a Tool in Bioorganic Research of Honey
by Marina Kranjac, Piotr Marek Kuś, Saša Prđun, Renata Odžak and Carlo Ignazio Giovanni Tuberoso
Metabolites 2024, 14(11), 606; https://doi.org/10.3390/metabo14110606 - 8 Nov 2024
Cited by 1 | Viewed by 1583
Abstract
This review presents the latest research on chromatography-based metabolomics for bioorganic research of honey, considering targeted, suspect, and untargeted metabolomics involving metabolite profiling and metabolite fingerprinting. These approaches give an insight into the metabolic diversity of different honey varieties and reveal different classes [...] Read more.
This review presents the latest research on chromatography-based metabolomics for bioorganic research of honey, considering targeted, suspect, and untargeted metabolomics involving metabolite profiling and metabolite fingerprinting. These approaches give an insight into the metabolic diversity of different honey varieties and reveal different classes of organic compounds in the metabolic profiles, among which, key metabolites such as biomarkers and bioactive compounds can be highlighted. Chromatography-based metabolomics strategies have significantly impacted different aspects of bioorganic research, including primary areas such as botanical origins, honey origin traceability, entomological origins, and honey maturity. Through the use of different tools for complex data analysis, these strategies contribute to the detection, assessment, and/or correlation of different honey parameters and attributes. Bioorganic research is mainly focused on phytochemicals and their transformation, but the chemical changes that can occur during the different stages of honey formation remain a challenge. Furthermore, the latest user- and environmentally friendly sample preparation methods and technologies as well as future perspectives and the role of chromatography-based metabolomic strategies in honey characterization are discussed. The objective of this review is to summarize the latest metabolomics strategies contributing to bioorganic research onf honey, with emphasis on the (i) metabolite analysis by gas and liquid chromatography techniques; (ii) key metabolites in the obtained metabolic profiles; (iii) formation and accumulation of biogenic volatile and non-volatile markers; (iv) sample preparation procedures; (v) data analysis, including software and databases; and (vi) conclusions and future perspectives. For the present review, the literature search strategy was based on the PRISMA guidelines and focused on studies published between 2019 and 2024. This review outlines the importance of metabolomics strategies for potential innovations in characterizing honey and unlocking its full bioorganic potential. Full article
(This article belongs to the Special Issue Chemical Profiling of Metabolites from Honey Bee Products)
Show Figures

Figure 1

34 pages, 432 KiB  
Review
Mass Spectrometry Characterization of Honeydew Honey: A Critical Review
by Rosa Quirantes-Piné, Gavino Sanna, Andrea Mara, Isabel Borrás-Linares, Federica Mainente, Yolanda Picó, Gianni Zoccatelli, Jesús Lozano-Sánchez and Marco Ciulu
Foods 2024, 13(14), 2229; https://doi.org/10.3390/foods13142229 - 16 Jul 2024
Cited by 9 | Viewed by 3081
Abstract
Honeydew honey is produced by bees (Apis mellifera) foraging and collecting secretions produced by certain types of aphids on various parts of plants. In addition to exhibiting organoleptic characteristics that distinguish them from nectar honey, these honeys are known for their [...] Read more.
Honeydew honey is produced by bees (Apis mellifera) foraging and collecting secretions produced by certain types of aphids on various parts of plants. In addition to exhibiting organoleptic characteristics that distinguish them from nectar honey, these honeys are known for their functional properties, such as strong antioxidant and anti-inflammatory activities. Despite their importance, they remain poorly characterized in comparison with flower honeys, as most studies on this subject are not only carried out on too few samples but also still focused on traditional chemical–physical parameters, such as specific rotation, major sugars, or melissopalynological information. Since mass spectrometry has consistently been a primary tool for the characterization and authentication of honeys, this review will focus on the application of these methods to the characterization of the minor fraction of honeydew honey. More specifically, this review will attempt to highlight what progress has been made so far in identifying markers of the authenticity of the botanical and/or geographical origin of honeydew honeys by mass spectrometry-based approaches. Furthermore, strategies devoted to the determination of contaminants and toxins in honeydew honeys will be addressed. Such analyses represent a valuable tool for establishing the level of food safety associated with these products. A critical analysis of the presented studies will identify their limitations and critical issues, thereby describing the current state of research on the topic. Full article
(This article belongs to the Section Food Engineering and Technology)
12 pages, 4636 KiB  
Communication
(−)-Gallocatechin Gallate: A Novel Chemical Marker to Distinguish Triadica cochinchinensis Honey
by Huizhi Jiang, Zhen Li, Shiqing Zhong and Zhijiang Zeng
Foods 2024, 13(12), 1879; https://doi.org/10.3390/foods13121879 - 14 Jun 2024
Cited by 2 | Viewed by 2119
Abstract
Triadica cochinchinensis honey (TCH) is collected from the nectar of the medicinal plant T. cochinchinensis and is considered the most important honey variety in southern China. TCH has significant potential medicinal properties and commercial value. However, reliable markers for application in the authentication [...] Read more.
Triadica cochinchinensis honey (TCH) is collected from the nectar of the medicinal plant T. cochinchinensis and is considered the most important honey variety in southern China. TCH has significant potential medicinal properties and commercial value. However, reliable markers for application in the authentication of TCH have not yet been established. Herein, a comprehensive characterization of the botanical origin and composition of TCH was conducted by determining the palynological characteristics and basic physicochemical parameters. Liquid chromatography tandem-mass spectrometry (LC-MS/MS) was used to investigate the flavonoid profile composition of TCH, T. cochinchinensis nectar (TCN) and 11 other common varieties of Chinese commercial honey. (−)-Gallocatechin gallate (GCG) was identified as a reliable flavonoid marker for TCH, which was uniquely shared with TCN but absent in the other 11 honey types. Furthermore, the authentication method was validated, and an accurate quantification of GCG in TCH and TCN was conducted. Overall, GCG can be applied as a characteristic marker to identify the botanical origin of TCH. Full article
(This article belongs to the Special Issue Quality Evaluation of Bee Products—Volume II)
Show Figures

Graphical abstract

17 pages, 2991 KiB  
Article
Allele Frequencies of Genetic Variants Associated with Varroa Drone Brood Resistance (DBR) in Apis mellifera Subspecies across the European Continent
by Regis Lefebre, Lina De Smet, Anja Tehel, Robert J. Paxton, Emma Bossuyt, Wim Verbeke, Coby van Dooremalen, Zeynep N. Ulgezen, Trudy van den Bosch, Famke Schaafsma, Dirk-Jan Valkenburg, Raffaele Dall’Olio, Cedric Alaux, Daniel S. Dezmirean, Alexandru I. Giurgiu, Nuno Capela, Sandra Simões, José Paulo Sousa, Martin Bencsik, Adam McVeigh, Michael Thomas Ramsey, Sausan Ahmad, Tarun Kumar, Marc O. Schäfer, Alexis L. Beaurepaire, Arrigo Moro, Claude J. Flener, Severine Matthijs and Dirk C. de Graafadd Show full author list remove Hide full author list
Insects 2024, 15(6), 419; https://doi.org/10.3390/insects15060419 - 4 Jun 2024
Cited by 3 | Viewed by 2028
Abstract
Implementation of marker-assisted selection (MAS) in modern beekeeping would improve sustainability, especially in breeding programs aiming for resilience against the parasitic mite Varroa destructor. Selecting honey bee colonies for natural resistance traits, such as brood-intrinsic suppression of varroa mite reproduction, reduces the [...] Read more.
Implementation of marker-assisted selection (MAS) in modern beekeeping would improve sustainability, especially in breeding programs aiming for resilience against the parasitic mite Varroa destructor. Selecting honey bee colonies for natural resistance traits, such as brood-intrinsic suppression of varroa mite reproduction, reduces the use of chemical acaricides while respecting local adaptation. In 2019, eight genomic variants associated with varroa non-reproduction in drone brood were discovered in a single colony from the Amsterdam Water Dune population in the Netherlands. Recently, a new study tested the applicability of these eight genetic variants for the same phenotype on a population-wide scale in Flanders, Belgium. As the properties of some variants varied between the two studies, one hypothesized that the difference in genetic ancestry of the sampled colonies may underly these contribution shifts. In order to frame this, we determined the allele frequencies of the eight genetic variants in more than 360 Apis mellifera colonies across the European continent and found that variant type allele frequencies of these variants are primarily related to the A. mellifera subspecies or phylogenetic honey bee lineage. Our results confirm that population-specific genetic markers should always be evaluated in a new population prior to using them in MAS programs. Full article
(This article belongs to the Special Issue Healthy and Sustainable Beekeeping)
Show Figures

Figure 1

17 pages, 10979 KiB  
Article
Comparative Analysis of Volatile Compounds in the Flower Buds of Three Panax Species Using Fast Gas Chromatography Electronic Nose, Headspace-Gas Chromatography-Ion Mobility Spectrometry, and Headspace Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry Coupled with Multivariate Statistical Analysis
by Yang Yue, Jiaxin Yin, Jingyi Xie, Shufang Wu, Hui Ding, Lifeng Han, Songtao Bie, Wen Song, Ying Zhang, Xinbo Song, Heshui Yu and Zheng Li
Molecules 2024, 29(3), 602; https://doi.org/10.3390/molecules29030602 - 26 Jan 2024
Cited by 2 | Viewed by 2061
Abstract
The flower buds of three Panax species (PGF: P. ginseng; PQF: P. quinquefolius; PNF: P. notoginseng) widely consumed as health tea are easily confused in market circulation. We aimed to develop a green, fast, and easy analysis strategy to distinguish [...] Read more.
The flower buds of three Panax species (PGF: P. ginseng; PQF: P. quinquefolius; PNF: P. notoginseng) widely consumed as health tea are easily confused in market circulation. We aimed to develop a green, fast, and easy analysis strategy to distinguish PGF, PQF, and PNF. In this work, fast gas chromatography electronic nose (fast GC e-nose), headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS), and headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) were utilized to comprehensively analyze the volatile organic components (VOCs) of three flowers. Meanwhile, a principal component analysis (PCA) and heatmap were applied to distinguish the VOCs identified in PGF, PQF, and PNF. A random forest (RF) analysis was used to screen key factors affecting the discrimination. As a result, 39, 68, and 78 VOCs were identified in three flowers using fast GC e-nose, HS-GC-IMS, and HS-SPME-GC-MS. Nine VOCs were selected as potential chemical markers based on a model of RF for distinguishing these three species. Conclusively, a complete VOC analysis strategy was created to provide a methodological reference for the rapid, simple, and environmentally friendly detection and identification of food products (tea, oil, honey, etc.) and herbs with flavor characteristics and to provide a basis for further specification of their quality and base sources. Full article
(This article belongs to the Special Issue Challenges in Food Flavor and Volatile Compounds Analysis)
Show Figures

Figure 1

24 pages, 4029 KiB  
Article
Metabolomic Profiling (LC–MS2) of Flowers and Bee Honey of Dzidzilche (Gymnopodium floribundum Rolfe) and Jabin (Piscidia piscipula L. Sarg.) from Yucatán, México
by Andrea Elizabeth Mendoza-Osorno, Kevin Alejandro Avilés-Betanzos, Alberto Uc-Varguez, Rommel Carballo-Castañeda, Aldo Moreno-Ulloa, Manuel Octavio Ramírez-Sucre and Ingrid Mayanin Rodríguez-Buenfil
Processes 2023, 11(10), 3028; https://doi.org/10.3390/pr11103028 - 20 Oct 2023
Cited by 3 | Viewed by 2498
Abstract
Yucatan, Mexico, is renowned for its rich plant diversity, with ~40% melliferous plants. Yucatan bee honey (BH) constitutes ~15.83% of Mexico’s annual BH production, giving high international value. Major melliferous families in Yucatan include Fabaceae, with Piscidia piscipula (“Jabin”) as an example, and [...] Read more.
Yucatan, Mexico, is renowned for its rich plant diversity, with ~40% melliferous plants. Yucatan bee honey (BH) constitutes ~15.83% of Mexico’s annual BH production, giving high international value. Major melliferous families in Yucatan include Fabaceae, with Piscidia piscipula (“Jabin”) as an example, and Polygonaceae, with Gymnopodium floribundum (“Dzidzilche”), crucial for BH production. This study aimed to profile the metabolome of Jabin and Dzidzilche flowers and their associated BH to identify metabolites for each flower coming from two regions (Tahdziu and Acanceh) of Yucatán. Liquid chromatography–tandem mass spectrometry (LC–MS2), total polyphenol content (TPC), and antioxidant capacity (AC) were implemented. As many as 101 metabolites (69 in flowers, 55 in BH) were tentatively identified using spectral libraries and in silico predictions, predominantly flavonoids, which accounted for 50.7% of the total identified metabolites in flower and 16.4% in BH. Samples exhibited variations in TPC, AC, secondary metabolites, and chemical classes depending on geography and botanical origin. Dzidzilche flowers from Acanceh displayed the highest total polyphenol content (TPC, 1431.24 ± 15.38 mg GAE/100 g dry matter) and antioxidant capacity (AC, 93.63% inhibition). Among the metabolites detected in flowers (Piscidia piscipula, Gymnopodium floribundum), 50.7% were found to be part of the flavonoid chemical class, whereas in their respective honey samples, only 16.4% of the identified metabolites were categorized as flavonoids. Vanillin and vitexin were tentatively identified as potential markers for the botanical origin identification of honey from Piscidia piscipula and Gymnopodium floribundum, respectively. Recognizing botanical and geographic BH origin is important for product authentication, identification, and traceability. This study offers chemical insights that can be valuable and complementary to melissopalynology, aiding in determining the origin and quality of Yucatan BH. Full article
Show Figures

Figure 1

33 pages, 7569 KiB  
Article
Fingerprinting Chemical Markers in the Mediterranean Orange Blossom Honey: UHPLC-HRMS Metabolomics Study Integrating Melissopalynological Analysis, GC-MS and HPLC-PDA-ESI/MS
by Konstantinos M. Kasiotis, Eirini Baira, Styliani Iosifidou, Electra Manea-Karga, Despina Tsipi, Sofia Gounari, Ioannis Theologidis, Theodora Barmpouni, Pier Paolo Danieli, Filippo Lazzari, Daniele Dipasquale, Sonia Petrarca, Souad Shairra, Naglaa A. Ghazala, Aida A. Abd El-Wahed, Seham M. A. El-Gamal and Kyriaki Machera
Molecules 2023, 28(9), 3967; https://doi.org/10.3390/molecules28093967 - 8 May 2023
Cited by 12 | Viewed by 4296
Abstract
(1) Background: Citrus honey constitutes a unique monofloral honey characterized by a distinctive aroma and unique taste. The non-targeted chemical analysis can provide pivotal information on chemical markers that differentiate honey based on its geographical and botanical origin. (2) Methods: Within the PRIMA [...] Read more.
(1) Background: Citrus honey constitutes a unique monofloral honey characterized by a distinctive aroma and unique taste. The non-targeted chemical analysis can provide pivotal information on chemical markers that differentiate honey based on its geographical and botanical origin. (2) Methods: Within the PRIMA project “PLANT-B”, a metabolomics workflow was established to unveil potential chemical markers of orange blossom honey produced in case study areas of Egypt, Italy, and Greece. In some of these areas, aromatic medicinal plants were cultivated to enhance biodiversity and attract pollinators. The non-targeted chemical analysis and metabolomics were conducted using ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS). (3) Results: Forty compounds were disclosed as potential chemical markers, enabling the differentiation of the three orange blossom honeys according to geographical origin. Italian honey showed a preponderance of flavonoids, while in Greek honey, terpenoids and iridoids were more abundant than flavonoids, except for hesperidin. In Egyptian honey, suberic acid and a fatty acid ester derivative emerged as chemical markers. New, for honey, furan derivatives were identified using GC-MS in Greek samples. (4) Conclusions: The application of UHPLC-HRMS metabolomics combined with an elaborate melissopalynological analysis managed to unveil several potential markers of Mediterranean citrus honey potentially associated with citrus crop varieties and the local indigenous flora. Full article
(This article belongs to the Special Issue Chemometrics in Analytical Chemistry)
Show Figures

Figure 1

16 pages, 3846 KiB  
Article
Analysis and Discrimination of Canadian Honey Using Quantitative NMR and Multivariate Statistical Methods
by Ian W. Burton, Mohsen Kompany-Zareh, Sophie Haverstock, Jonathan Haché, Camilo F. Martinez-Farina, Peter D. Wentzell and Fabrice Berrué
Molecules 2023, 28(4), 1656; https://doi.org/10.3390/molecules28041656 - 9 Feb 2023
Cited by 6 | Viewed by 3432
Abstract
To address the growing concern of honey adulteration in Canada and globally, a quantitative NMR method was developed to analyze 424 honey samples collected across Canada as part of two surveys in 2018 and 2019 led by the Canadian Food Inspection Agency. Based [...] Read more.
To address the growing concern of honey adulteration in Canada and globally, a quantitative NMR method was developed to analyze 424 honey samples collected across Canada as part of two surveys in 2018 and 2019 led by the Canadian Food Inspection Agency. Based on a robust and reproducible methodology, NMR data were recorded in triplicate on a 700 MHz NMR spectrometer equipped with a cryoprobe, and the data analysis led to the identification and quantification of 33 compounds characteristic of the chemical composition of honey. The high proportion of Canadian honey in the library provided a unique opportunity to apply multivariate statistical methods including PCA, PLS-DA, and SIMCA in order to differentiate Canadian samples from the rest of the world. Through satisfactory model validation, both PLS-DA as a discriminant modeling technique and SIMCA as a class modeling method proved to be reliable at differentiating Canadian honey from a diverse set of honeys with various countries of origins and floral types. The replacement method of optimization was successfully applied for variable selection, and trigonelline, proline, and ethanol at a lower extent were identified as potential chemical markers for the discrimination of Canadian and non-Canadian honeys. Full article
Show Figures

Figure 1

20 pages, 2976 KiB  
Article
A Preliminary Investigation of Special Types of Honey Marketed in Morocco
by Rania Mehdi, Saadia Zrira, Rossella Vadalà, Vincenzo Nava, Concetta Condurso, Nicola Cicero and Rosaria Costa
J. Exp. Theor. Anal. 2023, 1(1), 1-20; https://doi.org/10.3390/jeta1010001 - 5 Jan 2023
Cited by 7 | Viewed by 3905
Abstract
Background: This work aimed to perform a comprehensive investigation of organic Moroccan honeys obtained from plants of euphorbia, arbutus, and carob, based on the determination of physico-chemical profiles and volatile fingerprints. Methods: The selected analytical approach involved different techniques, including physico-chemical procedures for [...] Read more.
Background: This work aimed to perform a comprehensive investigation of organic Moroccan honeys obtained from plants of euphorbia, arbutus, and carob, based on the determination of physico-chemical profiles and volatile fingerprints. Methods: The selected analytical approach involved different techniques, including physico-chemical procedures for determination of humidity, acidity, diastase activity; solid-phase microextraction (SPME) coupled to GC-MS for aromatic fraction exploration; and ICP-MS for multi-element analysis. Results: The results obtained from the physico-chemical analyses were highly comparable to those of other commercial honeys. In 50% of samples investigated, the diastase number was just above the legal limit fixed by Honey Quality Standards. The analysis of the volatile fraction highlighted the presence of numerous compounds from the terpenoid group along with characteristic molecules such as furfural, isophorone, and derivatives. In most cases, VOCs were distinct markers of origin; in others, it was not possible to assess an exclusive source for bees to produce honey. Conclusion: The results contributed to place the three varieties of honey investigated among the commercial products available in the market. Many variables determined returned positive indications about quality and safety of these special honeys. Full article
Show Figures

Figure 1

16 pages, 3423 KiB  
Article
Off-Line SPE LC-LRMS Polyphenolic Fingerprinting and Chemometrics to Classify and Authenticate Spanish Honey
by Víctor García-Seval, Javier Saurina, Sònia Sentellas and Oscar Núñez
Molecules 2022, 27(22), 7812; https://doi.org/10.3390/molecules27227812 - 13 Nov 2022
Cited by 10 | Viewed by 2509
Abstract
The feasibility of non-targeted off-line SPE LC-LRMS polyphenolic fingerprints to address the classification and authentication of Spanish honey samples based on both botanical origin (blossom and honeydew honeys) and geographical production region was evaluated. With this aim, 136 honey samples belonging to different [...] Read more.
The feasibility of non-targeted off-line SPE LC-LRMS polyphenolic fingerprints to address the classification and authentication of Spanish honey samples based on both botanical origin (blossom and honeydew honeys) and geographical production region was evaluated. With this aim, 136 honey samples belonging to different botanical varieties (multifloral and monofloral) obtained from different Spanish geographical regions with specific climatic conditions were analyzed. Polyphenolic compounds were extracted by off-line solid-phase extraction (SPE) using HLB (3 mL, 60 mg) cartridges. The obtained extracts were then analyzed by C18 reversed-phase LC coupled to low-resolution mass spectrometry in a hybrid quadrupole-linear ion trap mass analyzer and using electrospray in negative ionization mode. Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were employed to assess the pattern recognition capabilities of the obtained fingerprints to address honey classification and authentication. In general, a good sample discrimination was accomplished by PLS-DA, being able to differentiate both blossom-honey and honeydew-honey samples according to botanical varieties. Multiclass predictions by cross-validation for the set of blossom-honey samples showed sensitivity, specificity, and classification ratios higher than 60%, 85%, and 87%, respectively. Better results were obtained for the set of honeydew-honey samples, exhibiting 100% sensitivity, specificity, and classification ratio values. The proposed fingerprints also demonstrated that they were good honey chemical descriptors to deal with climatic and geographical issues. Characteristic polyphenols of each botanical variety were tentatively identified by LC-MS/MS in multiple-reaction monitoring mode to propose possible honey markers for future experiments (i.e., naringin for orange/lemon blossom honeys, syringic acid in thyme honeys, or galangin in rosemary honeys). Full article
(This article belongs to the Special Issue Analyses and Applications of Phenolic Compounds in Food)
Show Figures

Figure 1

Back to TopTop